<u>Алешкевич Н.Н.</u>¹, Будай А.Г.¹, Кныш В.П.¹, Малый С.В.², Юбко А.П.³

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ЭФФЕКТИВНОЙ ПОВЕРХНОСТИ РАССЕЯНИЯ ФАЗИРОВАННОЙ АНТЕННОЙ РЕШЕТКИ В ШИРОКОЙ ПОЛОСЕ ЧАСТОТ

¹Научно-исследовательское учреждение «Институт прикладных физических проблем имени А.Н.Севченко» Белорусского государственного университета.

²Белорусский государственный университет.

³Белорусский государственный университет информатики и радиоэлектроники. Минск, Республика Беларусь. anatbudai@gmail.com

Представлены результаты экспериментального исследования эффективной поверхности рассеяния фрагмента фазированной решетки с использованием разработанного аппаратно-программного комплекса. Исследовано влияние различных режимов работы ФАР на эффективную поверхность рассеяния.

Антенна является неотъемлемой частью любой приемо-передающей системы, при проектировании которой необходимо учитывать окружающую электромагнитную обстановку. Антенна, подключенная к приемопередатчику, может, как пассивный рассеиватель, иметь эффективную поверхность рассеяния (ЭПР) в десятки и сотни раз больше ее геометрической площади.

Характеристики согласования антенны со свободным пространством и приемноизмерительным трактом паспортизируются в рабочем диапазоне системы, а вне его они обычно неизвестны. ЭПР любой антенной системы, в том числе и фазированной антенной решетки (ФАР), состоит из двух составляющих. Одна, "антенная" составляющая, является следствием приема падающей на антенну электромагнитной волны и последующего ее переизлучения и зависит от коэффициента направленного действия антенны и ее согласования с приемным трактом. Вторая составляющая — чисто конструктивная, зависящая от механической конструкции антенны и используемых материалов. Знание этих характеристик необходимо при проектировании приемно-передающих систем с учетом условий электромагнитной совместимости. Определение же их зачастую проще осуществить экспериментально.

Для проведения экспериментальных исследований разработан специализированный измерительный комплекс, в состав которого входят: безэховая камера на основе широкополосного радиопоглощающего покрытия пирамидального типа «Универсал-1»; радиопоглощающие панели из радиопоглощающего покрытия ТОРА-39; слабоотражающая система система пространственной фиксации исследуемых образцов; векторный анализатор Vector Star VS4642B; комплект антенн П6-23B. Разработана методика проведения измерений образцов. Проведена оценка предельных размеров исследуемых объектов и диапазонов частот.

Разработанный измерительный комплекс является универсальным и предназначен для проведения антенных измерений, а также анализа эффективной поверхности рассеяния произвольных метало-диэлектрических объектов. С использованием комплекса возможно проведение исследования конечных фрагментов радиопоглощающих покрытий, частотноселективных и пространственно-поляризационных фильтров.

Ниже приведены результаты экспериментального исследования ЭПР плоского фрагмента Φ AP с размерами 40x9 см^{2.} (Рисунок 1).

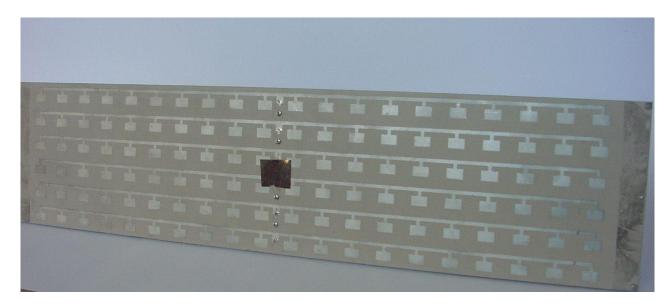


Рисунок 1 – Фрагмент фазированной антенной решетки.

Измерение ЭПР антенны проводились в диапазоне частот 2÷15ГГц.

Для калибровки и оценки точности измерений помимо фрагмента ФАР исследовалась ЭПР дополнительных объектов. В качестве объектов исследования были использованы:

- 1) ФАР с согласованной нагрузкой;
- 2) ФАР с разомкнутыми выходами;
- 3) плоская металлическая пластина с площадью равной площади поверхности ФАР;
- 4) металлический диск диаметром 200мм.

Так как для металлического диска известно точное решение задачи рассеяния, то используемая методика позволяет в результате измерений определять ЭПР всех объектов в абсолютных единицах, например, в ${\rm M}^2$.

ЭПР диска радиуса a для электромагнитного излучения с длиной волны λ равна [1]:

$$\delta = 4\pi^3 \frac{a^4}{\lambda^2} U(\lambda, a);$$

где $U(\lambda, \alpha)$ - энергетическая функция.

По относительным измерениям рассеяния диска и прямоугольной пластины определяется ЭПР последней.

Затем измеряются относительно ЭПР пластины ЭПР согласованной и несогласованной Φ AP.

Результаты измерений и расчетов приведены в таблице 1.

Таблица 1.

Эффективная поверхность рассеяния образцов.

Частота ГГц	ЭПР диск м ²	Пластина м ²	Φ AP соглас. м ²	ФАР КЗ, м ²
1,9÷2,0	0,44	0,58	0,60	0,60
3,83÷3,93	1,87	1,62	1,69	1,68
4,77÷4,87	3,13	3,20	3,50	3,60
7,0÷7,1	6,74	9,9	9,8	9,7
9,0÷9,1	11,4	16,4	10,8	15,8
9,55÷9,75	13,1	18,8	7,4	18,1
10,0÷10,1	14,1	20,2	9,8	21,3
11,0÷11,1	17,0	24,3	2	25,0
15,0÷15,1	31,0	45,4	46,0	45,3

Анализ представленных результатов показывает, что вне рабочего диапазона антенны, ЭПР ФАР практически не отличается от максимального зеркального отражения металлической пластины. В рабочем же диапазоне (9,45 - 9,75 ГГц) ЭПР относительно отражения от металлической пластины падает на 4 - 5дБ. Для идеальной антенны КСВН < 1,2 это значение должно составить в районе 20дБ. То есть для данного элемента ФАР рассеяние ЭМВ осуществляется преимущественно пассивными элементами антенны.

Таким образом, разработанный измерительный комплекс и методики обработки результатов позволяют измерять абсолютные значения ЭПР объектов и могут эффективно использоваться при разработке и анализе радиопоглощающих покрытий в комплексе с системами компьютерного моделирования [2].

Список литературы

- 1. Кобак В.О. Радиолокационные отражатели. М.: Советское радио, 1975. 348 с.
- 2. Будай А.Г., Кныш В.П., Малый С.В. Комплексная методика расчета электродинамических параметров радиопоглощающих покрытий // Материалы Международной научной конференции ИРЭМВ-2005 «Излучение и рассеяние электромагнитных волн». Таганрог, 2005. С.327-329.