Методы численного решения жестких систем

Учебная программа учреждения высшего образования по учебной дисциплине для специальности

1-31 03 03 Прикладная математика (по направлениям)

направление специальности

1-31 03 03-01 Прикладная математика (научно-производственная деятельность)

2018 г
Учебная программа составлена на основе ОСВО 1-31 03 03-2013 и учебного плана УВО № Г31-173/уч. 2013 г. от 30.05.2013

СОСТАВИТЕЛЬ
В.В. Бобков, профессор кафедры вычислительной математики Белорусского государственного университета, доктор физико-математических наук, профессор;

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:
Кафедрой вычислительной математики (протокол № 14 от 19.04.2018);
Научно-методическим Советом БГУ (протокол № 5 от 04.05.2018)
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Дисциплина "Методы численного решения жестких систем" посвящена изучению современного состояния теории методов численного решения задачи Коши для жестких систем обыкновенных дифференциальных уравнений. Первоначально такие задачи считались в вычислительной практике исключением. Однако к настоящему моменту круг их значительно расширился и включает задачи химической, физической кинетики, биологии, микроэлектроники и т.п. Содержание курса по уровню научной новизны материала отвечает современному состоянию вопроса. Три упомянутых спецкурса в сопровождении со специальными семинарскими и лабораторными занятиями призваны быть основой подготовки математиков-прикладников в части разработки вычислительных алгоритмов, в первую очередь в той области математического моделирования, которая связана с начальными задачами для систем обыкновенных дифференциальных уравнений.

В результате изучения данной дисциплины студенты должны получить навыки конструирования численных алгоритмов, способных эффективно решать жесткие системы обыкновенных дифференциальных уравнений на реальных сетках, а также практику их применения для решения прикладных задач соответствующего класса.

Цель учебной дисциплины «Методы численного решения жестких систем» — получение студентами навыков конструирования численных алгоритмов, способных эффективно решать жесткие системы обыкновенных дифференциальных уравнений на реальных сетках.

Основные задачи, решаемые при изучении учебной дисциплины «Методы численного решения жестких систем»:
- формирование у студентов твердых навыков по выбору алгоритмов для решения конкретной задачи (ориентируясь на вид поставленной задачи и теоретические характеристики соответствующего алгоритма);
- освоение современных подходов к конструированию эффективных численных методов решения эволюционных задач.

Учебная дисциплина «Методы численного решения жестких систем» относится к циклу дисциплин специализации (1-31 03 03-01 04 Численные методы).

Применяемые при исследовании таких задач методы в значительной степени опираются на курсы "Дифференциальные уравнения" и "Методы численного анализа", а также тесно связаны со спецкурсами “Пошаговые методы численного решения начальных задач для обыкновенных дифференциальных уравнений” и “Численное моделирование с улучшенными свойствами согласованности исходной и аппроксимирующей задач”.

В результате изучения дисциплины студент должен знать:
– основные требования, предъявляемые к численным методам решения задачи Коши для обыкновенных дифференциальных уравнений;
– подходы к конструированию приближенных методов решения задачи Коши;
– требования, предъявляемые к численным методам, предназначенным для решения жестких задач;
– способы улучшения свойств численных алгоритмов для адаптации их к задачам рассматриваемого класса;

уметь:
– строить одношаговые методы решения задачи Коши путем пошагового обращения части дифференциального оператора;
– применять прием экономичного вычисления результирующего разностного оператора;
– применять численные методы для практического интегрирования задач Коши для обыкновенных дифференциальных уравнений;

владеть:
– основными понятиями теории численных методов решения задачи Коши;
– подходами к изучению качественных свойств численных алгоритмов и их улучшению;
– навыками самообразования и способами использования аппарата теории численных методов решения задачи Коши для проведения математических и междисциплинарных исследований.
– Освоение учебной дисциплины «Групповой анализ дифференциальных уравнений и разностные схемы» должно обеспечить формирование следующих академических, социально-личностных и профессиональных компетенций:

академические компетенции:
– АК-1. Уметь применять базовые научно-теоретические знания для решения теоретических и практических задач.
– АК-2. Владеть системным и сравнительным анализом.
– АК-3. Владеть исследовательскими навыками.
– АК-4. Уметь работать самостоятельно.

социально-личностные компетенции:
– СЛК-1. Обладать способностью к межличностным коммуникациям.

профессиональные компетенции:
– ПК-1. Работать с научно-технической, нормативно-справочной и специальной литературой.
– ПК-2. Заниматься аналитической и научно-исследовательской деятельностью в области прикладной математики
В соответствии с типовым учебным планом специальности 1-31 03 03 Прикладная математика (по направлениям) учебная программа предусматривает для изучения дисциплины 159 учебных часов, в том числе 68 аудиторных часов: лекции — 34 часа, лабораторные занятия — 30 часов, управляемая самостоятельная работа — 4 часа.
Трудоемкость учебной дисциплины составляет 4,5 зачетных единиц.
Форма текущей аттестации — зачет и экзамен в 7 семестре.
СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Раздел I. Мультипликативная корректировка разностных схем

Тема 1.1. Введение

Проблема численного интегрирования систем дифференциальных уравнений в условиях существенной разномасштабности требует повышенного внимания к конструкции вычислительных алгоритмов с точки зрения обеспечения максимально высокого уровня согласованности в качественном поведении точного и приближенного решений (при реальных шагах численного наблюдения). Повышение уровня такой согласованности в рамках данного курса достигается на двух стратегических направлениях: либо на пути усовершенствования численных методов общего назначения, либо посредством разработки эффективных специализированных методов для более узких классов систем с ориентацией на многоэтапные вычислительные процедуры, пригодные в более общих случаях.

