А.Г. ФЕДОСЕНКО

О СХОДИМОСТИ РАСПРЕДЕЛЕНИЙ СУММ *m*-ЗАВИСИМЫХ СЛУЧАЙНЫХ ВЕКТОРОВ К НОРМАЛЬНОМУ ЗАКОНУ

There are conditions of convergence of sums distributions of *m*-dependent random vectors to the normal low derived from a canonic represent of logarithm of a characteristic function of sums.

Центральной предельной теореме теории вероятностей для сумм зависимых случайных величин посвящено много работ (см., например, [1, 2] и др.), при эгом все доказательства теоремы проведены в этих работах непосредственно. В данной работе, исходя из найденного в [3] канонического представления логарифма характеристической функции (х. ф.) для сумм m_n -зависимых случайных векторов (определение m_n -зависимости см., например, [4]), находятся условия сходимости распределений сумм m_n -зависимых случайных векторов к нормальному закону. Для зависимых случайных величин этот вопрос освещен в [4].

Пусть $\{\xi_{ns}\}_{s=1}^n$, $n=\overline{1,\infty}$, $-m_n$ -зависимая система серий d-мерных случайных векторов, определенных при каждом n на одном и том же вероятностном пространстве и принимающих значения в R^d , $\xi_{ns}=(\xi_{ns}^{(1)},...,\xi_{ns}^{(d)})$, $M\xi_{ns}^{(i)}=0$, $x=(x_1,...,x_d)$, $t=(t_1,...,t_d)$, запись $\xi_{ns}\leq x$ означает $\xi_{ns}^{(i)}\leq x_i$ $\forall i=\overline{1,d}$ (см., например, [5]). Выражения типа (x,y) представляют собой скалярное произведение, h(n) — медленно меняющаяся функция при $n\longrightarrow\infty$ (см. [1]). Матрица $B_n=\left\|b_{n(i,j)}\right\|$, $i,j=\overline{1,d}$, $b_{n(i,j)}=\sum_{0\leq |s-p|\leq m_n}M\left(\xi_{ns}^{(i)}\xi_{np}^{(j)}; \left|\xi_{ns}^{(i)}\right|\leq \varepsilon$, $\left|\xi_{np}^{(j)}\right|\leq \varepsilon$),

 $\varepsilon > 0$. Очевидно, что матрица B_n является симметричной.

В [3] доказана

Теорема 1. Пусть система серий векторов $\{\xi_{ns}\}_{s=1}^n m_n = m_0 n^{1/8-\rho}$ -зависимая, где m_0 – любое постоянное число, $0<\rho\le 1/8$, кроме того, найдутся постоянные H_1 , H_2 и n_0 такие, что $\forall n\ge n_0$

$$\max_{s,j} M \xi_{ns}^{(j)^2} \le \frac{H_1 h(n)}{n},\tag{1}$$

$$\max_{s,p,q,i,j,k} M \left| \xi_{ns}^{(i)} \xi_{np}^{(j)} \xi_{nq}^{(k)} \right| \le \frac{H_2 h(n)}{n^{3/2}}, \tag{2}$$

где $0 \le |r-q| \le m_0 n^{1/4-\rho}$, $0 < |s-q| \le m_0 n^{1/4-\rho}$. Тогда, если при $n \to \infty$

$$K_n(x) = \sum_{s=1}^n M(\xi_{ns}^2; \xi_{ns} \le x) \xrightarrow{cn} K(x) < \infty,$$
(3)

$$\lim_{\epsilon \to 0} \lim_{n \to \infty} B_n = B, \tag{4}$$

то суммы S_n будут иметь безгранично делимое предельное распределение, логарифм x. ϕ . которого

$$\Psi(t) = \int_{\mathbb{R}^d/0} \left(e^{i(t,x)} - 1 - i(t, x) \right) \frac{1}{|x|^2} dK(x) - \frac{(t, Bt^*)}{2}, \tag{5}$$

где t^* – вектор-столбец, а из области интегрирования исключен нульвектор.

