Математический анализ

Учебная программа учреждения высшего образования по учебной дисциплине для специальности:

1-31 03 07 Прикладная информатика (по направлениям)

Направление специальности: 1-31 03 07-03 Прикладная информатика (веб-программирование и компьютерный дизайн)

2019 г.
Учебная программа составлена на основе ОСВО 1-31 03 07-2013, типовой учебной программы (дата утверждения 30.04.2012 г., регистрационный № ТД-Г 402 / тип.), учебного плана (дата утверждения 30.05.2013 г., регистрационный № Г 31-188 / уч.).

СОСТАВИТЕЛИ:
И. К. Сиротина, доцент кафедры информационных технологий БГУ, кандидат педагогических наук, доцент.

РЕЦЕНЗЕНТЫ:
Л. И. Майсеня, заведующий кафедрой физико-математических дисциплин Института информационных технологий БГУИР, доктор педагогических наук, профессор;
М. В. Дубатовская, доцент кафедры аналитический экономики и эконометрики БГУ, кандидат физико-математических наук, доцент.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:
Кафедрой информационных технологий
(протокол № 9 от 28.06.2019 г.);
Научно-методическим Советом БГУ
(протокол № 5 от 28 июня 2019)

Зав. кафедрой

Нифагин В. А.
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Цели и задачи учебной дисциплины
Цель учебной дисциплины — формирование у студентов системы математических знаний умений и навыков по математическому анализу, необходимой для изучения смежных учебных дисциплин, для осуществления профессиональной деятельности и для развития сферы научно-исследовательских интересов.

В рамках поставленной цели задачи учебной дисциплины состоят в следующем:
1) сформировать у студентов систему теоретических знаний по основам дифференциального и интегрального исчисления функции одной и нескольких переменных и теории рядов;
2) сформировать у студентов умения и навыки применения методов математического анализа при построении и исследовании моделей прикладных задач.
Учебная дисциплина «Математический анализ» относится к циклу общенаучных и общепрофессиональных дисциплин государственного компонента.
Учебная дисциплина «Математический анализ» является базовой математической дисциплиной и непосредственно связана с такими как «Аналитическая геометрия», «Алгебра и теория чисел», «Дифференциальные уравнения», «Теория вероятностей и математическая статистика».

Требования к компетенциям
Освоение учебной дисциплины «Математический анализ» должно обеспечить формирование следующих академических, социально-личностных и профессиональных компетенций:

академические компетенции:
AK-1. Уметь применять базовые научно-теоретические знания для решения теоретических и практических задач.
AK-2. Владеть системным и сравнительным анализом.
AK-3. Владеть исследовательскими навыками.
AK-4. Уметь работать самостоятельно.
AK-6. Владеть междисциплинарным подходом при решении проблем.
AK-8. Обладать навыками устной и письменной коммуникации.
AK-9. Уметь учиться, повышать свою квалификацию в течение всей жизни.

социально-личностные компетенции:
СЛК-3. Обладать способностью к межличностным коммуникациям.
СЛК-5. Быть способным к критике и самокритике.
СЛК-6. Уметь работать в команде.

профессиональные компетенции:
ПК-11. Пользоваться глобальными информационными ресурсами.
ПК-28. Организовывать работу малых коллективов исполнителей для достижения поставленных целей.
ПК-31. Готовить доклады, материалы к презентациям.

В результате освоения учебной дисциплины студент должен:
знать:
- методы исследования функций одной и нескольких переменных с использованием аппарата дифференциального исчисления;
- принципы построения и использования интегралов при математическом моделировании прикладных задач;
- принципы построения и исследования несобственных интегралов;
- методы исследования числовых и функциональных рядов;
- принципы построения представления функций функциональными рядами;
уметь:
- исследовать свойства функций методами дифференциального исчисления;
- находить первообразные, вычислять и использовать интегралы при исследовании математических моделей прикладных задач;
- исследовать сходимость последовательностей, рядов и несобственных интегралов;
- строить разложения функций в степенные ряды;
- дифференцировать и интегрировать функции комплексной переменной;
- применять методы математического анализа при построении и исследовании моделей прикладных задач;
владеть:
- основными подходами к исследованию функциональных зависимостей; навыками построения и исследования математических моделей естественных процессов.

Структура учебной дисциплины
Дисциплина изучается в 1 и 2 семестрах. Всего на изучение учебной дисциплины «Математический анализ» отведено 390 часов, в том числе 204 аудиторных часов, из них: лекции – 102 часов, практические занятия – 94 часов, упправляемая самостоятельная работа – 8 часов
Трудоемкость учебной дисциплины составляет 9,5 зачетные единицы.
Форма текущей аттестации – 2 зачета, 2 экзамена.
СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Раздел 1. Предел числовой последовательности и функции
Тema 1.1. Действительные числа. Числовые множества. Границы числовых множеств. Числовые последовательности и их свойства.
Тema 1.2. Предел числовой последовательности.
Тema 1.3. Функция одной переменной. Элементарные функции и их свойства.
Тema 1.4. Предел функции в точке. Бесконечные пределы и пределы на бесконечности.
Тema 1.5. Бесконечно малые и бесконечно большие функции и их свойства. Свойства пределов.
Тema 1.6. Непрерывность функции. Классификация точек разрыва.
Тema 1.7. Раскрытие неопределённостей.
Тema 1.8. Замечательные пределы.
Тema 1.9. Асимптоты графика функции.

