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We consider a multi-server queueing model with broadcasting service discipline which
assumes that the customer who secs several free servers upon arrival is served by all these
servers. Errors can occur during the service that leads to incorrect service. The key perfor-
mance measures of the system including probability of correct delivering of a customer are
calculated. Effect of correlation in the arrival process is numerically illustrated.
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1. INTRODUCTION

Multi-server queueing systems model many communication networks and have got a lot
of attention in literature since the pioneering wotks by A.K. Erlang in the early 1900th. The
standard assumption in analysis of multi-server queues is that each customer is served by
one server. In this paper, we investigate the case when the customer gets a service from all
servers that are idle at the customer arrival epoch. Such a service discipline creates some
redundancy, but it can help to decrease the average delivering time of a first copy of the
broadcasted customer, see [1, 2, 3]. In this paper we focus on the model with unreliable
servers. Servers do not physically broken, but just can provide a wrong service. It is
intuitively clear that the possible parallel processing in several servers increases probability
that a customer (at least one of its copies) will get correct service. Here we illustrate
that a customer sojourn time and probability of successful (correct) service are influenced
by correlation in the arrival process. We assume that the input flow is described by the
MAP (Markov Arrival Process) which well suits for modeling the correlated bursty traffic
in the modern telecommunication networks. The distribution of service time and time
till an error occurrence in a server is of PH (phase type). PH distribution is the well
recognized descriptor of the service process in the multi-server queues which still allows to
get analytically tractable results.

The rest of the paper is organized as follows. In section 2, the model is described and
stationary distribution of the number of customers in this model is analyzed. Sojourn time
distribution in the system and probability of successful service are calculated in section 3.
Section 4 contains the numerical resulis.
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2. MATHEMATICAL MODEL AND DISTRIBUTION OF THE
NUMBER OF CUSTOMERS IN A SYSTEM

We consider an N-server queueing system. The customers arrive to the system accord-
ing to a MAP (MarkovianArrivalProcess). The notion of the MAP and its detailed
description is given by M. Neuts, V. Ramaswami and D. Lucantoni, see, e.g., paper [4]
were the currently standard in literaturc notation for the MAP is introduced.

We denote the directing process of the MAP by »,t > 0. The process v, 1 > 0, is
an irreducible continuous time Markov chain with state space {0,1,..., W}. Intensitics
of transitions of this Markov chain, which are accompanied by generation of 2 customers,
k = 0,1, are combined into the matrices D;, 2 = 0, . The matrix D(1) = Dy + D, is the
generator of the process v;,{ > (0. The average arrival rate A is defined by A = @De
where @ is the invariant vector of the stationary distribution of the Markov chain 4,7 > 0.
The vector @ is the unique solution to the system @D(1) = 0, #e = 1. Here e is the
column-vector of appropriate size consisting of 1’s and 0 is the row-vector of appropriate
size consisting of 0’s.

The servers are assumed to be identical and independent of each other. The service
process in each server is assumed to be of phase (PH) type. The PH type service process
is described by a continuous time Markov process 7, { > 0. The state of this process at the
epoch of a service start is defined according to a probabilistic row-vector B = (8, ..., Bu).
Further, transitions of the process 7, ¢ > 0, are defined by a matrix S of dimension M. We
set Sy = —Se. The average service time b, is given by b, = B(—S)'e. For more details
on PH type distributions see the book [5].

If the arriving customer meets several free servers upon arrival, the customer is copied
and all free servers start, independently of others, the service of the copies of this customer.
We assume that sojourn time of the customer in the system finishes at the earliest epoch of
one of its copies service completion. However, all other copies of this customer continue
the service in the corresponding servers but they are deleted after the service completion.
If all the servers are busy upon arrival, the customer is placed into the buffer of an infinite
capacity and then it will be picked up from the queue according to the FIFO (First In -
First Out) discipline.

Errors can happen during a service. Time till occurrence of an error has PH distribution,
which is described by the row vector v = (v, ...,vg) and a subgenerator matrix I". The
average intensity of errors ¢ is given by ¢! = y(-I")"e.

For use in the sequel, we introduce the following denotations.

e [ is an identity matrix. O is zero square matrix. If the dimension of the matrix is not
clear from context, it will be indicated by the suffix. E.g., [y is the identity matrix of
dimension W, W = W + 1.

e ® (@) is the symbol of Kronecker product (sum) of the matrices.

oL 4/ ol % g 0 4 @0 %/
e ¥ =B®...08, S SED.;.@S, i1>1, B¥=1IyS 0.
I

o 1=
a Sgal e Yo Ium @ So ® Lypem—1, L > 1.
m=0
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oM, =1y ®@S¥ r=1,N, My =1y @ (SoB)®", N, = Do ® S®, r =0, N.