Тема 1.2. Цели и возможности процедуры корректировки

Случай одного дифференциального уравнения. Примеры корректировки известных численных методов. Случай системы обыкновенных дифференциальных уравнений. Спектральная корректировка. Использование функционала Релея.

Тема 1.3. Принципы выбора корректирующего множителя

Обеспечение свойства точности метода на регулярном режиме (и на других специальных решениях) линейного приближения исходной системы. Минимизация евклидовой нормы главной части локальной погрешности метода.

Раздел II. Численные методы на основе пошагового выделения и точного обращения главной части исходного дифференциального оператора с последующей аппроксимацией остаточного члена

Тема 2.1. Точные интегральные соотношения

Взгляд на простейшие численные методы через процедуру точного обращения главной части исходного дифференциального оператора. Варианты точных интегральных соотношений, ориентированных на построение явных и неявных численных методов. Выбор параметров точно обращающей части дифференциального оператора. Случай одного дифференциального уравнения. Система таких уравнений.

Тема 2.2. Аппроксимация остаточного члена
Повышение точности приближений посредством аппроксимации необращенной части дифференциального оператора. Обсуждение результатов и возможные обобщения.

Раздел III. Экономичное нахождение результирующего разностного оператора

Тема 3.1. Общая схема построения результирующего разностного оператора на вспомогательной сетке узлов

Актуальность задачи разработки специализированных методов для систем линейных дифференциальных уравнений. Построение адаптивного типа вычислительных алгоритмов, основанных на процедуре экономичного нахождения результирующего разностного оператора.

Тема 3.2. Выбор значений основных параметров результирующего оператора

Случай вещественного спектра, обеспечение основных требований согласованности. Общий случай, построение базового вычислительного модуля.

Раздел IV. Численные методы с регулируемым уровнем аппроксимации разнорасштабных составляющих обратного оператора линейного приближения

Тема 4.1. Многоэтапная стратегия организации вычислительного процесса

Ориентация на численные методы явного типа. Эволюционные операторы, их спектральные функции. Многочленная аппроксимация многомерных операторов по матричной переменной. Акцент в аппроксимации на "жесткую" часть спектра. Рекурсивные формулы для многочленных коэффициентов, учет условий взаимосогласованности операторов. Монотонный характер двухсторонних приближений матричной экспоненты. Обеспечение основных требований согласованности дифференциальной и разностной задач при любых шагах сетки и любом порядке точки метода. Повышение уровня аппроксимации в "мягкой" части спектра.

Тема 4.2. Практическая реализация рассматриваемого подхода

Обеспечение монотонного характера основных вычислительных процедур. Проблемы и перспективы рассматриваемого способа конструирования вычислительных алгоритмов, в частности в сочетании с обобщенными методами последовательных поправок и последовательных невязок.
<table>
<thead>
<tr>
<th>Номер раздела, темы</th>
<th>Название раздела, темы</th>
<th>Количество аудиторных часов</th>
<th>Количество часов УСР</th>
<th>Форма контроля знаний</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Лекции</td>
<td>Лабораторные занятия</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Мультипликативная корректировка разностных схем</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1.1</td>
<td>Введение</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Цели и возможности процедуры корректировки</td>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>Принципы выбора корректирующего множителя</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Численные методы на основе пошагового выделения и точного обращения главной части исходного дифференциального оператора с последующей аппроксимацией остаточного члена</td>
<td></td>
<td></td>
<td>Контрольная работа по темам 1.1-2.2, коллоквиум</td>
</tr>
<tr>
<td>2.1</td>
<td>Точные интегральные соотношения</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Аппроксимация остаточного члена</td>
<td>4</td>
<td>1</td>
<td>Экспресс-опрос</td>
</tr>
<tr>
<td>3</td>
<td>Экономичное нахождение результирующего разностного оператора</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Общая схема построения результирующего разностного оператора на вспомогательной сетке узлов</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>3.2</td>
<td>Выбор значений основных параметров результирующего оператора</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Численные методы с регулируемым уровнем аппроксимации разносмасштабных составляющих обратного оператора линейного приближения</td>
<td></td>
<td></td>
<td>Контрольная работа по темам 3.1-4.2</td>
</tr>
<tr>
<td>4.1</td>
<td>Многоэтапная стратегия организации вычислительного процесса</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Практическая реализация рассматриваемого подхода</td>
<td>8</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Всего</td>
<td></td>
<td>34</td>
<td>30</td>
<td>4</td>
</tr>
</tbody>
</table>
ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Перечень основной литературы


Перечень дополнительной литературы

Примерный перечень заданий для управляемой самостоятельной работы студентов

Раздел 1. Мультипликативная корректировка разностных схем
1. Найти примеры операторов перехода, обеспечивающих A-устойчивость соответствующего одношагового численного метода.
2. Изучить связь между видом оператора перехода и порядком точности соответствующего метода.
3. Построить примеры явных A-устойчивых одношаговых методов, пользуясь подгонкой по оператору перехода.