Раздел 2. Дифференцирование функции одной переменной
Тema 2.1. Определение производной. Дифференциал функции. Геометрический смысл производной и дифференциала.
Тema 2.2. Производные степенной функции, логарифмической функции, тригонометрических функций.
Тema 2.3. Производная обратной функции, показательной функции, обратных тригонометрических функций.
Тema 2.4. Основные правила дифференцирования.
Тema 2.5. Производная неявной, показательно-степенной и сложной функции.
Тema 2.6. Производные и дифференциалы высших порядков. Формула Тейлора.

Раздел 3. Приложения производной функции одной переменной
Тema 3.1. Основные теоремы дифференциального исчисления: Ролля, Лагранжа, Ферма, Коши.
Тema 3.2. Уравнения касательной и нормали к графику функции. Приближенные вычисления значений функции.
Тema 3.3. Вычисление пределов функций. Правило Лопиталя-Бернулли.
Тema 3.4. Исследование функции с помощью производной: промежутки монотонности, точки экстремума, наибольшее и наименьшее значения функции.
Тema 3.5. Исследование функции с помощью производной: промежутки выпуклости и вогнутости, точки перегиба.
Тema 3.6. Полное исследование функции и построение эскиза графика.
Раздел 4. Функция нескольких переменных

Тема 4.1. Функция нескольких переменных и ее свойства. Частные и полные приращения. Частные производные и полный дифференциал.

Тема 4.2. Приложения частных производных: производная по направлению, градиент функции, касательная плоскость к поверхности, нормаль к поверхности.

Тема 4.3. Частные производные и дифференциалы высших порядков. Дифференцирование сложных функций. Дифференцирование неявных функций.

Тема 4.4. Экстремум функции двух переменных.

Тема 4.5. Условный экстремум функции двух переменных. Наибольшее и наименьшее значения функции двух переменных.

Раздел 5. Неопределенный интеграл

Тема 5.1. Первообразная функции. Неопределенный интеграл и его свойства.

Тема 5.2. Таблица основных неопределенных интегралов. Непосредственное интегрирование.

Тема 5.3. Метод подстановки. Инвариантность формы дифференциала.

Тема 5.4. Метод интегрирования по частям.

Тема 5.5. Интегрирование выражений, содержащих квадратный трехчлен.

Тема 5.6. Интегрирование рациональных дробей.

Тема 5.7. Интегрирование иррациональных выражений. Интегрирование тригонометрических функций.

Раздел 6. Определенный интеграл

Тема 6.1. Определенный интеграл и его свойства.

Тема 6.2. Интеграл с переменным верхним пределом. Формула НьютонаЛейбница.

Тема 6.3. Методы интегрирования.

Тема 6.4. Геометрические приложения определенного интеграла: площадь плоской фигуры; объем тела вращения; длина дуги кривой.

Тема 6.5. Несобственные интегралы. Интегралы с бесконечными пределами.

Тема 6.6. Интегралы от неограниченных функций.

Тема 6.7. Двойные интегралы и их свойства. Виды областей интегрирования. Повторные интегралы.

Тема 6.8. Приложения двойного интеграла: площадь плоской области; объем тела; площадь поверхности.
Раздел 7. Ряды
Тема 7.1. Числовые ряды. Сходимость и расходимость числовых рядов.
Тема 7.2. Признаки сходимости рядов с положительными членами: признаки сравнения, признак Даламбер, признак Коши, интегральный признак сходимости.
Тема 7.3. Знакопеременные ряды. Признак Лейбница. Абсолютная и условная сходимость рядов. Действия с рядами.
Тема 7.4. Функциональные ряды. Признак Вейерштрасса равномерной сходимости функционального ряда.
Тема 7.5. Степенные ряды. Теорема Абеля. Радиус и интервал сходимости степенного ряда.
Тема 7.6. Ряд Тейлора и ряд Маклорена.
Тема 7.7. Разложение элементарных функций в степенные ряды.
Тема 7.8. Приближенные вычисления значений функций.

