ОПРЕДЕЛЕНИЕ МИКРОСКОПИЧЕСКИХ ПАРАМЕТРОВ ГЕТЕРОГЕННЫХ УГЛЕРОДНЫХ МАТЕРИАЛОВ

В. А. Борисов

Белорусский государственный университет, г. Минск;

velo_to@mail.ru; науч. рук. – В. А. Доросинец

Проведены экспериментальные исследования температурной зависимости сопротивления и магнитосопротивления композитных металлоуглеродных образцов C(Co), проявляющих эффект слабой локализации. Магнитосопротивление при температуре T = 2,2 К является знакопеременным, что объясняется вкладом механизма спин-орбитального взаимодействия. Анализ кривых магнитосопротивления позволил рассчитать значения параметров, характеризующих время потери фазы волновой функции при неупругом рассеянии и время спин-орбитального взаимодействия.

Ключевые слова: углеродные материалы; квантовая поправка; слабая локализация; магнитосопротивление.

введение

Исследование механизмов электропроводности и извлечение микроскопических параметров гетерогенных (композитных) материалов, характеризующих их электрофизические свойства, представляет собой сложную задачу из-за неоднородности материалов, одновременного совместного проявления нескольких механизмов электропроводности, соотношение вкладов которых изменяется для разных типов экспериментов и при изменении условий. К такому классу объектов относятся в частности металлоуглеродные материалы С(Со). Следствием неидеальности строения графеновых плоскостей является наблюдение для образцов с подобной структурой эффекта слабой локализации при низких температурах[1].

ТЕМПЕРАТУРНАЯ ЗАВИСИМОСТЬ СОПРОТИВЛЕНИЯ В ИССЛЕДУЕМОМ ОБРАЗЦЕ

На Рис.1 представлены температурная зависимость сопротивления R(T) исследованного образца. Видно, что в области температур ниже перегиба (при T = 41 K) экспериментальная кривая R(T) хорошо описывается логарифмической зависимостью, с небольшим отклонением от нее для самых низких температур эксперимента (T < 3 K). Такое поведение зависимости R(T) характерно при учете квантовой поправки к классической проводимости Друде для двумерного случая проявления эффекта слабой локализации и наблюдается для тонких слоев углерода в предграфитном состоянии [2].

Puc.1. Температурная зависимость сопротивления образца С(Со): прямая линия соответствует идеальной логарифмической зависимости

ОПРЕДЕЛЕНИЕ ВРЕМЕН, ОПРЕДЕЛЯЮЩИЕ ПРОЦЕССЫ РАССЕЯНИЯ

На Рис. 2 представлена экспериментальная кривая магнитосопротивления исследованного образца для температуры T = 2,2 К. Рисунок свидетельствует о знакопеременном характере магнитосопротивления. Поскольку эффект слабой локализации для рассматриваемого образца при T = 2.2 К имеет двумерный характер, полная кривая изменения электропроводности $\Delta \sigma(B)$ при приложении магнитного поля *В* может быть описана формулой Хиками [3]:

(1)

где Ψ - дигамма-функция, B_1 , B_2 и B_3 – параметры, характеризующие процессы потери фазы волновой функции электронов в процессе неупругого рассеяния на примесях и в результате спин-орбитального взаимодействия. Они в свою очередь представляют собой комбинации параметров:

$$B_X = \hbar/4eDt_X:$$
(2)

$$B_1 = B_0 + B_{SO} + B_S, \ B_2 = B_I + 4 B_{SO}/3 + 2B_S/3, \ B_3 = B_I + 2B_S,$$
 (3)

где (X=0,I, SO,S), \hbar – постоянная Планка, D – коэффициент диффузии, t_X – время рассеяния: t_0 – упругого, t_I – неупругого, t_{SO} – за счет спинорбитального взамодействия, t_S – на магнитной примеси.

