Mn doped BiNbO₄ ceramics: phase transitions, magnetic properties, NEXAFS and EPR spectra

<u>N. A. Zhuk¹</u>, L.V. Rychkova¹, L.S. Feltsinger¹, I. E. Vasileva¹, M. V. Arteeva¹,
Ya. A. Busargina¹, E. M. Overin¹, L. O. Karlova¹, N. V. Chezhina², V. P. Lutoev³, B. A. Makeev³, V. A. Belyy⁴, S. V. Nekipelov^{1,5}
¹Syktyvkar State University, Syktyvkar, *e-mail: nzhuck@mail.ru* ³Institute of Geology, Komi Scientific Center UB RAS, Syktyvkar
⁴Institute of Chemistry of the Komi Science Center UB RAS, Syktyvkar, ⁵Institute of Physics and Mathematics of the Komi Science Center UB RAS, Syktyvkar, Syktyvkar, Komi Republic, Russia

Magnetic susceptibility, NEXAFS and ESR of solid solutions BiNb₁₋ $_{x}Mn_{x}O_{4-\delta}$ in triclinic and orthorhombic modifications have been studied. The reversibility of phase transition from the high-temperature triclinic modification to the orthorhombic one has been revealed by means of magnetic dilution and X-ray phase analysis by the example of polycrystalline samples of the solid solutions $BiNb_{1-}$ $_{x}Mn_{x}O_{4-\delta}$ [1]. The manganese-containing BiNbO₄ solid solutions were obtained at $x \leq 0.06$. The ESR spectra of solid solutions in triclinic modification revealed sextet structure of Mn(II) ionswith 8.4 mT splitting and some features at g = 3.80and 1.47, and a broad diffuse band with $g \sim 2.2$ having a sextet with 8–9 mT splitting and g = 2.0 against its background. The parameters of exchange interactions in dimers and the distribution of manganese atoms (II), (III) and (IV) of $BiNb_{1-x}Mn_xO_{4-\delta}$ in triclinic and orthorhombic modifications have been calculated depending on the concentrations of solid solutions. Solid solutions $BiNb_{1-y}Mn_yO_{4-\delta}$ as well as iron oxides MnO, Mn_2O_3 and MnO_2 were studied by the NEXAFS spectroscopy in order to determine the degrees of oxidation of iron atoms. The analysis of the NEXAFS Mn2p-spectra of manganesecontaining solid solutions and oxides revealed that the studied Mn atoms were mainly in the (II), (IV) oxidation state.

References

1.N.A. Zhuk, M.V. Yermolina, V.P. Lutoev [etal]. Ceram. Int. (2017) 43:16919.

Двойные циклофосфаты железа(III)-аммония: синтез в системе Fe-NH₄PO₃ и характеризация

Е. А. Абрамович, А. Ф. Селевич

НИИ физико-химических проблем Белорусского государственного университета, Минск, Беларусь, *e-mail:nortlight@mail.ru*

Интерес к двойным аммонийсодержащим конденсированным фосфатам (ДАКФ) обусловлен тем, что некоторые соединения этого обширного

класса являются эффективными антипиренами для полимерных материалов. Так, недавние исследования, выполненные в НИИ ФХП БГУ, показали высокое огнезащитное действие двойных полифосфатов состава $(NH_4)_2M^{II}(PO_3)_4$ ($M^{II} - Ni$, Mg, Co, Mn, Cd, Ca) в композициях на основе полиамидов (в том числе стеклонаполненных), поликарбонатов и эпоксидных смол [1]. При этом продемонстрировано, что полифосфат аммония NH_4PO_3 ($\Pi\Phi A$) является перспективным реагентом для получения ДАКФ [2].

В настоящей работе на примере фосфатов железа(III) продолжен поиск ДАКФ трехвалентных металлов, предусматривающий новых систематическое исследование термического взаимодействия их соединений с ПФА в широком диапазоне температур и соотношений реагентов. Выполненное ранее исследование термического взаимодействия в системе Fe₂O₃-NH₄PO₃ [3] показало, что реакция Fe₂O₃ с ПФА сопровождается образованием как известных фосфатов $NH_4FeP_2O_7$, $NH_4FeHP_3O_{10}$, Fe(PO₃)₃, так и нового соединения – циклооктафосфата $(NH_4)_2Fe_2P_8O_{24}$, однако выделить его в чистом виде и охарактеризовать не удалось.

