## ПРОИЗВОДСТВО БИОСЕНСОРОВ РЕЗОНАТОРНОГО ТИПА С ИСПОЛЬЗОВАНИЕМ ТЕХНОЛОГИИ ПРЯМОЙ ЛАЗЕРНОЙ ПЕЧАТИ

А.В. Саечников<sup>1,2</sup>, Э.А. Чернявская<sup>1</sup>, В.А. Саечников<sup>1</sup>, А. Остендорф<sup>2</sup>

<sup>1</sup>Белорусский государственный университет, Минск, Беларусь <sup>2</sup>Рурский университет, Бохум, Германия E-mail: <u>anton.saetchnikov@gmail.com</u>

За последнее десятилетие существенно вырос интерес к использованию оптических методов для изучения биологических объектов на микро- и наноуровнях [1, 2]. Компактность, экономичность и чувствительность среди основных причин повышения популярности оптических биосенсоров. Оптическая система детектирования, основанная на резонансе мод шепчущей галереи (МШГ), является одной из перспективных без-маркерных схем мониторинга биологических агентов [3, 4]. Обычно, резонаторы МШГ (сферической формы) изготавливаются путем нагревания и растяжения конца оптического волокна. Однако данный подход плохо масштабируем для создания мультиплексных биосенсоров [4]. Резонаторы МШГ в форме колец или дисков возможно изготовить поверх стеклянной или полимерной подложки с использованием методов фотолитографии, например, прямой лазерной печати (ПЛП), которая основана на принципе двухфотонной полимеризации (2ПП).

Для возбуждения 2ПП можно использовать фемтосекундный источник ближнего ИК-излучения с высокой пиковой интенсивностью. Этот процесс может быть вызван только в области, ограниченной в трех плоскостях, близкой к точке фокуса. Обычно фоторезисты имеют высокое поглощение в УФ диапазоне, но они прозрачны в видимом и ближнем ИК спектральном диапазоне. Таким образом, 2ПП позволяет создавать 3D-объекты произвольных форм, изменяя положение фокальной точки по всем направлениям пространства.

2ПП имеет ряд преимуществ для изготовления резонаторов МШГ:

• Возможность печати структур произвольной формы.

• Лазер ближнего ИК-излучения незначительно поглощается и рассеивается фоторезистом и не влияет на процесс полимеризации.

• Маска не требуется, поэтому уменьшается время подготовки пробы.

• Пространственное разрешение до 100 нм.

Экспериментальная установка состоит из титан-сапфирового лазера (Tsunami, Spectra Physics) с частотой повторения 82 МГц и длительностью импульса 90 фс на центральной длине волны 780 нм. Регулировка мощности обеспечивается фазовой пластинкой, и поляризационным светоделительным кубиком. В качестве затвора используется акустооптический модулятор. Экспериментальная установка содержит также несколько зеркал и гальваносканер (Scanlab, Hurryscan II). Объектив с 100кратным увеличением и числовой апертурой 1,4 фокусирует свет в фоторезисте. Перемещение образца в 3-х направлениях обеспечивается ортогональными платформами (Aerotech Inc., США).

Экспериментально были подобраны следующие параметры печати: средняя мощность лазерной системы 10 мВт, скорость передвижения точки фокуса 1 мм/с. Образцы проявлялись в растворе OrmoDev (MicroResist Gmbh.) в течение 30 мин. Резонаторы МШГ дискового типа изготовленные 2ПП представлены на рис. 1, *a*).



ΜШΓ

Усредненный спектр МШГ полученный с использованием перестраиваемого лазера (New Focus, 680 нм) представлен на рис. 1,  $\delta$ ). Свободный спектральный интервал составляет 2,37 нм. Для расчета добротности резонатора, спектр был аппроксимирован суммой функций Лоренца. Точность аппроксимации (средняя квадратичная ошибка) составляет  $2 \times 10^{-4}$ . Для трех наиболее выраженных МШГ, представленных на рис. 1,  $\delta$ ), коэффициент Q составляет порядка  $10^4$ .

Резонаторы МШГ изготовленные с использованием технологии ПЛП обладают высокой воспроизводимостью, могут использоваться для плотной упорядоченной упаковки, поэтому являются перспективным кандидатом для создания оптических биосенсоров высокой плотности.

- 1. Su, J. // Sensors, 2017, V. 17, N. 3, P.540.
- 2. Saetchnikov V.A., Tcherniavskaia E.A., Saetchnikov A.V., Ostendorf A. // Nonlinear Phenomena in Complex Systems, 2015, V. 18, N 4, P. 443–455.
- 3. Saetchnikov A.V., Saetchnikov V.A., Tcherniavskaia E.A., Ostendorf A. // Proceeding of the SPIE, 2017, V. 10333, P. 1033314.
- 4. Saetchnikov V.A., Tcherniavskaia E.A., Saetchnikov A.V., et al. // Proceeding of the SPIE, 2016, V. 9884, P. 98841T.