Рис. 2. Зависимость обратного сопротивления образца от магнитного поля при *T*= 2,2 К (точки) и ее аппроксимация формулой 1 (сплошная линия)

Вид формул (1-3) позволяет предположить, что аппроксимация экспериментальных кривых магнитосопротивления формулой (1) может позволить извлечь значения параметров B₁, B₂ и B₃, на основании которых можно извлечь непосредственно времена, определяющие процессы рассеяния. Наилучших результатов аппроксимации экспериментальной кривой на Рис.2 с использованием метода наименьших квадратов математического пакета Matlab удалость достичь для параметров $B_1 = 9.3 \ 10^3$, $B_2=49,13$ и $B_3=8,73$ мT, соответственно. Для проверки корректности полученных величин B_1 , B_2 и B_3 проведена проверка вариативности результата расчета по формуле (1) при изменении значений параметров в окрестности их рассчитанных значений. Анализ показал, что в то время когда незначительное отклонение от полученных значений для B_2 и B_3 приводило к существенному возрастании ошибки, кратное же изменение параметра В₁ имело лишь незначительный эффект на точность аппроксимации. С целью определения достоверности полученного значения В₁ была проведена следующая процедура. Из Рис. 2 определялось значение индукции магнитного поля, при котором кривая магнитосопротивления пересекала ось X ($B_{\rm C} = 430,6$ мТл), и в формулу (2) подставлялось это значение и значения для индукции магнитного поля В. Строились зависимости функции ΔR^{-1} для этих параметров в зависимости от параметра В1, которая представляет абсолютную ошибку для данного значения индукции магнитного поля, Рис.3. Дополнительно оценивалось влияние шумов измерения на точность определения параметра B_1 .

Для расчета характеристических времен в формуле (3) мы можем сохранить только доминирующий вклад от неупругого рассеяния B_1 и рассчитанное значение для t_1 равное значению времени потери фазы волновой функции электрона t_{ϕ} составит 3,5 · 10⁻¹¹ с. Из выражения для B_2 формулы (3) t_{SO} составляет 1,09 · 10⁻¹¹ с. Учитывая неопределенность в определении параметра B_1 для максимального значения времени упругого рассеяния электронов t_0 при использовании полученного минимального значения для B_1 получим 9,1 · 10⁻¹⁴ с.

Рис. 3. Ошибка отклонения рассчитанного значения ΔR^{-1} в точке пересечения аппроксимирующей кривой по формулу (1) оси *X* от значения параметра *B*₁. Номера кривых соответствуют значениям параметра *B*_C: 1 - 430,6; 2 - 428; 3 - 425; 4 - 415 мТл

Для сравнения для меди из данных работы [4] для времен рассеяния при T = 2 К можно получить значения $t_{\rm I}$ = 7,9 ·10⁻¹¹ c, t_0 = 6,5 ·10⁻¹⁵, $t_{\rm SO}$ = 3,5 ·10⁻¹⁴ c, соответственно.

ЗАКЛЮЧЕНИЕ

Анализ кривых магнитосопротивления в температурной области, где наблюдаются квантовые поправки к электропроводности Друде позволяют рассчитать значения микроскопических параметров, характеризующих электропроводящие свойства гетерогенных металлоуглеродных материалов. Особенную тщательность при проведении аппроксимации необходимо проявлять при определении параметра B_1 , характеризующего время упругого рассеяния носителей заряда.

Библиографические ссылки

- 1. Two dimensional weak localization in partially graphitic carbons / V. Bayot [et al.] // Phys. Rev. B. 1989. Vol. 40, № 6. P. 3514–3523.
- 2. Получение и электрофизические свойства кобальтосодержащих углеродных волокон / И. А. Башмаков [и др.] // Физика твердого тела. 2002. Т. 44, № 9. С. 1614–1621.
- 3. *Hikami S., Larkin A. I., Nagaoka Y.* Spin-Orbit Interaction and Magnetoresistance in the Two Dimensional Random System // Prog. Theor. Phys. 1980. Vol. 63, № 2. P. 707–710.
- 4. *Rosenbaum R*. Superconducting fluctuations and magnetoconductance measurements of thin films in parallel magnetic fields // Phys. Rev. B. 1985. Vol. 32, № 4. P. 2190–2199.