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PREFACE

The Eleventh International Conference “Computer Data Analysis and Modeling:
Theoretical and Applied Stochastics” (CDAM’2016) organized by the Belarusian State
University on September 6-10, 2016, is devoted to the topical problems in computer
data analysis and modeling. Statistical methods of computer data analysis and model-
ing are widely used in variety of fields: computer support of scientific research; decision
making in economics, business, engineering, medicine end ecology; statistical modeling
of complex systems of different nature and purpose. In the Republic of Belarus com-
puter data analysis and modeling have been developed successfully for the last 35 years.
Scientific conferences CDAM were held in September 1988, December 1990, December
1992, September 1995, June 1998, September 2001, September 2004, September 2007,
September 2010, and September 2013 in Minsk.

The Proceedings of the CDAM’2016 contain 81 papers. The topics of the papers
correspond to the following scientific problems: robust and nonparametric statistical
analysis of time series and forecasting, multivariate data analysis, statistical classi-
fication and pattern recognition, signal processing, statistical modeling, modeling of
complex systems in different applications, statistics in economics, finance and other
fields, software for data analysis and statistical modeling.

The Organizing Committee of the CDAM2016 makes its acknowledgements to Be-
larusian State University, Research Institute for Applied Problems of Mathematics
and Informatics, Belarusian Republican Foundation for Fundamental Research, Vi-
enna University of Technology, software company “ITransition”, Belarusian Science
and Technology Association “Infopark”, and the CDAMCSS project within the OeAD’s
programme IMPULSE for financial support.

S. Aivazian
P. Filzmoser
Yu. Kharin
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Minkevičius S., Greičius E. On the Inequality in Open Multiserver Queueing
Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Pavlova O.S., Malugin V.I., Ogurtsova S.E., Novopoltsev A.Yu.,
Byk I.S., Gorbat T.V., Liventseva M.M., Mrochek A.G. Computer
Analysis of Essential Hypertension Risk on the Base of Genetic and Environ-
mental Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

9



Sergeev R.S., Kavaliou I.S., Tuzikov A.V., Sprindzuk M.V. Bioinformatics
Analysis of M.TUBERCULOSIS Whole-Genome Sequences . . . . . . . . . . . . . . . . . 300

Starodubtsev I.E. Fractal Dimension as a Characteristic of Biological Cell AFM
Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

Varlamov O.O., Danilkin I.A.Knowledge Representation and Reasoning. Mivar
Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

10



PLENARY LECTURES

11



A RANK-SUM TEST FOR CLUSTERED DATA
WHEN THE NUMBER OF SUBJECTS IN A

GROUP WITHIN A CLUSTER IS
INFORMATIVE

Somnath Datta1, Sandipan Dutta2

1Department of Biostatistics, University of Florida
2Department of Bioinformatics and Biostatistics, University of Louisville

1Gainesville and 2Louisville, USA
e-mail: 1somnath.datta@ufl.edu, 2sandipan.dutta@louisville.edu

Abstract

The Wilcoxon rank-sum test is a popular nonparametric test for comparing
two independent populations (groups). In recent years, there have been renewed
attempts in extending the Wilcoxon rank sum test for clustered data, one of
which [1] addresses the issue of informative cluster size, i.e., when the outcomes
and the cluster size are correlated. We are faced with a situation where the group
specific marginal distribution in a cluster depends on the number of observations
in that group (i.e., the intra-cluster group size). We develop a novel extension of
the rank-sum test for handling this situation. We compare the performance of
our test with the Datta-Satten test, as well as the naive Wilcoxon rank sum test.
Using a naturally occurring simulation model of informative intra-cluster group
size, we show that only our test maintains the correct size. We also compare our
test with a classical signed rank test based on averages of the outcome values
in each group paired by the cluster membership. While this test maintains the
size, it has lower power than our test. Extensions to multiple group comparisons
and the case of clusters not having samples from all groups are also discussed.
We apply our test to determine whether there are differences in the attachment
loss between the upper and lower teeth and between mesial and buccal sites of
periodontal patients.
Keywords: correlated data, dental data, nonparametric tests, Wilcoxon rank-
sum test, within-cluster resampling

References
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THE SPATIAL SIGN COVARIANCE MATRIX
AND ITS APPLICATION FOR ROBUST

