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A Laplacian matrix L = ({;) € R"™* has nonpositive off-diagonal entries and zero row
sums, Every nonsymmetric Laplacian matrix is associated with a directed graph I'(V, E)
with vertex set V = {1,...,n} and arc set E. In this paper we investigate the Laplacian
spectrum of the digraphs that consist of two contradirectional Hamiltonian cycles from
one of which one or two arcs were removed. The characteristic polynomials for these
matrices are studied by means of the polynomials Z,(x) that satisfy the recurrence relation
Zp(x) = (x = 2)Z,_ 1 (x)} — Z,~2{x) with the initia] conditions Zy(x) = 1 and Zy{x) = x - 1.
We show that Z,{(x) and Chebyshev polynomials of the second kind P,(x) are related by
Z,(x} = P?n(m

Keywords: Laplacian matrix; Laplacian spectrum; Chebyshev polynomials; Directed
graphs.

1. INTRODUCTION

In this paper we consider nonsymmetric Laplacian matrices L = ({;;) such that [; €
{0,—1} fori #jand l=~3 ;L forall i = 1, ..., n. Every matrix of this kind can be
associated with an unweighted directed graph I'(V, E) with no loops. In this case [;; = —1
iff (£, )} € E(T).

The Chebyshev polynomial of the second kind P,(x) on [~2,2] is a polynomial of

degree n defined by
sin({n + 1) arccos §)

Pilx) = -2, ()
| -2
4
where % = cos ¢ and ¢ €]0, =]
By (1) @+ 1)
sin(n @
R = @
It is known that P,(x) can be expressed as follows:
in/2) o '
Po(x) = Un(x/2) = Z (- l)cht—fxﬂ*m . 3)

i=0
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and satisfies the recurrence relation
Pa(x) = xP,_y(x) — Py—a(x) @

with the initial conditions Py{x) = | and P;(x) = x. By (2) the zeros of P,(x) are readily
determined from the zeros of sin(n 4 1)¢:

TR .
Xp = 2008 —— +l k=1,...,n . (5)
Let A, = (a;;) be the tridiagonal mat,rix
[A=-2 1
1 A=-2 1

T oa-2 1
\ | 1 A=1

where A is a parameter. In parncular detAl ()« - l) Let det Ap = 1. Using the cofactor
expansion along the first row for det A, we get

det A, = (A~ 2)detA,., —detd, ,, n>2

It is obvious that for every n = 1,2, ... the determinant of A, is the polynomial Z,(\)
defined by the recurrence relation

Zp(A) = (A = 2)Z,1(A) — Z,2(N) (6)

with the initial conditions Zo(A) = 1 and Z,(A) = A —
The following lemmas will by used to prove the main theorems.
Lemma 1. P, (x) = Z,(x?). '
Corollary to Lemma 1. 1. The polynomial Z,(x) has the form

Z,(x) =) _(-1¥C},_xm. Q)
i=0 _

' {40:»5‘2 2:& |k = 1,...,n}+

is that of the zeros of the polynomial Z,(x) and it coincides with the set of squares of the
zeros of the polynomial Pp,(x).

To make sure that the item 1 is true it is sufficient to compare (7) with (3).
. To prove item 2, observe that the zeros of Py,(x) are 2 cos 5% zm, k=1,...,2n and they
can be presented as £2c0s 307, # = 1,...,n. The set of the squares ofthese numbers
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2. The set




coincides with the set {4 cos? 3™
zeros of Z,(x) in the {0, 4].

By Po(vV%) = Z,(x) and (1), the polynomial Z,(x) has the following trigonometric
representation:

5 +1 k= 1,...,n}. It is obvious that this set contains all

_sin(2n + 1)y
Zn(x) - Sil‘i 50 *
where x = 4cos? o, €]0, 5], x € [0,4]. So Z,(x) can be called the Chebyshev polyno-
mia] of the second kind scaled on [0, 4].

Lemma 2. On the half-open interval )0, 3] the roots of
Z(x)+ (-1}’ =0
are 4cos? '2'?:1‘?1%‘1")55' k=1,...,n, wherep ¢ {0,1}.

2. MAIN THEOREMS

Let L; be the Laplacian matrix of the digraph that consists of two contradirectional
Hamiltonian cycles from one of which arc {#, 1) is removed. In other words, this digraph
consists of two contradirectional routs and an arc connecting their ends.

2 -1 -1
(—1 2 -1 \
L= L ,
: 19 -
\ -1 1/

Theorem 1. The characteristic polynomial of Lyis Ay (M) = Zo{A) — (—1)". The zeros

OfA,Ll (r\) are 4 cos? ";_ﬁL(kT}m, k= 1,.
Proof. By expanding A/ — L, with respect to the frst row we have:

AT = Ly} = (A = 2)Z,1(A) — Zp—a(A) — (-1)".
It follows from (6) that
M =Ly = AL, (X)) =Z,(0) - (-1)".