L D,« = D] ®]MN—:“ ®ﬁ®r, r = m, K,— = —M;.;.]M_], [= O,N — 1.

Let ¢, be the number of customers in the system, i, > 0, m}f ! be the state of the directing
process of the service on the j-th busy server, mfm = 1,M, j = |, min{i;, N} (we assume
here that the busy servers are numerated in order of their occupying, i.e. the server, which
begins the service, is appointed the maximal number among all busy servers; servers that
start the service at the same epoch get sequential numbers with equal probabilities; when
some scrver finishes the service, the servers are correspondingly enumerated), v, be the
state of the underlying process of the MAP, v, = 0, W, at the epoch ¢, f > 0.

Consider the multi-dimensional process & = (i, v, mf”, 3 ..mfmi“{""N})), t >0 Itis
easy to see that this process is a continuous time irreducible regular Markov chain.

Let Q be the generator of the Markov chain &,/ > 0, with blocks Q;; corresponding to
the transitions of the component i, f > 0, from the state i into the state j, i,j > 0.

Lemma 1. The generator Q of the Markov chain &, { > 0, is given by

(Ng 7 SRS € Dy 0O O \
Ms - Ny st 2@ 5Bl 10
O My ... O Dy 0O O
Q: O O . NN—I Dl O O
Q. .0 My Ny Dy O
0O O 0O My Ny Do
00 e W0 M, N oo
T R L S R

Proof of the lemma is implemented by means of analysis of the probabilities of the
Markov chain &;, { > 0, transitions during an infinitesimal time interval.
Denote the stationary probabilities of this process by

p(i.b‘, m(l}‘ el m{min{f..’\"}}} -
=lim P{ir =i vi=v, m® =m®, k=T min{i, N}}, i > 0.v =0, W, m? = T'M.
o0

It can be shown that the limits exist if the stability condition p = %bl < 1 holds good.
In what follows we assume that this condition is fulfilled.

Let us enumerate the states of the Markov chain & in the lexicographic order and form
the row-vectors p, of the stationary probabilities p (i, v, mV), ... K mM"iND) correspond-
ing to the state { of the first component of the chain, { > 0. The dimensionality of these
vectors is equal to K; = WM’ for i =0, N and K = WMV fori > N.

Theorem 1. Vectors p;, i > 0, are computed as follows:
i=N=1

pi=pyBii=0N, py =py MyAY, pi=py R, i2N+1,

47



S S, A N—1
where B; = Ky_y x -+ x K,i =0,N-1,8By =1, Ay = “(-‘VN +. 3> Bﬂ)N—J)n the
i=0

mairix R is the minimal non-negative solution to the system R*M}, + RNy + Dy = O,
and the vector py, .| is the unigue solution to the system of linear algebraic equations

N
Py [Ny +RMy + M;,A;"Dg] =0, Puss {(1 - R) e+ My Ay Zﬁfe} = 1.

i=0

Proof is based on careful use of specifics of the generator @ in the first N + 1 block
columns with combination with technique by M. Neuts [5].

3. DISTRIBUTION OF THE SOJOURN TIME AND
PROBABILITY OF SUCCESSFUL SERVICE

Let V(x) be the distribution function of the actual sojourn time of an arbitrary cus-
tomer in the system under study and v(u) be the corresponding Laplace-Stieltjes transform:

oo
v(u) = [ e “dV(x), Re u > 0. The sojourn time of a customer in the system is the time
0
since the customer arrival to the system till the service completion of the earliest copy of
this customer.
Lemma 2. Let &,k = 1, m, be m independent identically distributed random variables
having PH distribution defined by the irreducible representation (8, S).
Then a random £ = min & has PH distribution defined by the irreducible represen-
k=1m
tation (B®™", §2m),
Theorem 2. Laplace-Stieltjes transjorm v{u) of the sojourn time distribution is calcu-
lated by

N—1

o) = A [Z 2.(D; ® Iy enw—i(u)+

i=D

oy + Py I = REW)] ™ Z(u)e] Z(u)(Dy ® Iyv)er (u)]

where Z(u) = Iy @ ((ul — SP¥)1(SeB)2N), i(u) = B® (ul — S®) 1 (—S%)e, i =1, N.
Proof of theorem is implemented by means of generalization of the known method of
catastrophes by H. Kesten, J.Th. Runnenberg and G. van Dantzig to the matrix case.