Раздел 8. Понятие функции комплексного аргумента
Тема 8.1. Функции комплексного аргумента. Дифференцируемость функции комплексного аргумента.
Тема 8.2. Интеграл от функции комплексного аргумента.
<table>
<thead>
<tr>
<th>Номер темы</th>
<th>Дневная форма</th>
<th>Название темы, содержание темы</th>
<th>Количество аудиторных часов</th>
<th>Форма контроля</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1. Действительные числа. Числовые множества. Границы числовых множеств. Числовые последовательности и их свойства.</td>
<td>Лекции: 2</td>
<td>Фронтальный опрос</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>Практические занятия: 2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>Количество часов УСР: 2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1.2. Предел числовой последовательности.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1.3. Функция одной переменной. Элементарные функции и их свойства.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1.4. Предел функции в точке. Бесконечные пределы и пределы на бесконечности.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1.5. Бесконечно малые и бесконечно большие функции и их свойства. Свойства пределов.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1.6. Непрерывность функции. Классификация точек разрыва.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1.7. Раскрытие неопределенностей.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1.8. Замечательные пределы.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1.9. Асимптоты графика функции.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>2. Дифференцирование функции одной переменной</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>2.1. Определение производной. Дифференциал функции. Геометрический смысл производной и дифференциала.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>2.2. Производная степенной функции, логарифмической функции, тригонометрических функций.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>2.3. Производная обратной функции, показательной функции, обратных</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Форма контроля: Тест 8 testy.quali.me. Тест 6.2 УМК Тест 6.1 УМК Тест 6.3 УМК Контрольная работа №1. Тест 13 testy.quali.me.
<table>
<thead>
<tr>
<th>№</th>
<th>Тригонометрические функции</th>
<th>Задачи индивидуальных заданий</th>
<th>Сдача теста No.7, УМК</th>
<th>Контрольная работа No.2</th>
<th>Фронтальный опрос</th>
<th>Тест 47, УМК</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4</td>
<td>Основные правила дифференцирования.</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2.5</td>
<td>Производная, показательной и логарифмической функции.</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2.6</td>
<td>Производные и дифференциалы в высших порядках. Формула Грина.</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Применение производных функций одной переменной</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>3.1</td>
<td>Основные теоремы дифференцирования и его приложения. Формула Грина.</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3.2</td>
<td>Вычисление производных функций класса С, нормальных к поверхности.</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3.3</td>
<td>Вычисление производных функций с помощью производной: промежуточные значения.</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3.4</td>
<td>Вычисление производных функций с помощью производной: промежуточные значения.</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Функции нескольких переменных</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>4.1</td>
<td>Вычисление производных функций нескольких переменных и ее свойства.</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4.2</td>
<td>Приложение частных производных: промежуточная производная к поверхности.</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4.3</td>
<td>Частные производные и дифференциалы в высших порядках. Дифференцирование функции нескольких переменных.</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4.5</td>
<td>Неопределенный интеграл</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>5.1</td>
<td>Таблица основных неопределенных интегралов. Непосредственный интеграл.</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5.3</td>
<td>Метод подстановки. Инвариантность формы дифференциала.</td>
<td>2</td>
<td>2</td>
<td>Тест 11.1 УМК Защита индивидуальных заданий.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>Метод интегрирования по частям.</td>
<td>2</td>
<td>2</td>
<td>Тест 49 testy.quali.me.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>Интегрирование выражений, содержащих квадратный трехчлен.</td>
<td>2</td>
<td>2</td>
<td>Тест 11.2 УМК</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td>Интегрирование рациональных дробей.</td>
<td>2</td>
<td>2</td>
<td>Тест 11.3 УМК</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td>Интегрирование иррациональных выражений. Интегрирование тригонометрических функций.</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>Контрольная работа №5.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Определенный интеграл</td>
<td>16</td>
<td>14</td>
<td>2</td>
<td>Фронтальный опрос.</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Определенный интеграл и его свойства.</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>Интеграл с переменным верхним пределом. Формула Ньютона-Лейбница.</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>Методы интегрирования.</td>
<td>2</td>
<td>2</td>
<td>Защита индивидуальных заданий.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.4</td>
<td>Геометрические приложения определенного интеграла: площадь плоской фигуры; объем тела вращения; длина дуги кривой.</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>Защита индивидуальных заданий.</td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>Несобственные интегралы. Интегралы с бесконечными пределами.</td>
<td>2</td>
<td>2</td>
<td>Тест 50 testy.quali.me.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.6</td>
<td>Интегралы от неограниченных функций.</td>
<td>2</td>
<td>2</td>
<td>Тест 12.2 УМК</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.7</td>
<td>Двойные интегралы и их свойства. Виды областей интегрирования. Повторные интегралы.</td>
<td>2</td>
<td>2</td>
<td>Тест 12.3 УМК</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.8</td>
<td>Приложения двойного интеграла: площадь плоской области; объем тела; площадь поверхности.</td>
<td>2</td>
<td>2</td>
<td>Контрольная работа №6.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Ряды</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Числовые ряды. Сходимость и расходимость рядов.</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>Признаки сходимости числовых рядов с положительными членами: признак сравнения, признак Даламберга, признак Коши, интегральный признак сходимости.</td>
<td>2</td>
<td>4</td>
<td>Защита индивидуальных заданий.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td>Знакопеременные ряды. Признак Лейбница. Абсолютная и условная сходимость рядов. Действия с рядами.</td>
<td>2</td>
<td>2</td>
<td>Защита индивидуальных заданий.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.4</td>
<td>Функциональные ряды. Признак Вейерштрасса равномерной сходимости функционального ряда.</td>
<td>2</td>
<td>2</td>
<td>Тест 15.1 УМК</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>Степенные ряды. Теорема Абеля. Радиус и интервал сходимости степенного ряда.</td>
<td>2</td>
<td>2</td>
<td>Тест 54 testy.quali.me.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Тема</td>
<td>Количество</td>
<td>Оценка</td>
<td>Комментарий</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>-------------</td>
<td>--------</td>
<td>-----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.6</td>
<td>Ряд Тейлора и ряд Маклорена.-</td>
<td>2</td>
<td>2</td>
<td>Тест 15.2 УМК.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.7</td>
<td>Разложение элементарных функций в степенные ряды.</td>
<td>2</td>
<td>2</td>
<td>Тест 15.3 УМК.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.8</td>
<td>Приближенные вычисления значений функций.</td>
<td>2</td>
<td>2</td>
<td>Контрольная работа №7.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Понятие функции комплексного аргумента</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Функции комплексного аргумента. Дифференцируемость функции комплексного аргумента.</td>
<td>2</td>
<td>2</td>
<td>Фронтальный опрос.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.2</td>
<td>Интеграл от функции комплексного аргумента.</td>
<td>2</td>
<td>2</td>
<td>Фронтальный опрос.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Всего:</td>
<td>102</td>
<td>94</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Перечень основной литературы