CORRELATION ESTIMATION

A. Dürre1, R. Fried2, D. Vogel3
1,2Fakultät Statistik, Technische Universität Dortmund

Dortmund, GERMANY
3Institute for Complex Systems and Mathematical Biology, University of Aberdeen

Aberdeen, UNITED KINGDOM
e-mail: 1alexander.duerre@udo.edu

Abstract

We summarize properties of the spatial sign covariance matrix and especially
look at the relationship between its eigenvalues and those of the shape matrix
of an elliptical distribution. The explicit relationship known in the bivariate
case was used to construct the spatial sign correlation coefficient, which is a
non-parametric and robust estimator for the correlation coefficient within the
elliptical model. We consider a multivariate generalization, which we call the
multivariate spatial sign correlation matrix.

1 Introduction

Let X1, . . . ,Xn denote a sample of independent p dimensional random variables from
a distribution F and s : Rp → Rp with s(x) = x/|x| for x ̸= 0 and s(0) = 0 the spatial
sign, then

Sn(tn,X1, . . . ,Xn) =
1

n

n∑
i=1

s(Xi − tn)s(Xi − tn)
′

denotes the empirical spatial sign covariance matrix (SSCM) with location tn. The
canonical choice for the location estimator tn is the spatial median

µn = argmin
µ∈Rp

n∑
i=1

||Xi − µ||.

Beside its nice robustness properties like an asymptotic breakdown-point of 1/2, it
has (under regularity conditions, see [12]) the advantageous feature that it centres the
spatial signs, i.e.,

1

n

n∑
i=1

s(Xi − µn) = 0,

so that Sn(µn,X1, . . . ,Xn) is indeed the empirical covariance matrix of the spatial
signs of the data. If tn is (strongly) consistent for a location t ∈ R, it was shown
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in [5] that under mild conditions on F the empirical SSCM is a (strongly) consistent
estimator for its population counterpart

S(X) = E(s(X− t)s(X− t)′).

There are some nice results if F is within the class of continuous elliptical distributions,
which means that F possesses a density of the form

f(x) = det(V )−
1
2 g((x− µ)V −1(x− µ))

for a location µ ∈ Rp, a symmetric and positive definite shape matrix V ∈ Rp×p

and a function g : R → R, which is often called the elliptical generator. Prominent
members of the elliptical family are the multivariate normal distribution and elliptical
t-distributions (e.g. [2], p. 208). If second moments exists, then µ is the expectation
of X ∼ F , and V a multiple of the covariance matrix. The shape matrix V is unique
only up to a multiplicative constant. In the following, we consider the trace-normalized
shape matrix V0 = V/tr(V ), which is convenient since S(X) also has trace 1. If F is
elliptical, then S(X) and V share the same eigenvectors and the respective eigenvalues
have the same ordering. For this reason, the SSCM has been proposed for robust prin-
cipal component analysis (e.g. [13, 15]). In the present article, we study the eigenvalues
of the SSCM.

2 Eigenvalues of the SSCM

Let λ1 ≥ . . . ≥ λp ≥ 0 denote the eigenvalues of V0 and δ1 ≥ . . . ≥ δp ≥ 0 those of S(X).
Explicit formulae that relate the δi to the λi are only known for p = 2 (see [19, 3]),
namely

δi =

√
λi√

λ1 +
√
λ2
, i = 1, 2. (1)

Assuming λ2 > 0, we have δ1/δ2 =
√
λ1/λ2 ≤ λ1/λ2, thus the eigenvalues of the SSCM

are closer together than those of the corresponding shape matrix. It is shown in [8]
that this holds true for arbitrary p > 2, so

λi/λj ≥ δi/δj for 1 ≤ i < j ≤ p (2)

as long as λj > 0. There is no explicit map between the eigenvalues known for p > 2.
Dürre et al. [8] give a representation of δi as one-dimensional integral, which permits
fast and accurate numerical evaluations for arbitrary p,

δi =
λi
2

∫ ∞

0

1

(1 + λix)
∏p

j=1(1 + λjx)
1
2

dx, i = 1, . . . , p. (3)

