
introduction of the polynomial extended root locus notion, which allows
to obtain a descriptive picture of the polynomial roots dynamics under
coefficient variations and to disclose on this basis the cause of instability.
The intervals of uncertainty for each coefficient being set up are speci-
fied along the root locus branches. The nearest stable polynomial to the
given unstable one in terms of a distance along the root locus branches
is being found. Solving the task of ensuring the required quality (e.g.
the polynomial stability margin) could be one of the possible directions
for further development of the method.

The developed method is new and allows to extend the application
sphere of the root locus method, which is traditionally considered to be
the method of systems synthesis by only a single parameter (coefficient)
variation and with only one variable parameter (coefficient), in both
directions, systems synthesis by many parameters variation and systems
synthesis with many parameters variation.
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The controllers synthesis with determined structure, for instance,
proportional-integral differential (PID), is an important problem for the
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systems with high order plant, because these controllers are typically
employed in practical industrial applications [1].

The time scale methods developed by L. Anderson [2], P. V. Koko-
tovich and coauthors [3] is appropriate for the cascaded synthesis, based
on plant model reduction. It is related with the modal control synthesis
problem. So, the polynomial roots placement on the complex plane can
offer the time scale for the external and internal control loops of the
cascaded system. These techniques can be also extended for robust syn-
thesis of the systems with interval plants in order to simplify the roots
deviation analysis, caused by plant parameters variation. Consider the
linear cascade system described as follow

ẋR = ARxR +BR(y∗ − y), (1)

u = CRxR +DR(y∗ − y), (2)

ẋP = APxP +BPu, (3)

y = CPxP , (4)

where xR is an n-vector states of the regulators (controller), u is a scalar
output of the controller, xp is an n-vector states of the plant, y∗, y are
the scalar input and the scalar output of the system respectively. The
system (1)-(4) contains the matrixes AR, BR, CR, DR of the controller
and matrixes AP , BP , CP of the plant. If design xT = (xR, xP ) , and

A =

[
AR −BRCP

BPCR APC

]
, B =

[
BR

BPDR

]
,

where APC = AP − BPDRCP , the system (1)-(4) can be rewritten as
follow:

ẋ = Ax+By∗, y = Cx.

For the system with two loops the matrix A obtains the form

A =


AR1 0 0 −BR1CP1

BR0CR1 AR0 −BR0CP0 −BR0DR1CP1

BP0DR0CR1 BP0CR0 APC00 APC01

0 0 APC10 APC11

 .
In this expression the internal subsystem is indexed by 0 and has a
matrix

A0 =

[
AR0 −BR0CP0

BP0CR0 APC0

]
.
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As usual, the internal loop of the cascaded system provides the faste
mode, and the external one provides a slow mode of dynamics. We
assume that a little positive value ε is the relative value of the slow
mode dominant eigenvalue |sdi|. So ε = sdi/sd0, where sd0 is the fast
mode of the system, and let 0 < ε < 0.5. Then, the matrix may be
rewritten as follow

A0 =

[
AR0 −BR0CP0

BP0CR0 APC0

]
=

1

ε

[
εAR0 −εBR0CP0

BP0C̄R0 εAPC00

]
=

1

ε
Ā0.

Hence, the equations of the internal loop with assumption became alge-
bric, and the reduced system model is as follow ˙̄x1 = Ā1x̄1 + B̄1y

∗.
This model describes the slow mode, controlled by R1 and presents

the main component of system dynamics. The polynomial of the closed
loop external subsystem obtains the simplified low order form. Now, it
is easy to establish the dependence between polynomial coefficients and
polynomial roots. The polynomial is useful for outer loop controller pa-
rameterization. After the external loop controller parameterization the
inner loop synthesis is available with respect to the denoted fast mode
sd0. The relative difference σ beetwen reduced and full order polynomial

roots location depends on the value of ε as follow [4] σ = |∆si|
|s̄i| ≤ mε,

where m is the inner loop polynomial order. So, the roots placement
error in the system relatively to the reduced model can be decreased
depending on the choise of the ε value. The synthesed system polyno-
mial roots must be verificated. The verification can be get up by the
computation of these roots for full (not reduced) plant model.
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