4. Chakrabarty R. K., Barhan K. K., Basu A. Nonlinear I-V characteristics near the percolation threshold // Phys. Rev. B. 1991. Vol. 44. No 13. P. 6773–6779.

5. *Макаревич А. В.,. Банный В. А.* Радиопоглощающие полимерные композиционные материалы в технике СВЧ (обзор) // Материалы-технологии-инструменты. 1999. Т.4. № 3. С.24–32.

6. Тихонов А. И. Силовые резисторы. / М.: Энергоатомиздат. 1991. 256 с.

7. Гаськова, А. М., Румянцев М. Н. Выбор материалов для твердотельных газовых сенсоров // Неорганические материалы. 2000. Т. 36, № 3. С. 369–378.

8. Stephen W., Kenkel S. W., Joseph P., Straley J. Percolation theory of nonlinear circuit elements // Physical review letters. Vol. 49. 13 Sep. 1982. No. 11.

9. Straley J. P., Kenkel S. W. Percolation theory for nonlinear conductors // Physical review B. Vol. 29. No. 11.

- Outsuki T., Keyes T. Conduction in random networks of super-normal conductors: geometrical interpretation and enhancement of nonlinearity // J.Phys. A: Math. Geh. 17 (1984) L559–L563.
- 11. *Stroud D., Hui P. M.* Nonlinear susceptibilities of granular matter // Physical Review B. Vol. 37. No. 15. 15 May 1988-2.
- Ахвердов И. Н., Потоцкий И. В., Проневич И. И. Влияние дисперсности и концентрации токопроводящей фазы на электрофизические свойства спеченных композиций кремний стекло // Весці Акад. навук Беларусі. Сер. фіз.-тэх. навук. 1996. № 4. С. 291–296.
- 13. Ахвердов И. Н., В.И. Зубко В. И., И.В. Потоцкий И. В., И.И. Проневич И. И. Композиционный резистивный материал на основе кремния // Весці Акад. навук Беларусі. Сер. фіз.-тэх. навук. 1996. № 3.
- 14. Impedance spectroscopy: emphasizing solid materials and systems / Ed. *J. R. Macdonald.* –New York: A Wiley-Interscience publication. 1987. 346 p.

ЭЛЕМЕНТНЫЙ СОСТАВ И МЕХАНИЧЕСКИЕ СВОЙСТВА УГЛЕРОДНЫХ И МЕТАЛЛ-УГЛЕРОДНЫХ ПОКРЫТИЙ, ФОРМИРУЕМЫХ ПЛАЗМО-УСИЛЕННЫМ ХИМИЧЕСКИМ ВАКУУМНЫМ ОСАЖДЕНИЕМ (РЕСVD)

В. В. Углов, А. К. Кулешов, М. В. Новицкая

Введение

Аморфные алмазоподобные углеродные пленки (a-C:H) имеют необычные физические и механические свойства, которые изменяются в широких пределах в зависимости от структурного состояния [1–2].

В данной работе исследовались твердость и трибологические свойства, соотношения sp^2/sp^3 типов углеродных связей в зависимости от элементного состава Cu/a-C:Н пленок, сформированых с использованием плазмо-усиленного химического вакуумного осаждения при распылении медной мишени в смеси реактивных газов Ar+C₂H₂.

1.1. Методика эксперимента

Для нанесения композитных (a-C:H,Cu) и a-C:H пленок на подложки монокристаллического кремния с ориентацией (100) использовался плазменный реактор основанный на распределенном микроволновом газовом разряде. В реакторе обеспечивались условия для активации электрон-циклотронного резонанса с частотой 2.45 ГГц мощностью до 200 Вт. Общая интенсивность тока, приходящая на мишень из меди изменялась от 0.25 до 0.15 А в зависимости от концентрации C_2H_2 в смеси газов. На держатель образцов подавался плавающий потенциал, давление в вакуумной камере было 0.13 Па.

Анализ толщины и состава пленок проводился с помощью Резерфордовского обратного рассеяния (РОР) с использованием α-частиц с энергией 2 МэВ и протонов с энергией 1 МэВ. Результаты этих исследований показали, что толщина (a-C:H,Cu) пленок варьировалась в интервале 300–550 нм.

Фрикционные испытания пленок по методу "палец-поверхность" проводились на трибометре ТАУ-1М в условиях сухого трения. Скорость движения столика с образцом составляла 4 мм/с, закругленный индентор был выполнен из твердого сплава ВК8 (твердость 87.5 HRC), нагрузка при испытаниях составляла 1 Н.