We use this formula (implemented in R [17] in the package sscor [9]) to get an impression
how the eigenvalues of S(X) look like in comparison to those of V0. We first look at of
equidistantly spaced eigenvalues

λi =
2i

p(p+ 1)
, i = 1, . . . , p,

14
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Figure 1: Eigenvalues of the SSCM wrt the corresponding eigenvalues of the shape
matrix in the equidistant setting p = 3 (left), p = 11 (centre) and p = 101 (right).
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Figure 2: Eigenvalues of the SSCM wrt the corresponding eigenvalues of shape matrix
in the setting of one large eigenvalue for p = 3 (left), p = 11 (centre) and p = 101
(right).

for different p = 3, 11, 101. The magnitude of the eigenvalues necessarily decreases
as p increases, since

∑p
i=1 λi =

∑p
i=1 δi = 1 per definition of V0 and S(X). As one can

see in Figure 1, the eigenvalues of S(X) and V0 approach each other for increasing p.
In fact the maximal absolute difference for p = 101 is roughly 2 · 10−4. In the second
scenario, we take p − 1 equidistantly spaced eigenvalues and one eigenvalue 5 times
larger than the rest, i.e.,

λi =


i

p((p+1)/2+5)−5
i = 1, . . . , p− 1,

5(p−1)
p((p+1)/2+5)−5

i = p.

This models the case where the dependence is mainly driven by one principle compo-
nent. As one can see in Figure 2, the distance between the two largest eigenvalues is
smaller for S(X) than for V0. This is not surprising in light of (2). Thus in general,
the eigenvalues of the SSCM are less separated than those of V0, which is one reason
why the use of the SSCM for robust principal component analysis has been questioned
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(e.g. [1, 14]). However, the differences appear to be generally small in higher dimen-
sions.

3 Estimation of the correlation matrix

Equation (1) can be used to derive an estimator for the correlation coefficient based
on the empirical SSCM: the spatial sign correlation coefficient ρn ( [6]). Under mild
regularity assumptions this estimator is consistent under elliptical distributions and
asymptotically normal with variance

ASV(ρn) = (1− ρ2)2 +
1

2
(a+ a−1)(1− ρ2)3/2, (4)

where a =
√
v11/v22 is the ratio of the marginal scales and ρ = v12/

√
v11v22 is the

generalized correlation coefficient, which coincides with the usual moment correlation
coefficient if second moments exists. Equation (4) indicates that the variance of ρn is
minimal for a = 1, but can get arbitrarily large if a tends to infinity or 0.

Therefore a two-step procedure has been proposed, the two-stage spatial sign cor-
relation ρσ,n, which first normalizes the data by a robust scale estimator, e.g., the
median absolute deviation (mad), and then computes the spatial sign correlation of
the transformed data. Under mild conditions (see [7]), this two-step procedure yields
an asymptotic variance of

ASV(ρσ,n) = (1− ρ2)2 + (1− ρ2)3/2, (5)

which equals that of ρn for the favourable case of a = 1. Since (5) only depends on
the parameter ρ, the two-stage spatial sign correlation coefficient is very suitable to
construct robust and non-parametric confidence intervals for the correlation coefficient
under ellipticity. It turns out that these intervals are quite accurate even for rather
small sample sizes of n = 10 and in fact more accurate then those based on the sample
moment correlation coefficient [7].

One can construct an estimator of the correlation matrix R by filling the off-diagonal
positions of the matrix estimate with the bivariate spatial sign correlation coefficients
of all pairs of variables. This was proposed in [6]. Equation (3) allows an alternative
approach: First standardize the data by a robust scale estimator and compute the
SSCM of the transformed data. Then apply a singular value decomposition

Sn(tn,X1, . . . ,Xn) = Û∆̂Û ′,

where ∆̂ contains the ordered eigenvalues δ̂1 ≥ . . . ≥ δ̂p. One obtains estimates

λ̂1, . . . , λ̂p by inverting (3). Although theoretical results are yet to be established,
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we found in our simulations that the following fix point algorithm

λ̂
(0)
i = δi, i = 1, . . . , p,

λ̃
(k+1)
i = 2δ̂i

(∫ ∞

0

1

(1 + λ̂
(k)
i x)

∏p
j=1(1 + λ̂

(k)
j x)

1
2

dx,

)−1

, i = 1, . . . , p, k = 1, 2, . . .