Отметим, что важным следствием теоремы 1 является то, что симметричная предельная матрица B в формуле (5) является неотрицательно определенной, так как $\psi(t)$ – логарифм х. ф.

Теорема 2. Пусть система серий векторов $\{\xi_{ns}\}_{s=1}^n m_n = m_0 n^{1/8-\rho}$ -зависимая, где m_0 – любое постоянное число, $0 < \rho \le 1/8$. Если, кроме условий (1), (2) и (4) теоремы 1, выполняется условие Линдеберга (см. [4, 6, 7]): $\forall \varepsilon > 0$

$$\sum_{s=1}^{n} \int_{|x|>\varepsilon} x^2 dP(\xi_{ns} \le x) \to 0, \tag{L}$$

то суммы S_n будут иметь нормальное предельное распределение c x. ϕ . $\phi(t) = e^{-(tB,t^*)/2}$.

Доказательство. При доказательстве теоремы 1 (см. [3]) было показано, что $\forall \epsilon > 0$

$$\int_{|x| \ge \varepsilon} \left(e^{i(t,x)} - 1 - i(t,x) \right) \frac{1}{|x|^2} dK_n(x) = \sum_{s=1}^n \int_{|x| \ge \varepsilon} \left(e^{i(t,x)} - 1 - i(t,x) \right) dP(\xi_{ns} \le x).$$

Так как $\left|e^{i(t,x)}-1-i(t,x)\right| \le (t,x)^2 \le t^2x^2$, то из свойств интеграла Лебега – Стильтеса (см., например, [9]) следует, что

$$\sum_{s=1}^{n} \int_{|x| \ge \varepsilon} \left(e^{i(t,x)} - 1 - i(t,x) \right) dP(\xi_{ns} \le x) \le t^{2} \sum_{s=1}^{n} \int_{|x| \ge \varepsilon} x^{2} dP(\xi_{ns} \le x).$$

Следовательно, согласно (L) интеграл в формуле (5) равен нулю, т. е. сумма S_n имеет нормальное предельное распределение с х. ф. $\varphi(t) = e^{-(tB_n \cdot t^*)/2}$, что доказывает теорему 2.

Замечание. Если в теореме 2 вместо (L) выполняется условие Ляпунова (см., например, [4, 7]): $\exists \delta > 0$ такое, что при $n \to \infty$

$$\sum_{n=1}^{n} M \left| \xi_{ns} \right|^{2+\delta} \to 0, \tag{II}$$

то суммы S_n будут иметь нормальное предельное распределение с х. ф. $\phi(t) = e^{-(tB, \, t^*)/2}$.

Действительно, из условия Ляпунова сразу следует (L):

$$\sum_{s=1}^{n} \int_{|x|>\varepsilon} x^{2} dP(\xi_{ns} \leq x) = \sum_{s=1}^{n} \int_{|x|>\varepsilon} \frac{|x|^{2+\delta}}{|x|^{\delta}} dP(\xi_{ns} \leq x) \leq$$

$$\leq \frac{1}{\varepsilon^{\delta}} \sum_{s=1}^{n} \int_{|x|>\varepsilon} |x|^{2+\delta} dP(\xi_{ns} \leq x) \leq \frac{1}{\varepsilon^{\delta}} \sum_{s=1}^{n} M |\xi_{ns}|^{2+\delta} \to 0.$$