Corollary 1. The mean sojourn time V in the system is compuied by

N~1
V=x" {Z p(Dy ® L)eb™ 0 4+ py (S + BV1)(Dy ® Iyv)e+
i=0

PNH[I-—RS(U)]_I [RS(”[f—mw)]_1(5(0’)2+S{m8{”+S“’S‘°]+S(m${mbf”] (D\ @y e
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where SO = Iy ® ((—S®Y)~1(SoB)®V), SV = Ip ® ((—SP¥) )8, the value b as
expectation of distribution of the minimum of | independeni identically distributed random
variables having PH distribution with irreducible representation (B, S) is given by bf“ =
A (—S®te, 1= LN

It is easy to compute probability ¢ that an error does not occur during the service of a
customer: ¢ = (y® B)(— ('@ S) ') (er ® Sp). Then formula for probability Prycc.qs that an
arbitrary customer will be served correctly follows from the law of total probability as

-N—1

psur.e:ess = ’\I-l [Z(l = (l N q)N_j)pf(Dl by IM‘)E e q [pN +pN+l [[ o R]“}} (Dl ® IMN)E} .

i=0

4. NUMERICAL ILLUSTRATIONS

In this section we show an influence of correlation in the arrival process. We assume
that N = 5, PH service process and breakdowns processes in the first experiment are
defined by the vectors B = (1,0) ,~ = (1, 0) and sub-generators

2 2 -1 .1
S“( 0 —~)'F:( 0 --0.5)‘

Average intensities of the service and breakdowns processes are equal to 1 and 0.33333,
respectively. Squared coefficients of variation for these processes are equal to 0.5 and
0.55555.

-6

In the sccond experiment, sub-generator S is of form S = ( 3 _39 ) . Average

intensity of the service is equal to 3.75. Squared coefficient of the service time variation is
equal to 0.875.
We consider six different MAPs having the same fundamental rate A = 5 and different

variation coefficient and correlation coefficients.
The MAP, which is coded as MAP,, is characterized by the matrices

Dg= | 6473711 —347.245854  340.772143

-2.002637  0.793175 1.209462
. D
6.473711 6.473711 ~1350.141152

0 0 0
= 0 0 0] .
501.447648 835.746082 0

This MAP is the /PP (interrupted Poisson process). It has the correlation coefficient

Ceor = 0, and the variation ¢y, = 4.
The MAP, which is coded as MAPR,, is characterized by the matrices

-3 25 0.5+ 0
e [2.5 -4]'”" [0 1.5]'
This MAP has the correlation coefficient ¢,,, = 0.0052, and the variation ¢,,, = 1.0869.
The MAP, which is coded as MAP,, is characterized by the matrices

—-13.33463 0.588578  0.617293 11.54694 0.363141 0.21867
Dy= | 0.692663 2446574 0.422942 |, D= [0.384249 0.865869 0.08085| .
0.682252 0.414363 —1.635426 0.285172 0.04255 0.21109
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This MAP has the correlation coefficient ¢.,, = 0.1, and the variation ¢, = 4.
The MAP, which is coded as MAP;, is characterized by the matrices

—-15.732675 0606178  0.592394 14.1502 0.302098 0.08181
Dy=| 0517816 —2.289674 0467885 {,D = {0.10707 1.03228 0.16463{ .
0.697068  0.565264 —1.959664 0.08583 0.197946 0.51357

This MAP has the correlation coefficient ¢, = 0.2, and the variation ¢, = 4.
The MAP, which is coded as MAP,, is characterized by the matrices

{~25.539839 0.393329 0.361199] {24.242]2 0.466868 0.076323:|
= :

Dp= | 0.14515 —2.2322  0.200007 0.034097 1.666864 0.186082

0.295961 0.387445 —1.752618 0.009046 0.255508 0.804658

This MAP has the correlation coeflicient ¢,,, = 0.3, and the variation ¢ ,, = 4.

The MAP, which is coded as MAP;, is the stationary Poisson process. It has the
correlation coefficient ¢.,, = 0, and the variation ¢,,, = 1.

Figures 1 and 2 show dependence of the probability P, ...s on the service rate p and
on the rate ¢ of errors occurrence for the arrival processes with the same arrival rate but
different correlation. One may conclude that ignorance of effect of correlation can lead to
the wrong performance evaluation of the model under study.

Psucc
1

0.98 |- Map
0.96 =*=MAFY
0.94 |~ MAP
0.92 [+ MAPY

0.9 | «- MaR4
0.88 “ MAP’_’J
0.86 7l

Fig. 1. Dependence of the probability Ps,...ss 0n the service rate u for different correlation
in arrival process

+ MAPO
|—=— Map1
- MAPZ
-+ MAP3
« MAP4
~— MAP5

-y

Fig. 2. Dependence of the probabilily Psec.ss on the rate @ of errors for different correlation
in arrival process
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