λ̂
(k+1)
i = λ̃

(k+1)
i

(
p∑

j=1

λ̃j
(k+1)

)−1

, i = 1, . . . , p, k = 1, 2, . . .

works reliably and converges fast. Let Λ̂ denote the diagonal matrix containing
λ̂1, . . . , λ̂p, then V̂ = Û Λ̂Û ′ is a suitable estimator for for the shape of the standardized

data and R̂ with r̂ij = v̂ij/
√
v̂iiv̂jj an estimator for the correlation matrix, which we call

the multivariate spatial sign correlation matrix. Contrary to the pairwise approach, the
multivariate spatial sign correlation matrix is positive semi-definite by construction.

Theoretical properties of the new estimator are not straightforward to establish. By
a small simulation study we want to get an impression of its efficiency. We compare the
variances of the moment correlation, the pairwise as well as the multivariate spatial sign
correlation under several elliptical distributions: normal, Laplace and t distributions
with 5 and 10 degrees of freedom. The latter three generate heavier tails than the
normal distribution. The Laplace distribution is obtained by the elliptical generator
g(x) = cp exp(−

√
|x|/2), where cp is the appropriate integration constant depending

on p (e.g. [2], p. 209).
We take the identity matrix as shape matrix and compare the variances of an off-

diagonal element of the matrix estimates for different dimensions p = 2, 3, 5, 10, 50
and sample sizes n = 100, 1000. We use the R packages mvtnorm [10] and MNM [16]
for the data generation. The results based on 10000 runs are summarized in Table 1.

Except for the moment correlation at the t5 distribution, the results for n = 100 and
n = 1000 are very similar. Note that the variance of the moment correlation decreases
at the Laplace distribution as the dimension p increases, but not so for the other
distributions considered. The lower dimensional marginals of the Laplace distribution
are, contrary to the normal and the t-distributions, not Laplace distributed (see [11]),
and the kurtosis of the one-dimensional marginals of the Laplace distribution in fact
decreases as p increases.

Equation (5) yields an asymptotic variance of 2 for the pairwise spatial sign corre-
lation matrix elements regardless of the specific elliptical generator, which can also be
observed in the simulation results. The moment correlation is twice as efficient under
normality, but has a higher variance at heavy tailed distributions. For uncorrelated t5
distributed random variables, the spatial sign correlation outperforms the moment cor-
relation. Looking at the multivariate spatial sign correlation, we see a strong increase
of efficiency for larger p. For p = 50 the variance is comparable to that of the moment
correlation. Since the asymptotic variance of the SSCM does not depend on the ellipti-
cal generator, this is expected to also hold for the multivariate spatial sign correlation,
and we find this confirmed by the simulations. The multivariate spatial sign correla-
tion is more efficient than the moment correlation even under slightly heavier tails for
moderately large p.
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n 100 1000
p 2 3 5 10 50 2 3 5 10 50

N
cor 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
sscor pairwise 1.9 1.9 1.9 1.9 1.9 2.0 2.0 2.0 2.0 2.0
sscor multivariate 1.9 1.6 1.4 1.2 1.0 2.0 1.7 1.4 1.2 1.0

t10

cor 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4 1.3
sscor pairwise 2.0 1.9 1.9 2.0 1.9 2.0 2.0 2.0 2.0 2.0
sscor multivariate 2.0 1.7 1.3 1.2 1.0 2.0 1.7 1.4 1.2 1.0

t5

cor 2.0 2.1 2.1 2.1 2.1 2.6 2.6 2.6 2.6 2.6
sscor pairwise 2.0 2.0 1.9 2.0 1.9 2.1 2.0 2.0 2.0 2.0
sscor multivariate 2.0 1.7 1.4 1.2 1.1 2.1 1.7 1.4 1.2 1.0

L
cor 1.6 1.5 1.3 1.2 1.1 1.6 1.5 1.3 1.2 1.1
sscor pairwise 1.9 1.9 1.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0
sscor multivariate 1.9 1.6 1.4 1.2 1.1 2.0 1.7 1.4 1.2 1.1

Table 1: Simulated variances (multiplied by
√
n) of one off-diagonal element of the

correlation matrix estimate based on the moment correlation (cor), the pairwise spatial
sign correlation (sscor pairwise) and the multivariate spatial sign correlation matrix
(sscor multivariate) for spherical normal (N), t5, t10, and Laplace (L) distribution,
several dimensions p and sample sizes n = 100, 1000.