Перечень дополнительной литературы

12. Опойцев, В. И. Математический анализ : [краткое и ясное изложение предмета : для студ., преподавателей, инженеров и науч.

Перечень электронных средств обучения

13. Образовательный ресурс QualiHelpy — helpy.quali.me \ qualihelpy.
14. Образовательный ресурс QualiTesty — testy.quali.me \ qualitesty.

Перечень рекомендуемых средств диагностики и методика формирования итоговой оценки

Для текущего контроля качества усвоения знаний студентами используется следующий диагностический инструментарий:
- защита индивидуальных заданий при выполнении студентами практических работ;
- фронтальный опрос на лекциях и практических занятиях;
- письменные контрольные работы по отдельным темам курса;
- тестирование.

Оценка за практическое занятие включает:
- ответ (полнота ответа) – 70 %;
- постановку вопросов – 20 %;
- оценка работы на практическом занятии (индивидуально) – 10 %.

Формой текущей аттестации по дисциплине «Математический анализ» учебным планом предусмотрен экзамен.

Используется рейтинговая оценка знаний студента, дающая возможность проследить и оценить динамику процесса достижения целей обучения. Рейтинговая оценка предусматривает использование весовых коэффициентов для текущего контроля знаний и текущей аттестации студентов по дисциплине.

Примерные весовые коэффициенты, определяющие вклад текущего контроля знаний и текущей аттестации в рейтинговую оценку:
- защита индивидуальных заданий – 35 %;
- контрольные работы №1, №2, №3, №4, №5, №6, №7 – 20 %;
- тесты 6.1 УМК; 6.2 УМК; 6.3 УМК; 7.3 УМК; 8.2 УМК; 8.3 УМК; 10.3 УМК; 11.1 УМК; 11.2 УМК; 11.3 УМК; 12.2 УМК; 12.3 УМК; 15.1 УМК; 15.2 УМК; 15.3 УМК – 20 %.
- тесты 8 testy. guali. me; 13 testy. guali. me; 47 testy. guali. me; 48 testy. guali. me; 49 testy. guali. me; 50 testy. guali. me; 54 testy. guali. Me – 15 %;
- фронтальный опрос – 10 %.

Рейтинговая оценка по дисциплине рассчитывается на основе оценки текущей успеваемости и экзаменационной оценки с учетом их весовых коэффициентов. Оценка по текущей успеваемости составляет 40 %, экзаменационная оценка – 60 %.
Примерный перечень заданий
для упражнений самостоятельной работы студентов

Занятие № 1. Тема 1.3. 2 часа.
Вопросы http://helpy.quali.me/theme/school/9, 10, 11, 12.
1. Область определения и область значений функции.
2. Нули функции.
3. Промежутки монотонности.
4. Промежутки знакопостоянства.
5. Свойства обратных функций.
Задания
http://testy.quali.me/test/school/18, 19.

Занятие № 2. Тема 3.2. 2 часа.
Вопросы http://helpy.quali.me/theme/university/80
1. Геометрический смысл производной.
2. Уравнение касательной к графику функции.
3. Уравнение нормали к графику функции.
4. Приближенные вычисления значений функции.
Задания
http://testy.quali.me/test/university/45
[5, Тест 8.1].

Занятие № 3. Тема 5.7. 2 часа.
Вопросы http://helpy.quali.me/theme/university/85
1. Метод подстановки.
2. Метод изменения формы дифференциала.
Задания
1. \(\int \frac{2dx}{\sqrt{9 - x^2}} \). 2. \(\int \frac{3xdx}{\sqrt{2x - 2}} \). 3. \(\int (12 - 3x)\sqrt{4 - x} dx \). 4. \(\int x\sqrt{1 - 5x} dx \). 5. \(\int \frac{x + 1}{\sqrt{x - 1}} dx \).
6. \(\int \frac{xdx}{\sqrt{x + 1} + \sqrt{x + 1}} \). 7. \(\int \frac{dx}{\sqrt{x + 1} + \sqrt{x + 1}} \). 8. \(\int \frac{d\sqrt{x}}{\sqrt{x}} \). 9. \(\int \frac{dx}{x(1 + \sqrt{x})} \). 10. \(\int \frac{dx}{\sqrt{x}\sqrt{1 + 3\sqrt{x}^2}} \).