Теорема 3. Для сходимости распределений сумм S_n $m_n = m_0 n^{1/8-\rho}$ -зависимых случайных векторов к нормальному закону c x. ϕ . $\phi(t) = e^{-(tB,t^*)/2}$ достаточно, чтобы нашлись постоянные H и n_0 такие, что $\forall n \geq n_0$

$$\max_{s,j} M \left| \xi_{ns} \right|^3 \le \frac{Hh(n)}{n^{3/2}} \tag{6}$$

 $u \quad \lim_{\varepsilon \to 0} \lim_{n \to \infty} B_n = B.$

Доказательство. Действительно, из неравенства Гёльдера (см. [4, 7–9]) следует:

$$M \left| \xi_{ns}^{(j)} \right|^2 \le \left(M \left| \xi_{ns}^{(j)} \right|^3 \right)^{\frac{1}{3}} \left(M \left| \xi_{ns}^{(j)} \right|^{\frac{3}{2}} \right)^{\frac{2}{3}}.$$

Так как $0 < \frac{3}{2} < 3$, то из неравенства для моментов (см., например, [4, 6, 8, 9]) вытекает:

$$\left(M\left|\xi_{ns}^{(j)}\right|^{\frac{3}{2}}\right)^{\frac{2}{3}} \leq \left(M\left|\xi_{ns}^{(j)}\right|^{3}\right)^{\frac{1}{3}}.$$

Следовательно,

$$M \left| \xi_{ns}^{(j)} \right|^2 \le \left(M \left| \xi_{ns}^{(j)} \right|^3 \right)^{\frac{1}{3}} \left(M \left| \xi_{ns}^{(j)} \right|^3 \right)^{\frac{1}{3}} \le \left(\frac{Hh(n)}{n^{3/2}} \right)^{\frac{2}{3}} \le \frac{H_1h(n)}{n},$$

где $H_1 = H^{\frac{2}{3}}$.

Аналогично, используя неравенство Гёльдера, имеем:

$$M \left| \xi_{ns}^{(i)} \xi_{np}^{(j)} \xi_{nq}^{(k)} \right| \leq \left(M \left| \xi_{ns}^{(i)} \right|^{3} \right)^{\frac{1}{3}} \left(M \left| \xi_{np}^{(j)} \xi_{nq}^{(k)} \right|^{\frac{3}{2}} \right)^{\frac{2}{3}} \leq$$

$$\leq \left(M \left| \xi_{ns}^{(i)} \right|^{3} \right)^{\frac{1}{3}} \left(M \left| \xi_{np}^{(j)} \right|^{3} \right)^{\frac{1}{3}} \left(M \left| \xi_{nq}^{(k)} \right|^{3} \right)^{\frac{1}{3}} \leq \left(\frac{Hh(n)}{n^{3/2}} \right)^{\frac{3}{3}} \leq \frac{H_{2}h(n)}{n^{3/2}},$$

где $H_2 = H$.

Таким образом, выполняются условия (1) и (2) теоремы 1. В этом случае выполняется и условие (Л) при δ =1. Следовательно, по теореме 1 и замечанию к теореме 2 суммы S_n имеют нормальное предельное распределение с х. ф. $\varphi(t) = e^{-(tB_n t^*)/2}$, что доказывает теорему 3.

Примером использования теоремы 3 является

Теорема 4. Пусть $\{X_{ns}\}_{s=1}^n$, $n=\overline{1,\infty}$, $-m_n$ -зависимая система серий d-мерных векторов, центрированных своими математическими ожиданиями, существуют моменты третьего порядка, причем $\max_s M |X_{ns}|^3 \le H$, где H — некоторая постоянная. Тогда для сходимости распределения сумм $S_n = \frac{1}{\alpha_n} \sum_{s=1}^n X_{ns}$ нормированных случайных векторов $\xi_{ns} = \frac{X_{ns}}{\alpha_n}$, где $\alpha_n = \frac{h(n)}{n^{1/2}}$, к нормальному закону c x. ϕ . $\phi(t) = e^{-(iB.\ t^*)/2}$ достаточно, чтобы $\lim_{\epsilon \to 0} \lim_{n \to \infty} B_n = B$.

