FORWARD-ANGLE VALUES OF POLARIZATION-TRANSFER (PT) COEFFICIENTS FOR THE ${ }^{16} \mathrm{O}\left(\vec{p}, \vec{p}^{\prime}\right)^{16} \mathrm{O}\left(4^{-}, T=1\right) \mathrm{AND}{ }^{28} \mathrm{Si}\left(\vec{p}, \vec{p}^{\prime}\right)^{28} \mathrm{Si}\left(6^{-}, T=1\right)$ REACTIONS

Plavko A.V. ${ }^{1}$, Onegin M.S. ${ }^{2}$, Kudriashov V.I. ${ }^{3}$
${ }^{1}$ St. Petersburg State Polytechmic University, Russia; ${ }^{2}$ Petersburg Nuclear Physics Institute, Gatchina, Russia; ${ }^{3}$ St. Petersburg State University, Russia E-mail: kudr@comita.spb.ru

Unnatural-parity transitions at extremely forward angles (at and near zero degrees) are characterized by the fact that the $D_{N N}$ value should be practically equal to the $D_{S S}$ value. This may be due to the circumstance that in this case the \hat{N} direction is basically identical to the \hat{S} direction [1] (owing to the symmetry around the scattering axis). Our calculations (Fig.) at $\theta_{\text {c.m. }}=1^{\circ}$ with the program DWBA 91 from Raynal and with the Geramb $D D$ forces (PH , solid curves) and the Nakayama-Love no $D D$ interaction (NL, dashed curves) confirm this for the stretched isovector $4^{-}, T=1(18.98 \mathrm{MeV})$ transition in ${ }^{16} \mathrm{O}$.

Fig. The calculations (curves) and experimental data (dots) are shown. The measurements at $E_{p}=200 \mathrm{MeV}$ (dark dots) are taken from [2] - $D_{l l}, D_{S S}$, and from [3] - $D_{N N}$ The measurements at 350 MeV (open dots) are from [4]. The angles for 350 MeV have been multiplied by the coefficient $\kappa=(350 / 200)^{1 / 2}=1.32$. All the calculations have been made at $E_{p}=200 \mathrm{MeV}$.

In the case of the PH force, $D_{N N}=-0.73$, and $D_{S S}=-0.74$. The quantity Σ, as a linear combination of the PT coefficient $D_{i i}$ (called total spin transfer [1]), i.e. $\Sigma=\left[3-\left(D_{N N}+\right.\right.$ $\left.\left.D_{S S}+D_{L L}\right)\right] / 4$, is equal to 1 for spinflip ($\Delta S=1$) transitions and 0 for non-spin-flip $(\Delta S=0)$ transitions, if
the spin-orbit interaction is negligible. This may occur in the $\left(\vec{p}, \vec{p}^{\prime}\right)$ process at $\theta \approx 0^{\circ}$. In our calculations at $\theta=1^{\circ}, \Sigma$ was equal to 1.00 for both PH and NL forces. The relation

$$
\begin{equation*}
D_{N N}\left(0^{\circ}\right)= \pm\left[1+D_{L L}\left(0^{\circ}\right)\right] / 2 \tag{1}
\end{equation*}
$$

is also well-known [1]. The plus sign in it refers to natural-parity, and the minus sign refers to unnatural-parity transitions. In our calculations at $\theta=1^{\circ}$, this relation in a digital representation was as follows: $-0.730 \approx-0.734$ for PH force, and $-0.614 \approx-0.618$ for NL interaction.

Therefore, all the calculated combinations of the PT coefficients $D_{i i}$ at and near zero degrees are in a good agreement with the corresponding theoretical relations [1]. Moreover, the calculations using DWBA 91 provide a satisfactory description of the experimental measurements $D_{i i}$ (Fig.), obtained in the region of maximal differential cross sections.

We have also performed a similar study of the $T=1$ stretched 6 state at 14.35 MeV in ${ }^{28} \mathrm{Si}$, using PT coefficients from ($\vec{p}, \vec{p}^{\prime}$) measurements at 200 MeV [3] and 500 MeV [5]. Our analysis, using the program DWBA 91 and PH forces, has revealed that $D_{N N}\left(0^{\circ}\right)=D_{S S}\left(0^{\circ}\right)=-0.52$. The quantity Σ appears to be practically equal to 1 (0.98), and equation (1) in a digital representation gives the following: $-0.521=-0.521$.

The main qualitative features of the measured and calculated PT coefficients for the $6^{-}, T=1$ excitation (not shown) and these of the corresponding data for the $4^{-}, T=1$ excitation (Fig.) in the region of maximal differential cross sections are principally of a similar character. This is also an important guide.

Therefore, we have confirmed the suggestion $[5,6]$ that $D_{S S}, D_{L L}$ and $D_{N N}$ should resemble each other for all isovector stretched states, since the characteristics of $D_{i i}$ depend primarily on the isovector stretched-state assumption and the sampled properties of the force. Thus, for pure stretched states of high spin, the qualitative shapes of $D_{i i}$ should be approximately independent of the nucleus and are similar over a wide range of energies. Lastly, we would like to emphasize that, as $D_{S S}, D_{L L}$ and $D_{N N}$ are very insensitive to the type of distortion used [6] all these common characteristics should become most apparent for scattering at and near $\theta_{\mathrm{c} . \mathrm{m} .}=0^{\circ}$ in the excitation of all the $T=1$ stretched states.

1. H.Sakai et al. // Nucl. Phys. A. 1999. V.649. P. 251.
2. A.D.Bacher et al. // Scient. and Techn. Rep., IUCF, USA.1984. P.5.
3. F.Sammarruca et al. // Phys. Rev. C. 1999. V.61. 014309.
4. B.Larson et al.// Phys. Rev. C. 1996. V.53. P.1774.
5. E.Donoghue et al.// Phys. Rev. C. 1991. V.43. P.213.
6. W.G.Love, A.J.Klein // J. Phys. Soc. Jpn. Suppl. 1986. V.55. P. 78.