Занятие № 4. Тема 6.4. 2 часа.
Вопросы http://helpy.quali.me/theme/university/86, 87
1. Площадь плоской фигуры.
2. Объем тела вращения.
3. Длина дуги кривой.
Тесты
http://testy.quali.me/test/university/50
[5, Тесты 12.1 и 12.2].
Примерная тематика практических занятий
I семестр
Занятие № 1. Числовые последовательности и их свойства.
Занятие № 2. Элементарные функции и их свойства.
Занятие № 3. Бесконечно малые и бесконечно большие функции и их свойства.
Занятие № 4. Непрерывность функции. Точки разрыва.
Занятие № 5. Раскрытие неопределенностей.
Занятие № 6. Раскрытие неопределенностей.
Занятие № 7. Замечательные пределы.
Занятие № 8. Асимптоты графика функции.
Занятие № 9. Определение производной и дифференциала и их геометрический смысл.
Занятие № 10. Правила дифференцирования.
Занятие № 11. Производная сложной функции.
Занятие № 12. Производная неявной функции.
Занятие № 13. Производная показательно-степенной функции.
Занятие № 14. Производные и дифференциалы высших порядков.
Занятие № 15. Уравнения касательной и нормали к графику функции.
Приближенные вычисления значений функций.
Занятие № 16. Вычисление пределов функций. Правило Лопиталя-Бернулли.
Занятие № 17. Промежутки монотонности функции. Точки экстремума.
Наибольшее и наименьшее значения функции.
Занятие № 18. Промежутки выпуклости и вогнутости, точки перегиба.
Занятие № 19. Полное исследование функции и построение эскиза графика.
Занятие № 20. Частные производные и полный дифференциал функции нескольких переменных.
Занятие № 21. Частные производные и дифференциалы высших порядков.
Занятие № 22. Экстремум функции двух переменных.
Занятие № 23. Условной Экстремум функции двух переменных.
II семестр
Занятие № 1. Непосредственное интегрирование.
Занятие № 2. Метод подстановки. Изменение формы дифференциала.
Занятие № 3. Метод интегрирования по частям.
Занятие № 4. Интегрирование выражений, содержащих квадратный трехчлен.
Занятие № 5. Интегрирование рациональных дробей.
Занятие № 6. Интегрирование иррациональных выражений и тригонометрических функций.
Занятие № 7. Формула Ньютона-Лейбница.
Занятие № 8. Методы интегрирования.
Занятие № 9. Геометрические приложения определенного интеграла: площадь плоской фигуры; объем тела вращения; длина дуги кривой.
Занятие № 10. Интегралы с бесконечными пределами.
Занятие № 11. Интегралы от неограниченных функций.
Занятие № 12. Вычисление двойных интегралов.
Занятие № 13. Приложения двойного интеграла: площадь плоской области; объем тела; площадь поверхности.
Занятие № 14. Тройные интегралы. Приложения тройного интеграла.
Занятие № 15. Признаки сходимости числовых рядов с положительными членами: сравнения, Даламбера, Коши.
Занятие № 16. Интегральный признак сходимости.
Занятие № 17. Знакопеременные ряды. Признак Лейбница. Абсолютная и условная сходимость рядов.
Занятие № 18. Функциональные ряды. Равномерная сходимость функционального ряда.
Занятие № 19. Степенные ряды. Радиус и интервал сходимости степенного ряда.
Занятие № 20. Ряд Тейлора и ряд Маклорена.
Занятие № 21. Разложение элементарных функций в степенные ряды.
Занятие № 22. Приближенные вычисления значений функций.
Занятие № 23. Дифференцирование функции комплексного аргумента.
Занятие № 24. Интеграл от функции комплексного аргумента.

Описание инновационных подходов и методов к преподаванию учебной дисциплины

В процессе обучения используется технология интерактивного обучения математике как способ организации учебно-познавательной и обучающей деятельностью в интерактивной образовательной среде, обеспечивающий продуктивный процесс формирования математической культуры личности. Технология включает элементы системного, деятельностного, развивающего, проблемного и личностно-ориентированного обучения.

Взаимодействие субъектов образовательного процесса базируется на организации диалога-интеракции и полилога-интеракции, основное назначение которых: в зоне «ближайшего развития» — предупреждение возникновения ошибочных схем действий на этапе изучения нового материала; в зоне «актуального развития» — коррекция траектории обучения и ликвидация пробелов в знаниях.

Организация изучения учебного модуля приведена в таблице 1.

<table>
<thead>
<tr>
<th>Зона</th>
<th>«ближайшего развития»</th>
<th>«актуального развития»</th>
</tr>
</thead>
<tbody>
<tr>
<td>Преобладающие сферы</td>
<td>Когнитивно-компетентностная.</td>
<td>Когнитивно-компетентностная.</td>
</tr>
<tr>
<td>Деятельности</td>
<td>Операционная.</td>
<td>Операционная.</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td></td>
<td>Креативная.</td>
<td>Креативная.</td>
</tr>
<tr>
<td></td>
<td>Рефлексивная.</td>
<td>Коммуникативная.</td>
</tr>
<tr>
<td>Задействованной сферы</td>
<td>Ценностно-мотивационная.</td>
<td>Рефлексивная. Ценностно-мотивационная.</td>
</tr>
<tr>
<td>Преобладающие методы обучения</td>
<td>Проблемные, репродуктивные и объяснительно-иллюстративные с включением методов мыследеятельности, смыслотворчества, рефлексивной деятельности, создания благоприятной атмосферы.</td>
<td>Частично-поисковые, поисковые и исследовательские с включением методов организации коммуникации, мыследеятельности, смыслотворчества, обмена деятельностями, рефлексивной деятельности.</td>
</tr>
<tr>
<td>Формы взаимодействия</td>
<td>Диалог-интеракция и полилог-интеракция. Организация работы в группах выравниваия и в группе аналитиков.</td>
<td>Организация работы в группах выравнивания, коррекции, взаимодействия, аналитиков и консультантов.</td>
</tr>
<tr>
<td>Средства обучения</td>
<td>Информационные интерактивные модели. Структурные блок-схемы.</td>
<td>Практические интерактивные модели. Образовательные ресурсы удаленного доступа.</td>
</tr>
</tbody>
</table>