An increase of efficiency for larger p is not uncommon for robust scatter estimators.
It can be observed amongst others forM -estimators, the Tyler shape matrix, the MCD,
and S-estimators (e.g. [4, 18]). All of these are affine equivariant estimators, requiring
n > p. This is not necessary for the spatial sign correlation matrix. One may expect
that the efficiency gain for large p is at the expense of robustness, in particular a
larger maximum bias curve. Further research will be necessary to thoroughly explore
the robustness properties and efficiency of the multivariate spatial sign correlation
estimator.
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Abstract

We discuss some models for the statistical analysis of binary and count time
series based on generalized linear models methodology. We outline the meth-
ods and tools needed for studying such models and we develop maximum likeli-
hood estimation theory and diagnostics. The theory is extended to the general
framework of time series following generalized linear models. Several real data
examples complement the presentation.
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Abstract

The problem of implementation of the Poisson-Gaussian regression models in
empirical Bayesian estimation of the small probabilities is considered. A boot-
strap method using Monte-Carlo simulation is proposed. The method is applied
to real-world USA cancer data combined with some possible regression variables,
assuming they may have influence on the actual cancer data.

1 Introduction

Let us consider the problem of probability estimation of rare events in large populations
(e.g., probabilities of some disease, homicides, suicides, etc.). The respective number
of events depends on the population size and on the probability of a single event. Let
us assume that probability of a single event depends only on population and these
probabilities are the same in the same population. Moreover, assume that all events
in all populations are independent. Under such assumptions number of events in each
population will follow the Bernoulli distribution.

An event count refers to the number of times an event occurred in specific popula-
tion. The benchmark model for count data is the Poisson distribution.

The Poisson distribution is the simplest distribution for modeling count data. How-
ever, it has one obvious limitation: its variance is equal to its mean. In case of real
data we usually have so-called overdispersion: empirical variance is significantly bigger
than empirical mean. In this case we can add some independent mixing distribution
which increases variance of the combined distribution. By selecting parameters of the
mixing distribution we can adjust the mean and the variance of the combined distri-
bution to the empirical mean and the empirical variance of the real data. The simplest
model adds gamma distribution to the Poisson distribution. The resulting distribu-
tion is known as negative binomial distribution or Poisson-gamma distribution. This
distribution is more dispersed than the Poisson distribution. Obviously, negative bino-
mial distribution can accommodate overdispersion but not underdispersion. There are
many generalizations of the Poisson distributions (see, e.g., [2], [3], [6]).

Count data regression models have a widespread use (see, e.g., [2], [6]). The mean
parameter of the Poisson-gamma model is usually parametrized using exponential link
function of the regressors, in order to ensure that mean parameter is strictly greater
than zero. As an alternative to the Poisson-gamma distribution, we will consider
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Poisson-Gaussian distribution (see, e.g., [7], [8]). In this case the additional link func-
tion is not needed, and adding regression variables is very simple and clear. However,
the calculations using Poisson-Gaussian model are much more complicated, and we
need to use Hermite-Gauss numerical integration formulae (see, e.g. [1]).

2 Mathematical models

Let observed number of events {Yj} = Yj, j = 1, . . . , K, be a sample of indepen-
dent random variables {Yj} with binomial distribution, respectively, with number of
experiments {Nj} and success probabilities {λj}. Clearly, {E(Yj)}={λjNj}.

An assumption is often made (see, e.g., [5], [8]) that random variables {Yj} have a
Poisson distribution with parameters, respectively, {λjNj}, i.e.

P{Yj = m} = h(m, λjNj), m = 0, 1, . . . , j = 1, . . . , K,

where

h(m, z)= e−z z
m

m!
, m = 0, 1, . . . , z > 0.

We will consider the mathematical model assuming that unknown probabilities {λj}
are independent identically distributed random variables with distribution function F
from the certain class of distribution functions F . Our problem is to get empirical Bayes
estimates (see, e.g., [4]) of unknown probabilities {λ̂j} from the observed number of
events {Yj}, assuming that F ∈ F .