Раздел 2. Численных методов на основе пошагового выделения и точного обращения главной части исходного дифференциального оператора с последующей аппроксимацией остаточного члена
1. Построить точные интегральные соотношения при пошаговом выделении линейной части дифференциального оператора.
2. Выписать условия порядка при пошаговом выделении линейной главной части дифференциального оператора.
3. Построить примеры численных методов, основанных на пошаговом выделении линейной главной части дифференциального оператора.
4. Построить точные интегральные соотношения при пошаговом выделении квадратичной главной части дифференциального оператора.

Раздел 3. Экономичное нахождение результирующего разностного оператора
1. Построить примеры базовых операторов с нужными свойствами, на основе которых можно строить результирующий оператор.
2. Разработать алгоритм численного интегрирования задачи Коши для системы обыкновенных дифференциальных уравнений с заданной точностью на основе экономичного нахождения результирующего разностного оператора.
3. Осуществить программную реализацию алгоритма пункта 2.

Раздел 4. Численные методы с регулируемым уровнем аппроксимации разнорасшифрованных составляющих обратного оператора линейного приближения
1. Построить примеры численных алгоритмов на основе использования принципа дифференциальных невязок.
2. Осуществить программную реализацию алгоритмов пункта 1.
3. Построить примеры численных алгоритмов на основе принципа обратных дифференциальных невязок.
4. Программно реализовать алгоритмы пункта 3.
Перечень рекомендуемых средств диагностики

Для текущего контроля качества усвоения знаний студентами используется следующий диагностический инструментарий:

- лабораторные работы;
- письменные контрольные работы;
- коллоквиумы;
- устные экспресс-опросы.

Лабораторные работы, как правило, представляют собой задания, включающие аналитическое исследование предложенной дифференциальной задачи, а также (по разделу 3) программную реализацию указанного численного метода (язык программирования обычно выбирается самим студентом), проведение вычислительного эксперимента и комментарии по его итогам. Рекомендуемая форма отчетности по лабораторной работе – письменный отчет. Лабораторная работа оценивается по стандартной 10-балльной шкале. Оценка за лабораторную работу может быть снижена в случае несвоевременного выполнения.

Письменные контрольные работы проводятся для контроля знаний по одному или нескольким разделам курса. Они включают, как правило, 4-5 заданий и оцениваются по 10-балльной шкале. В случае неудовлетворительной оценки контрольная работа может быть переписана.

Коллоквиум представляет собой персональную устную беседу преподавателя со студентом с целью определения уровня знаний по пройденным темам. Для более точной оценки коллоквиум может включать дополнительный письменный этап. По результатам коллоквиума выставляется оценка по 10-балльной шкале.

Устный экспресс-опрос студентов проводится в свободной форме в течение лабораторных занятий. Его результаты учитываются преподавателем при выставлении рейтинговой оценки в конце семестра.

Методика формирования итоговой оценки

Итоговая оценка формируется на основе:

1. Правил проведения аттестации студентов (Постановление Министерства образования Республики Беларусь №53 от 29 мая 2012 г.);
2. Положения о рейтинговой системе оценки знаний по дисциплине в БГУ (Приказ ректора БГУ от 18.08.2015)
3. Критериев оценки знаний студентов (письмо Министерства образования от 22.12.2003 г.)
**ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ**

<table>
<thead>
<tr>
<th>Название учебной дисциплины, с которой требуется согласование</th>
<th>Название кафедры</th>
<th>Предложения об изменениях в содержании учебной программы учреждения высшего образования по учебной дисциплине</th>
<th>Решение, принятое кафедрой, разработавшей учебную программу</th>
</tr>
</thead>
<tbody>
<tr>
<td>Математическое моделирование в физике и механике</td>
<td>Кафедра вычислительной математики</td>
<td>Нет</td>
<td>Изменений не требуется, протокол № 14 от 19.04.2018</td>
</tr>
</tbody>
</table>
ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ К УЧЕБНОЙ ПРОГРАММЕ ПО ИЗУЧЕ-МОЙ УЧЕБНОЙ ДИСЦИПЛИНЕ
на _____/_____ учебный год

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Дополнения и изменения</th>
<th>Основание</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Учебная программа пересмотрена и одобрена на заседании кафедры
______________________________ (протокол № ___ от _______ 201 г.)

Заведующий кафедрой
__________________________ __________ 

УТВЕРЖДАЮ
Декан факультета
__________________________ __________