Методы обучения

Для эффективного и продуктивного формирования математической культуры обучающихся используются интерактивные методы обучения.

Методы формирования когнитивно-компетентностного компонента математической культуры личности: интерактивная лекция, проблемное изложение, эвристическая беседа, работа с интерактивными текстами, демонстрация и иллюстрация; интерактивные упражнения, интерактивные тесты.

Методы формирования операционного компонента математической культуры личности: логические цепочки, завершение фраз, синквейны, кластеры, структурные блок-схемы.

Методы формирования креативного компонента математической культуры личности: эссе-размышления, дискуссии, ассоциации.

Методы формирования коммуникативного компонента математической культуры личности: консультирование, работа в группах и парах.

Методы формирования рефлексивного компонента математической культуры личности: экспертиза, Я-сообщение, Я-высказывание, рефлексивное слушание, континуум усвоения понятий, эссе.
Формы учебного взаимодействия

Коллективное взаимодействие осуществляется на этапе изучения теоретического материала и решения опорных (ключевых) задач учебного модуля. Форма организации деятельности — совместная учебно-познавательная: совместная постановка учебных задач, совместное разрешение проблемных ситуаций, совместная рефлексия. Основные методы обучения: интерактивная лекция, проблемное изложение, эвристическая беседа, работа с интерактивными текстами, коллективная рефлексия и др.

При организации интерактивной лекции важно:
1) учитывать возрастные особенности обучающихся;
2) четко формулировать цели и задачи лекции;
3) излагать учебный материал проблемно;
4) организовать рефлексивную деятельность;
5) совместно с обучающимися формулировать краткие обобщающие выводы после каждого логически завершенного этапа лекции;
6) структурировать учебный материал (составлять кластеры, блок-схемы, опорные конспекты и т. п.).

Групповая работа строится с учетом форм и способов организации совместной деятельности и предполагает создание следующих основных видов учебных групп: группы выравнивания; группы коррекции; группы взаимодействия; группы консультантов; группы аналитиков.

Группа выравнивания создается с целью оказания помощи тем студентам, которые по какой-либо причине имеют пробелы в знаниях ранее пройденных тем (например, за курс базовой школы), но не обязательно относятся к слабоуспевающим, а также для обучения слабоуспевающих студентов текущей теме занятий. В состав этой группы входят студенты разного уровня знаний, например, 2–3 студента с низкой успеваемостью и один студент с высокой успеваемостью (консультант). Форма организации деятельности группы совместно-коллективная: все члены группы под руководством консультанта выполняют комплекс тематических заданий, составленный преподавателем. Группа работает до полного усвоения материала каждым ее членом (студент решает ключевые задачи модуля и приводит аналогичные примеры). В результате работы группы все студенты должны иметь если не хорошие, то обязательно удовлетворительные результаты обучения.

Группа коррекции создается с целью ликвидации пробелов в знаниях студентов по текущей теме занятия. Группа создается по результатам ситуативных рефлексий, а также выполнения самостоятельных, проверочных и контрольных работ. В состав этой группы входят студенты разного уровня знаний, например, 1–3 студента, имеющих пробелы в знаниях, и один хорошо успевающий студент (консультант). Форма организации деятельности группы совместно-индивидуальная: все члены группы выполняют индивидуальные задания, а консультант помогает установить природу ошибок и показывает, как их устранить. Группа работает до полного
усвоения материала каждым ее членом (преподаватель проводит контрольный тест).

Группа взаимодействия создается с целью взаимообучения. В состав этой группы входят студенты одного уровня знаний. Группы взаимодействия не создаются из обучающихся с низкой успеваемостью. Форма организации деятельности группы совместно-взаимодействующая: совместное планирование деятельности, совместный поиск способов решений задач, совместное разрешение учебных затруднений и противоречий, совместный анализ и коррекция результатов деятельности. Все члены группы решают комплекс тематических обучающих задач. В результате работы группы все студенты должны иметь одинаково высокие результаты. Руководит работой группы студент-модератор.

Группа консультантов создается с целью организации работы в группах коррекции и группах выравнивания, а также для проведения онлайн-консультаций. В состав этой группы входят не просто хорошо успевающие студенты, а только те из них, кто может оказать помощь другим обучающимся. Консультанты — это студенты, владеющие системой математических знаний и способные обеспечить в группе коммуникацию (обмен информацией), интеракцию (обмен действиями) и перцепцию (восприятие и понимание партнера). Консультантов необходимо постоянно обучать. Работой консультантов руководит преподаватель.