Poisson-gamma model. Given population sizes {Nj}, let random variables {Yj}
have a Poisson distribution with parameters, respectively, {λjNj}, where {λj} are
independent identically distributed gamma random variables with shape parameter
ν > 0 and scale parameter α > 0, i.e. the distribution function F has the distribution
density

f(x) = f(x; ν, α) =
α · (α · x)ν−1

Γ(ν)
e−αx, 0 ≤ x <∞ .

Then E(λj) = ν/α, and E(λj−E(λj))
2 = ν/α2, j = 1, . . . , K. Given observed number

of events {Yj} and population sizes {Nj}, Bayes estimates for {λj} are (see, e.g. [5])

E(λj | Yj = Yj) =
Yj + ν

Nj + α
, j = 1, . . . , K. (1)

Corresponding maximum likelihood function for parameters (ν, α) is

L(ν, α) =
K∑
j=1

(
ln

Γ(Yj + ν)

Γ(ν)
+ ν ln(α)−

−(Yj + ν) ln(Nj + α) + Yj lnNj

)
. (2)

Empirical Bayes estimates {λ̂j} are obtained by maximizing (2) and replacing param-
eters (ν, α) in (1) with obtained parameters (ν̂, α̂).
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Poisson-Gaussian model. Alternatively, we will consider Bayes estimate {λ̃j},
which is obtained under assumption that unknown probabilities are i.i.d. r.v.’s such
that their logits αj = ln(λj/(1− λj)), j = 1, 2, . . . , K, are i.i.d. Gaussian r.v.’s with
mean µ and variance σ2 and corresponding distribution density φµ,σ2 .

Poisson-Gaussian model with regression variables. Additionally, let us
introduce an auxiliary regression variables {Zj}(s), s = 1, . . . ,M , assuming that

µ(j) = µ0 + µ1Z
(1)
j + µ2Z

(2)
j + · · · + µMZ

(M)
j , j = 1, 2, . . . , K (for our purposes we

consider only simplified model without interactions of the regression variables). These
variables are considered non-random, so all formulae for Poisson-Gaussian model hold
also for Poisson-Gaussian model with regression variables.

In the case of both Poisson-Gaussian models conditional expectation of {λj} has
the following form:

E(λj | Yj = Yj) = D−1
j (µ(j), σ2)

∞∫
−∞

1

1 + e−x
h

(
Yj,

Nj

1 + e−x

)
φµ(j),σ2(x) dx,

j = 1, . . . , K,

where

Dj(µ(j), σ
2) =

∞∫
−∞

h

(
Yj,

Nj

1 + e−x

)
φµ(j),σ2(x) dx,

j = 1, . . . , K.

3 Implementation of the Poisson-Gaussian regres-

sion model

To demonstrate the implementation of the Poisson-Gaussian regression model the main
intention of data selection was to select freely available datasets, preferably of certain
relatively large population, from the trusted databases. We have selected real data
from the database of the USA National Cancer Institute, years 2011 and 2012, number
of administrative territories (states) K = 50, 23 datasets in total. Also we have used
population data by administrative territories from the United States Census Bureau.

As a basis for the regression variables we have used corresponding real data by ad-
ministrative territories (states) from the Health Indicators Warehouse of the USA Cen-
ter for Disease Control and Prevention. We have analysed three of possible regression
variables, assuming they may have influence on the actual cancer data: (1) “Depression
Medicare beneficiaries”, (2) “High cholesterol Medicare beneficiaries”, (3) “Toxic chem-
icals (pounds)”.

For each dataset we have performed Monte-Carlo computer simulation of (typi-
cally) 100 independent realizations using both Poisson-gamma and Poisson-Gaussian
models with corresponding parameters estimated from the real data (assuming that
there are no regression). At the next stage we estimated (using maximum likelihood
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method) Poisson-Gaussian model parameters without regression variables, and, alter-
natively, Poisson-Gaussian model parameters with selected regression variables. In the
process, corresponding values of the maximum likelihood function were obtained. This
procedure was applied to the real data, and to the 100 simulated realizations (either
Poisson-gamma model realizations or Poisson-Gaussian model realizations).