It follows from Lemma 2 that the roots of the characteristic polynomial A; (A) of L,

are400522—u-+1—_”(k_—l);;;,k= l,...,n. 0
Now consider the Laplacian matrix L, of the digraph that differs from the previous one
by removing the arc (i,i + 1):

1 2 ... ii+l...n-1n

270



2 ~1 -1\ 1
(—1 2 \2
{ .
L= -1 2 . i+ 1
2 -1 n—1

\ | - 1 1/ n

The problem of the reality of the eigenvalues of this matrix is related to the properties
of the product of Chebyshev polynomials of the second kind. We give some properties of
this product in the following two lemmas.

Theorem 2. |. The characteristic polynomial of Ly is

AL, () = ZNZ,-i(A) — (-1)".

2. If n is even, then all eigenvalues of L2 are real if and only if i = §, in which case
they are 4 cos? "'_, 4eos® 2, k=1,...,3

3. If n is odd, then all eigenvalues of L, are real if and only gf i= — ori= i'-}l, in
either case they are O (with multiplicity 1) and 4cos? 2 k= 1,..., ——~2—‘ (w:th multiplicity
2 each).

Proof. 1. Expanding Al — L, with respect to the first row and substituting the expression
(6) for (A — 2)Z;_ (A} — Z;_3()\) we have:

AL () = A=2)Zi(N) Znei(A) = Zi22(M) Zpei (W) — (-1
Z(N)Zpi(A) — (D).

]

Let

™m
2m+1 2m+1
be the smallest and the second smallest roots of Zy(x), respectively,

{

x™ = 4 cos? m =

and x," =4cos

(m) o mm—1)

" and " = 4cos® ———

Ly

g ®M
=dcos om+ D)
the roots of Zy + (~ 1) = 0 for k = m and k = m — 1, respectively.
Consider the polynomials Z;(x) and Z;(x) with arbitrary natural { and j.
We need the following two lemmas.
Lemma 3. |. If u(‘)_ ) then

i>2!;?.

2. If0 <i <, then u{® > u,
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3. The inequality
Z49Z(x)| < 1 | @®)

holds on 10, max(xf”, u;”)]

4.1 4 < £ and 0 < i < j— 1, then (8) holds for ail x € [u{", ¥¥"].

Lemma 4. 1. Ifi + is even, then Z,(x)Z;(x) — 1 = O has only real roots if and only if
i = j. In this case, the roots are 4 cos® % 4cos2 Hok=1,..,i

2. Ifi<jandi+jisodd then Z;(x)Z (x) +1 =0 has only real roots if and only if
f=j—1 Inthscase

Z{D)Zi(x) + 1 = P2, (\/E)

holds and the roots are O with multiplicity | and 4 cos® ~’25f%, k=1,...,i{with multtplicitj} 2.
Items 2 and 3 of Theorem 2 follow from items 1 and 2 of Lemma 4, respectively. O

3. CONCLUSIONS

Let LY be the Laplacian matrix of the chain with n vertices. By suitable indexing of the
vertices we can present A/ — Lf as the matrix different from A, (defined above) only in the
(1, 1) entry, whick for A\J — L% is A — 1. :

Expanding |A/ — L%{ with respect to the first row and using (6) we have:

A(A) = (A= DZa1 (V) = Zp2(A) = Zo(A) + Zp— 1 (A).

By item 2 of Corollary to Lemma 1 the roots of Z,(A} + Z,_ () are the squares of the
roots of Pos(A) + P2(n—l)(/\)
By (4), ,
Por(A) + Pops—1){A) = APyt (N).

According to (5) the roots of APy, (A) are Ao = 0 and A\, = 2 cos gﬁ, k=1,....2n—L
Pan—1{A} has roots § (corresponding to & = n), n — 1 positive roots and # — 1 negative roots
with the same absolute values. Since A, (A) has n roots equal to the squares of the roots of
APy,—1(A). The roots of A.(\) make up the set {4 cos? 2, k = 1, ..., n}. It is easy to verify
that the numbers 4 sin® gﬁ, k=0,..,n- 1, form the same set. This result was proved in
[1, 2]. In those papers the statement was taken as "ready-made” and then proved, rather
than derived, as we did in this paper.

The matrix tree theorem provides a general formula for the computation of the number
of spanning trees of a graph. For certain classes of graphs, the result can be obtained by
means of the Chebyshev polynomials of the second kind. In [3] this method was applied
to the wheels, fans, Moebius ladders, etc. In [4] was demonstrated the use of Chebyshev
polynomials for finding the number of spanning trees in certain classes of graphs such as
circulant graphs with fixed jumps and circulant graph with non-fixed jumps. The results
obtained in the present paper can be used to find the number of spanning trees for the class
of digraphs described above and to solve the problem of the reality of eigenvalues (cf. [5]).
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