Группа аналитиков создается с целью генерации идей, учета мнений, разрешения учебных противоречий. В состав этой группы входят студенты, которые могут мыслить нестандартно, проявляют творческую активность, умеют самостоятельно добывать знания, обладают интуицией, творческим воображением, критическим мышлением и проявляют интерес к научно-исследовательской работе. Группой аналитиков руководит преподаватель.

Этапы учебного взаимодействия

Этап I: обучающиеся находятся в зоне «ближайшего развития» (этап изучения блока теоретического материала и решения ключевых задач). На этом этапе преобладает коллективное взаимодействие. На этапе изучения нового материала в обучении математике ведущая роль в организации учебного взаимодействия отводится преподавателю. Побудительным мотивом к взаимодействию уже на этом этапе послужит: педагогическая поддержка процесса усвоения знаний (совместная постановка задач, совместное выдвижение учебных догадок и гипотез, совместная формулировка проблем и поиск путей и разрешения); ситуативная (коллективная и индивидуальная) рефлексия, как после каждого логически завершенного этапа обучения, так и в конце занятия; система контроля усвоения каждым обучающимся и на каждом занятии учебного материала; система коррекции знаний в группах выравнивания; работа группы аналитиков.

Этап II: обучающиеся находятся в зоне «актуального развития» (этап решения обучающих задач). Преобладает парная и групповая работа.
Работают группы выравнивания, группы коррекции, группы взаимодействия, группа аналитиков, группа консультантов. Преподаватель — модератор: координирует работу всех групп, вмешивается в работу группы только в случае возникновения в ней разногласий, учебного конфликта, учебного спора и т. п. Преподаватель может входить в состав одной из групп: в группу выравнивания и группу коррекции как обучающий; в группу аналитиков как оппонент; в группу консультантов как инструктор; в группу взаимодействия как полноправный участник.

Методические рекомендации по организации самостоятельной работы обучающихся

Для организации самостоятельной работы студентов по учебной дисциплине используется Электронный учебно-методический комплекс QualiMe — qualime или qualime, который включает:

1) образовательный ресурс QualiHelpy — helpy.qualime для систематизации теоретических знаний и формирования системы практических умений и навыков студентов по разделам: Пределы, Дифференциальное исчисление, Интегральное исчисление, Ряды;

2) образовательный ресурс QualiTesty — testy.qualime для организации процедуры тестирования в интерактивном режиме по темам: Предел числовой последовательности и функции, Производная функции одной переменной, Исследование функции с помощью производной, Функция многих переменных, Неопределенный интеграл, Оперделенный интеграл, Приложения определенного интеграла, Числовые ряды, Степенные ряды.

На сайте QualiHelpy (зона «ближайшего развития») учебный материал размещен во вкладках:

1) "Справочный материал" (изложен систематизированный и структурированный теоретический материал учебного модуля);

2) "Примеры" (приведены иллюстрации решений ключевых задач учебного модуля);

3) "Обратите внимание" (раскрыты особенности учебного модуля, изложены альтернативные подходы к решению задач);

4) "Модели" (визуализация учебного материала и проверка усвоения знаний на репродуктивном уровне).

На сайте QualiTesty (зона «актуального развития») организована процедура тестирования в двух режимах:

1) в интерактивном режиме на продуктивном уровне (задания 1 – 8) и уровне трансформации (задания 9 – 10) формируются учебные компетенции и осуществляется ликвидация пробелов в знаниях и коррекция траектории обучения с помощью вкладок "Актуализация знаний", "Решение", "Обратите внимание";

2) в контрольном режиме активна только одна вкладка "Задание".

20
Отметка выставляется как в контрольном, так и в интерактивном режиме, но с учетом того, что в интерактивном режиме за каждое использование вкладки тестируемый штрафуется на 0,5 балла.

Эффективность самостоятельной работы студентов проверяется в ходе текущего и итогового контроля знаний.