С целью разработки методики получения (NH₄)₂Fe₂P₈O₂₄ и поиска новых соединений в качестве железосодержащего реагента использовано карбонильное железо (в виде порошка), термическое взаимодействие которого с ПФА исследовано при температуре 300 °C и мольном соотношении Fe : P = 1 : (6–12). Установлено, что при нагревании Fe интенсивно реагирует с ПФА с образованием трифосфата $NH_4FeHP_3O_{10}$, полифосфата $Fe(PO_3)_3$, упоминавшегося циклооктафосфата ранее $(NH_4)_2Fe_2P_8O_{24}$ И нового соединения циклододекафосфата $(NH_4)_3Fe_3P_{12}O_{36}$ идентификация которого выполнена помошью с рентгенофазового, химического и синхронного термического анализа. что с увеличением продолжительности взаимодействия Показано. независимо от соотношения реагентов в реакционной массе происходит последовательное формирование фосфатов в ряду: $NH_4FeHP_3O_{10} \rightarrow$ $(NH_4)_3Fe_3P_{12}O_{36} \rightarrow (NH_4)_2Fe_2P_8O_{24} \rightarrow Fe(PO_3)_3$. При этом соотношение реагентов в исходной смеси влияет на количественный выход соответствующих соединений. Оптимальные условия получения двойных циклофосфатов железа(III)-аммония приведены в таблице 1.

Соединение	Соотношение Fe : NH ₄ PO ₃	Время, ч
$(NH_4)_3Fe_3P_{12}O_{36}$	1:12	2,5–3,0
$(NH_4)_2Fe_2P_8O_{24}$	1 :10	20

Табл. 1. Условия получения циклофосфатов железа(III)-аммония при 300 °С

Анализ порошковых рентгенограмм синтезированных циклофосфатов железа(III)-аммония показал их изоструктурность с известными

представителями семейств соответственно двойных циклододека- $M_{3}^{I}M_{3}^{III}P_{12}O_{36}$ и циклооктафосфатов $M_{2}^{I}M_{2}^{III}P_{8}O_{24}$ (M^{I} – одновалентный, M^{III} – трехвалентный катион) [4]. Вычисленные кристаллографические характеристики соединений приведены в таблице 2.

Исследование термического разложения $(NH_4)_3Fe_3P_{12}O_{36}$ И $(NH_4)_2Fe_2P_8O_{24}$ показало относительно высокую термическую их стабильность. Соединения начинают разлагаться соответственно выше 450 и 400 °C с выделением в газовую фазу аммиака и воды и формированием в конденсированной фазе полифосфорных кислот и кристаллического Fe(PO₃)₃. Кристаллографические характеристики и схемы термического разложения циклофосфатов железа(III)-аммония схожи с таковыми для ранее изученных аналогичных соединений хрома(III) [5].

Параметр	Соединение	
	$(NH_4)_3Fe_3P_{12}O_{36}$	$(NH_4)_2Fe_2P_8O_{24}$
Сингония	кубическая	моноклинная
Пр. группа	Ра-3	I2/m
a, Å	14,37094(56)	16,7027(21)
b, Å	—	12,4390(18)
<i>c</i> , Å	—	5,2058(12)
β, град.	—	95,520(12)
$V, Å^3$	2967,94	1077,28
Ζ	4	2

Табл. 2. Кристаллографические данные циклофосфатов железа(III)- аммония

Список литературы

1. А.И. Балабанович, А.И. Лесникович, А.Ф. Селевич. Пат. РБ 20800 (2017).

2. А.Ф. Селевич, О.А. Ивашкевич. Сб. ст. Свиридовские чтения. Минск (2017) 13 : 161.

3. Е.А. Абрамович, А.И. Лесникович, А.Ф. Селевич. Сб. ст. Свиридовские чтения. Минск (2013) 9 : 11.

4. A. Durif. Crystal chemistry of condensed phosphates. NewYork (1995).

5. Е.А. Абрамович, Н. Л. Будейко, А. Ф. Селевич. Свиридовские чтения (2016) 12 : 9.

