ПОРЯДКИ ДОЛИН КАК ИНДИКАТОР ТЕКТОНИЧЕСКОЙ АКТИВНОСТИ ТЕРРИТОРИИ БЕЛОРУССКОГО ПООЗЕРЬЯ

Д. М. Курлович

ВВЕДЕНИЕ

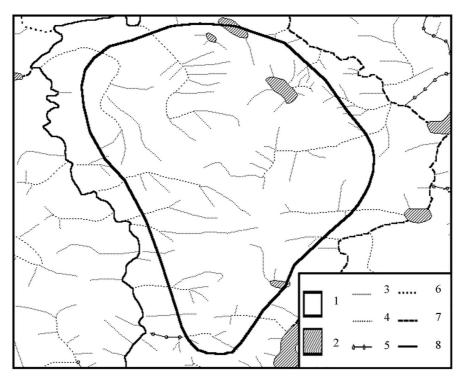
Среди структурно-геоморфологических методов исследования особо выделяются морфометрические построения. Наиболее известен морфометрический метод выявления тектонических структур, разработанный В. П. Философовым [3]. Данный метод основан на изучении по топографическим картам рисунка долинной сети, асимметрии долин, водоразделов, бассейнов, а также на анализе специально составляемых карт: базисных поверхностей, остаточных высот, вершинных поверхностей и эрозионного размыва или сноса. Методика дает возможность выявить особенности тектонического строения территории и оконтурить площади с локальными и региональными положительными тектоническими структурами. Первоначально морфометрический метод применялся при проведении нефтепоисковых работ, а впоследствии стал составной частью геологосъемочных работ, проводившихся при исследовании неотектонической структуры [1].

МЕТОДИКА ИССЛЕДОВАНИЯ

Исходной основой для дальнейших морфометрических построений служит карта порядков долин. Порядки долин определяются согласно методу, предложенному Р. Хортоном и Б. П. Пановым, а затем уточненному В. П. Философовым [2, 3]. По этой уточненной методике долиной 1-го порядка считается долина, не принимающая ни одного притока, т.е. неразветвленная. Долина 2-го порядка возникает в результате слияния двух долин 1-го порядка. Долина 3-го порядка образуется от слияния двух долин 2-го порядка и т.д. Это дихотомическая классификация долин, при которой порядок долин постепенно возрастает от верховий к низовьям. Необходимо отметить, что за долины низких порядков принимаются овраги, балки, ложбины стока и другие родственные им формы. Они определяются по рисунку горизонталей.

Определение порядков долин на территории Белорусского Поозерья осуществлялось по описанной выше методике с использованием цифровой карты рельефа, созданной в среде географической информационной системы ArcView 3.2 а (компания ESRI, США).

ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ


Используя полученную карту порядков долин можно судить о тектонике местности, непосредственно прогнозировать по ней неотектонические структуры, а также прослеживать неотектонически активные линейные зоны.

Речные долины связаны с тектоническими структурами и движениями земной коры, а также с подземными водами. Поэтому тектонические движения, так или иначе, находят свое отражение в строении речной сети. Неодинаковая скорость нарастания порядков долин и различная зависимость длины долины от порядка является отражением новейших тектонических движений. Изучение порядков долин позволяет выявить связь тектонического режима со строением долинной сети. Многочисленными наблюдениями в различных геоморфологических условиях установлено, что порядки долин быстрее возрастают на тектонических поднятиях и медленнее — в пределах тектонических впадин [3, 4]. В. П. Философов предложил рассчитывать коэффициент дихотомии (Кд) порядков долин, который выражает отношение числа потоков п-го порядка к числу потоков п + 1-го порядка [2]. Так как Кд является величиной обратной скорости нарастания порядков долин, то, естественно, что он будет уменьшаться на тектонических поднятиях и возрастать во впадинах.