1.2. Экспериментальные результаты и их обсуждение

Концентрация атомов меди, углерода, водорода в пленках a-C:H,Cu в зависимости от содержания C₂H₂ в смеси газов определенная с использованием метода РОР представлена на рис.1.

Наблюдается практически прямо пропорциональная зависимость концентрации углерода в пленке от содержания C_2H_2 в реактивной газовой смеси. Одновременно с ростом содержания C_2H_2 происходит пропорциональное уменьшение концентрации меди в пленке и увеличение содержания водорода до концентрации C_2H_2 70–100 %.

Изменение коэффициента трения a-C:H, Cu и a-C:H пленок в процессе трибологических испытаний в зависимости от их состава представлены на рис.2. Зависимости коэффициента трения от пути трения медной пленки и a-C:H,Cu пленок с концентрацией углерода до 18 ат.% подобны и имеют три области изменения. Первая об-ласть соответствует интервалу пути трения от 0 до 2 м. В этой области коэффициент трения линейно растет с увеличением пути трения. При этом движение индентора, как показали исследования с помощью оптического микроскопа (рис.3, 1 м), происходит только в медной пленке.

Рис. 1. Состав а-С:Н, Си пленок, осажденных РЕСVD методом с различной концентрацией С₂H₂ в газовой фазе. Состав а-С:Н пленки (*)

Рис. 2. Зависимость коэффициента трения от пути трения для Сu-C:Н пленок

Начальное значение коэффициента трения для рассматриваемых пленок составляет величину 0.15–0.20. Увеличение коэффициента трения с ростом пути трения определяется увеличением площади фактического контакта индентора и пленки за счет постепенного проникновения круглой поверхности индентора вглубь пленки.

Интервал пути трения от 2 до 4 м, когда коэффициент трения имеет постоянное значение, то это соответствует скольжению индентора в переходном слое пленка-кремний (рис.3, 3 м). Для пути трения от 6 м и выше коэффициент трения имеет разброс значений. Эта область соответствует трению индентора в Si (рис.3, 6 м).

Увеличение концентрации углерода в а-С:Н,Си пленках в интервале 23–29 ат.% приводит к уменьшению до 0.1 начального коэффициента трения (рис. 4.).

Не наблюдается резкой границы между 2 и 3 областью трения. Оптические фотографии треков износа (рис.5, 1м) показывают, что для начальной области трения имеет место частичное расслоение пленки. При дальнейшем трении (рис.5, 4м)

Рис. 3. Фотографии треков износа для Си-С:Н пленок с содержанием углерода 13.1 ат.% в зависимости от пути трения.

Рис. 4. Зависимость коэффициента трения от пути трения для Cu-C:H пленок.

Рис. 5. Фотографии треков износа для Си-С:Н пленок с содержанием углерода 29.4 ат.% в зависимости от пути трения.

трек износа имеет более заглаженную поверхность. Как известно [3], причиной низкого коэффициента трения для а-С:Н пленок является формирование на трибоконтакте графитовой пленки с низким сдвиговым напряжением.

При концентрации углерода 55 ат.% и выше в композитных пленках происходит уменьшение износостойкости пленки. Границы треков износа имеют острые края и трещины, что характетно при износе твердых и хрупких пленок, обладающих низкой адгезий к подложке

Выводы

Из анализа совокупности полученных данных следует, что при росте концентрации углерода до 18,3 ат.% нет существенного отличия в трибологическом поведении медной и композитной пленки. В интервале концентраций углерода 23–29 ат.% начальный коэффициент трения пленок уменьшается в 1.5 раза, износостойкость увеличивается более чем в 2 раза.

При концентрации углерода в пленке углерода более 55 ат. %, увеличивается твердость и хрупкость композитных пленок, уменьшается их адгезионная прочность и износостойкость.

Литература

- 1. *Robertson J.* Ultrathin carbon coating for magnetic storage technology. Thin Solid Films. 2001. No. 383. P. 81–88.
- 2. *Feng B., Cao D. M., Meng W. G., Rehn L. E., Baldo M. E., Doll G. L.* Probing for mechanical and tribological anomalies in the TiC/amorphous hydrocarbon nanocomposite coating system. Thin Solid Films. 2001. No. 398–399. P. 210–216.
- 3. *Li K. Y., Zhou Z. F., Chan C.Y., Bello I., Lee C. S., Lee S. C.* Mechanical and tribological properties of diamond-like carbo film preparated on steel by ECR-CVD process. Diamond and Related Materials. 2001. No. 10. P. 1855–1861.