Примерный перечень вопросов к экзамену

I семестр

1. Числовая последовательность и ее свойства.
2. Функция и ее свойства.
3. Функция \(y = x^n \ (n \in \mathbb{N}) \) и ее свойства.
4. Функция \(y = x^{-n} \ (n \in \mathbb{N}) \) и ее свойства.
5. Функция \(y = x^{\frac{1}{n}} \ (n \in \mathbb{N}) \) и ее свойства.
6. Показательная функция и ее свойства.
7. Логарифмическая функция и ее свойства.
8. Тригонометрические функции и их свойства.
9. Обратные тригонометрические функции и их свойства.
10. Обратная функция и ее свойства.
11. Предел числовой последовательности.
12. Предел функции.
13. Непрерывность функции и точки ее разрыва.
14. Асимптоты графика функции.
15. Свойства пределов.
16. Бесконечно малые функции и их свойства.
17. Бесконечно большие функции и их свойства.
18. Первый замечательный предел.
19. Второй замечательный предел.
20. Раскрытие неопределенностей вида \(\lim_{x \to 0} \frac{0}{0} \).
21. Раскрытие неопределенностей вида \(\lim_{x \to \infty} \frac{\infty}{\infty} \).
22. Определение производной функции.
23. Геометрический смысл производной функции.
24. Правила дифференцирования.
25. Таблица производных элементарных функций.
26. Производная сложной функции.
27. Дифференциал функции.
28. Производная неявной функции.
29. Производная функции, заданной параметрически.
30. Производная показательно-степенной функции.
31. Теорема Ферма.
32. Теорема Лагранжа.
33. Теорема Ролля.
34. Теорема Коши.
35. Правило Лопиталя-Бернулли.
36. Уравнение касательной графику функции.
37. Уравнение нормали к графику функции.
38. Приближенные вычисления значений функции.
39. Исследование функции с помощью первой производной.
40. Исследование функции с помощью второй производной.
41. Общая схема исследования функции.
42. Наибольшее и наименьшее значения функции на заданном отрезке.
43. Функция многих переменных. Основные понятия и определения.
44. Частные производные и полный дифференциал функции двух переменных.
45. Частные производные и полный дифференциал функции трех переменных.
46. Частные производные второго порядка функции двух переменных.
47. Дифференциал второго порядка функции двух переменных.
48. Безусловный экстремум функции двух переменных.
49. Условный экстремум функции двух переменных.
50. Наибольшее и наименьшее значение функции двух переменных.

II семестр

1. Первообразная и неопределенный интеграл.
2. Свойства неопределенного интеграла.
3. Таблица основных интегралов.
4. Метод подстановки.
5. Изменение формы дифференциала.
6. Интегрирование по частям.
7. Интегрирование выражений, содержащих квадратный трехчлен.
8. Интегрирование тригонометрических функций.
9. Интегрирование рациональных дробей.
10. Определение определенного интеграла.
11. Свойства определенного интеграла.
12. Теорема о среднем значении определенного интеграла.
13. Интеграл с переменным верхним пределом.
14. Формула Ньютона-Лейбница.
15. Метод подстановки в определенном интеграле.
16. Метод интегрирования по частям определенного интеграла.
17. Интегралы с бесконечными пределами.
18. Интегралы от неограниченных функций.
19. Геометрический смысл определенного интеграла.
20. Нахождение площади плоской фигуры.
21. Нахождение объема тела вращения.
22. Нахождение длины дуги кривой.
23. Определение двойного интеграла.
24. Виды областей интегрирования.
25. Повторные интегралы. Методы вычислений.
26. Понятие числового ряда.
27. Сходимость и расходимость числовых рядов.
28. Арифметический ряд.
29. Геометрический ряд.
30. Гармонический ряд.
31. Ряд Дирихле.
32. Необходимый признак сходимости и следствие из него.
33. Признаки сравнения рядов.
34. Признак Даламбера.
35. Радикальный признак Коши.
36. Интегральный признак Коши.
37. Знакочередующиеся и знакопеременные ряды.
38. Абсолютная и условная сходимость числовых рядов.
39. Признак Лейбница.
40. Понятие функционального ряда.
41. Понятие степенного ряда.
42. Радиус и интервал сходимости ряда.
43. Теорема Абеля.
44. Ряд Тейлора.
45. Достаточное условие разложения функции в ряд Тейлора.
46. Ряд Маклорена.
47. Разложение функции $f(x) = e^x$ в степенной ряд. Радиус и интервал сходимости ряда.
48. Разложение функции $f(x) = \sin x$ в степенной ряд. Радиус и интервал сходимости ряда.
49. Разложение функции $f(x) = \cos x$ в степенной ряд. Радиус и интервал сходимости ряда.
50. Разложение функции $f(x) = \ln(1 + x)$ в степенной ряд. Радиус и интервал сходимости ряда.
51. Разложение функции \(f(x) = (1 + x)^a \) в степенной ряд. Радиус и интервал сходимости ряда.
<table>
<thead>
<tr>
<th>Название учебной дисциплины, с которой требуется согласование</th>
<th>Название кафедры</th>
<th>Предложения об изменениях в содержании учебной программы учреждения высшего образования по учебной дисциплине</th>
<th>Решение, принятые кафедрой, разработавшей учебную программу</th>
</tr>
</thead>
<tbody>
<tr>
<td>Аналитическая геометрия.</td>
<td>Кафедра информационных технологий</td>
<td>нет</td>
<td>№ 9 от 28.06.2019 г.</td>
</tr>
<tr>
<td>Алгебра и теория чисел.</td>
<td>Кафедра информационных технологий</td>
<td>нет</td>
<td>№ 9 от 28.06.2019 г.</td>
</tr>
<tr>
<td>Дифференциальные уравнения.</td>
<td>Кафедра информационных технологий</td>
<td>нет</td>
<td>№ 9 от 28.06.2019 г.</td>
</tr>
<tr>
<td>Теория вероятностей и математическая статистика.</td>
<td>Кафедра информационных технологий</td>
<td>нет</td>
<td>№ 9 от 28.06.2019 г.</td>
</tr>
<tr>
<td>№ п/п</td>
<td>Дополнения и изменения</td>
<td>Основание</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------------------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Учебная программа пересмотрена и одобрена на заседании кафедры

______________________________ (протокол № ___ от ______ 20_ г.)

Заведующий кафедрой

УТВЕРЖДАЮ
Декан факультета