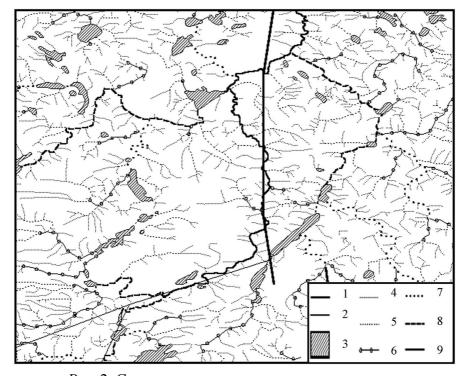

Примером выявления связи тектонического режима со строением долинной сети может служить сравнение Кд бассейнов рек Полота и Ушача. Как видно из таблицы, Кд высокопорядковых долин в бассейне р. Ушача ниже, что свидетельствует о тектоническом поднятии данной территории. В бассейне р. Полота также можно отметить современные восходящие вертикальные движения, сменившие нисходящие, о чем свидетельствуют низкие Кд низкопорядковых долин.

Таблица Коэффициент дихотомии (Кд) порядков долин

Бассейн р. Полота (Латвийская седловина)			Бассейн р. Ушача (Белорусская антеклиза)		
	Количество			Количество	
Номер	долин	Кд порядков	Номер	долин	Кд порядков
порядка долин	каждого	долин	порядка долин	каждого	долин
	порядка			порядка	
1 2 3 4 5 6	992 219 52 11 1	Кд1/2=4,5 Кд2/3=4,2 Кд3/4=4,7 Кд4/5=11	1 2 3 4 5 6	1672 353 73 18 4	Кд1/2=4,7 Кд2/3=4,8 Кд3/4=4,1 Кд4/5=4,5 Кд5/6=4
Итого	1275	Кд2/4=19,9	Итого	2121	K2/4=19,6

Рис. 1. Пример выделения локальной структуры: – неотектоническая положительная локальная структура, 2 – озера; долины: 3 – 1-го, 4 – 2-го, 5 – 3-го, 6 – 4-го, 7 – 5-го, 8 – 6-го порядка

Puc. 2. Сопоставление плана долин с разломами: разломы: – региональные, 2 – локальные; 3 – озера; долины: 4 – 1-го, 5 – 2-го, 6 – 3-го, 7 – 4-го, 8 – 5-го, 9 – 6-го порядка

Карту порядков долин можно использовать непосредственно для прогнозирования или выявления неотектонических структур. По ней достаточно обоснованно можно выделять неотектонические положительные локальные структуры. На сложном рисунке долин выделяются участки с отчетливо выраженным их центробежным расположением. Центробежное расположение обычно характерно для долин 1—3-го порядков, а долины более высоких порядков опоясывают такие участки или, приближаясь к ним, резко меняют свое направление. По сочетанию этих признаков можно выделять планы долин, отражающих неотектонические локальные положительные структуры (рис. 1).

По плану долин можно проследить и линейные неотектонические структуры различного ранга, приуроченные к глубинным линейным тектоническим структурам (рис. 2). В настоящее время уже не вызывает сомнения, что долины крупных рек следуют по зонам линейных тектонических нарушений различного ранга и различного простирания. Линейные тектонические нарушения определяют и план долин более низких порядков.

выводы

- 1. Используя морфометрический метод поиска тектонических структур, построена карта порядков долин Белорусского Поозерья;
- 2. Определены основные направления интерпретации карты порядков долин:
 - выявление тектонической активности территории;
 - прогнозирование неотектонических структур;
 - прослеживание неотектонически активных линейных зон;
- 3. Предполагается использование полученных результатов для дальнейших морфометрических построений. Карта порядков долин является исходной для создания карт базисных поверхностей различного порядка и вершинного рельефа.

Литература

- 1. *Корженевский А. А.* Некоторые результаты применения морфометрического метода выявления тектонических структур на территории СССР и перспективы его развития // Вопросы морфометрии. Вып. 3. 1971. С. 5–23.
- 2. *Философов В. П.* О значении порядков долин и водораздельных линий при геологогеографических исследованиях // Вопросы морфометрии. Вып. 2. 1967. С. 4–66.
- 3. *Философов В. П.* Основы морфометрического метода поисков тектонических структур. Саратов: Изд-во Сарат. ун-та, 1975. С. 232.
- 4. *Шляупа А*. Неотектоническая структура Литвы и сопредельной территории. Вильнюс: Институт геологии, 2001. С. 102.