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1. Problem Statement. Consider the following problem:

(P) :


f0(x) := g0(x)− h0(x) ↓ min

x
, x ∈ S,

fi(x) := gi(x)− hi(x) ≤ 0, i ∈ I = {1, . . . ,m},
fi(x) := gi(x)− hi(x) = 0, i ∈ E = {m+ 1, . . . , l};

(1)

where the functions gi(·), hi(·), i ∈ {0} ∪ I ∪ E, are convex on IRn, so
that the functions fi(·), i ∈ {0} ∪ I ∪ E, are the d.c. functions [1–5].
Besides, assume that the set S ⊂ IRn is convex and compact.

Furthermore, suppose that the set Sol(P) of global solutions to Prob-
lem (P) and the feasible set F of Problem (P) are non-empty. Addition-
ally, in what follows the optimal value V(P) of Problem (P) is supposed
to be finite:

V(P) := inf(f0,F) := inf
x
{f0(x) | x ∈ F)} > −∞.

Further, we introduce the following penalty function
W (x) := max{0, f1(x), . . . , fm(x)} +

∑
j∈E
|fj(x)|, and consider the

penalized problem as follows:

(Pσ) : θσ(x) := f0(x) + σW (x) = Gσ(x)−Hσ(x) ↓ min
x
, x ∈ S, (2)

where σ ≥ 0 is a penalty parameter, Gσ(·) and Hσ(·) can be shown to
be convex functions.
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2. Global Optimality Conditions.

Theorem 1. Let a feasible point z ∈ F, ζ := f0(z), be a solution to
Problem (P) and σ ≥ σ∗ > 0, where σ∗ ≥ 0 is a threshold value of the
penalty parameter such that Sol(P) = Sol(Pσ) ∀σ ≥ σ∗.

Then, for every pair (y, β) ∈ IRn × IR such that

Hσ(y) = β − ζ, (3)

the following inequality holds

Gσ(x)− β ≥ 〈H ′σ(y), x− y〉 ∀x ∈ S, (4)

for every subgradient H ′σ(y) ∈ ∂Hσ(y) of the function Hσ(·) at
the point y.

Under supplementary conditions the Global Optimality Conditions
(GOCs) of Theorem 1 become sufficient for a feasible point z ∈ F to be
a global solution.

Moreover, it shown that GOCs are related to the Classical Opti-
mization Theory and possess the constructive (algorithmic) property
(if GOCs are violated, one can find a feasible (in the original problem)
vector which is better than the point in question). Using this prop-
erty of the GOCs we develop new local and global search algorithms for
the original problem and study its convergence. Computational testing
witnessed on numerical effectiveness of the developed approach.
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