Доказательство. Действительно,

$$M \left| \xi_{ns} \right|^3 = M \left| \frac{X_{ns} h(n)}{n^{1/2}} \right|^3 = \frac{h^3(n)}{n^{3/2}} M \left| X_{ns} \right|^3 \le \frac{H h^3(n)}{n^{3/2}},$$

т. е. выполняется условие (6). Следовательно, по теореме 2 сумма S_n имеет нормальное предельное распределение с х. ф. $\varphi(t) = e^{-(tB,\ t^*)/2}$, что доказывает теорему 4.

Заметим, что в случае независимости случайных величин нормировка $\alpha_n = \frac{h(n)}{n^{1/2}}$ необходима для сходимости распределений сумм к нормальному закону (см., например, [6, 7]).

- 1. Ибрагимов И.А., Линник Ю.В. Независимые и стационарно связанные величины. М., 1965.
 - 2. Ибрагимов И.А. // Теория вероятностей и ее применения. 1975. Т. 20. № 1. С. 134.
 - 3. Юдин М.Д. // Изв. вузов. Математика. 1999. № 4 С. 61.
 - 4. Юдин М.Д. Сходимость распределений сумм случайных величин. Мн., 1990.
 - 5. Биллингсли П. Сходимость вероятностных мер. М., 1977.
- 6. Гнеденко Б.В., Колмогоров А.Н. Предельные распределения для сумм независимых случайных величин. М., 1949.
- Петров В.В. Предельные теоремы для сумм независимых случайных величин. М., 1987.
 - 8. Ширяев А. Н. Вероятность. М., 1980.
- 9. Колмогоров А.Н., Фомин С.В. Элементы теории функции и функционального анализа. М., 1989.

Поступила в редакцию 03.10.2002.

Андрей Григорьевич Федосенко – аспирант кафедры теории вероятностей и математической статистики. Научный руководитель – доктор физико-математических наук, профессор Г.А. Медведев.

УДК 517.925.6

В.И. МАТАТОВ, О.Н. ТИШКЕВИЧ

К ВОПРОСУ О ПОДВИЖНЫХ ОСОБЕННОСТЯХ НЕАВТОНОМНОЙ СИСТЕМЫ ДВУХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С КВАДРАТИЧНЫМИ НЕЛИНЕЙНОСТЯМИ

The non-autonomous system of two differential equations with quadratic non-linearity concerning the polarity of sliding singularities is studied. The corresponding systems of *P*-type are integrated of elementary or elliptic functions and also in terms of function-solutions of the first of Penleve equation.

Рассмотрим систему дифференциальных уравнений вида

$$\begin{cases} \frac{dx}{dz} = a_0 + a_1 x + a_2 y + a_3 x^2 + a_4 x y + a_5 y^2, \\ \frac{dy}{dz} = b_0 + b_1 x + b_2 y + a_3 x y + a_4 y^2, \end{cases}$$
(1)

где $a_0=a_0(z), \ldots, a_4=a_4(z), a_5=a_5(z)\neq 0, b_0=b_0(z), b_1=b_1(z), b_2=b_2(z)$ – голоморфные функции, $z\in C$, $(x, y)\in \hat{C}^2$, $\hat{C}=C\cup \{\infty\}$. В статье [1] изучена система дифференциальных уравнений

$$\begin{cases} x' = P_2(z, x, y), \\ y' = Q_2(z, x, y) \end{cases}$$
 (2)

с квадратичными по x, y нелинейностями на предмет полярности подвижных особых точек. С помощью линейного преобразования $x=X+\mu Y$, y=Y, где μ – корень алгебраического уравнения

$$b_3 \mu^3 + (b_4 - a_3) \mu^2 + (b_5 - a_4) \mu - a_5 = 0,$$
 (3)

система (2) упрощалась. Случай, когда алгебраическое уравнение (3) не имеет корней, т. е. когда b_3 =0, b_4 = a_3 , b_5 = a_4 , a_5 \neq 0, в [1] не рассматривался. Этому случаю и соответствует система дифференциальных уравнений (1). Найдем условия того, что система (1) принадлежит классу P, т. е. что ее