The key point of this method is comparing difference of values of maximum like-
lihood function (for model with regression variables and for model without regression
variables) for the real data with analogous differences for simulated realizations. Be-
cause simulated realizations have no influence of regression variables, they only have
small random differences of values of maximum likelihood function, which main char-
acteristics can be easily calculated. As a simple method, we can apply 3σ rule to detect
presence of the regression variables.

As expected, the simulation results did not show significant difference of simulation
using Poisson-gamma and Poisson-Gaussian models. Implementing the simple 3σ rule,
we have found that for datasets 4, 9, 10, 16, 18 it is recommended to use regression
variable “High cholesterol Medicare beneficiaries” for empirical Bayes estimation. For
datasets 2, 9, 10, 16 it is recommended to use regression variable “Depression Medi-
care beneficiaries” for empirical Bayes estimation. As for regression variable “Toxic
chemicals (pounds)” (combined with population size or with area size), we did not find
influence of this variable.
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Abstract

Poisson and Binomial conditional autoregressive model of spatio-temporal
data is presented. Asymptotic properties of the maximum likelihood estimators
of parameters for both conditional autoregressive models of spatio-temporal data
are studied: asymptotic normality is proved and the asymptotic covariance ma-
trix is found for the estimators, statistical tests on the values of true unknown
parameters are constructed. Results of computer experiments on simulated and
real data are given.

1 Introduction

Studying the probabilistic models of spatio-temporal data is a new topical scientific
direction. Statistical analysis and modeling of spatio-temporal data is a challenging
task [1]- [5].

Models based on spatio-temporal data become widely used for solving practical
problems in meteorology, ecology, economics, medicine and other fields. In [5] spatio-
temporal model is used to analyse daily precipitation for 71 meteorological stations
over 60 years in Austria. Bayesian spatio-temporal model is applied to predict cancer
cases in [1].

2 Conditional autoregressive models

Introduce the notation: (Ω, F,P) is the probability space; S = {1, 2, . . . , n} is the set
of indexed spatial regions or space locations (let us call them sites), into which the
analyzed spatial area is partitioned; n is number of sites; t ∈ Z is discrete time; T is
the length of observation period; xs,t is a discrete random variable at time t at site s;
U (s) ⊆ S is a subset of neighbors of site s; F<t = σ{xu,τ : u ∈ S, τ < t} ⊂ F is the
σ-algebra generated by the indicated in braces random variables; {φk(t) : 1 ≤ k ≤ K}
is a given set of K ∈ N basic functions which determine a trend; L{·}, E {·}, D {·} and
cov {·} are the symbols of probability distribution law of random variable, expecta-
tion, variance and covariance respectively; Π(λ) is the Poisson probability distribution
with the parameter λ > 0; Bi(N, p) is the binomial probability distribution with the
parameters N ∈ N and 0 ≤ p ≤ 1.
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We construct the Poisson conditional autoregressive model for spatio-temporal data
{xs,t}, as in [3, 4]:

L{xs,t|F<t} = Π(λs,t),

lnλs,t = asxs,t−1 +
∑

j∈U(s)

bs,jxj,t + βszs,t +
K∑
k=1

γs,kφk(t), t ∈ Z, s ∈ S,

U (1) ≡ ∅, U (s) ⊆ {1, 2, . . . , s− 1} , s = 2, . . . , n, |U (s) | = Ks, K1 ≡ 0,

where xs,t ∈ N0 = N ∪ {0}; zs,t is an observed (known) level of exogenous factors at

time t at site s; a = (a1, a2, . . . , an)
′ ∈ Rn, bs =

(
bs,j1 , . . . , bs,jKs

)′ ∈ RKs , jk ∈ U (s),
k = 1, . . . , Ks, s ∈ S, β = (β1, . . . , βn)

′ ∈ Rn, γs = (γs,1, . . . , γs,K)
′ ∈ RK , s ∈ S, are

the parameters of the model.
Similarly to Poisson model we construct the binomial conditional autoregressive

model {xs,t}: provided that prehistory {xs,τ : s ∈ S, τ < t} is fixed, random variables
x1,t, . . . , xn,t are assumed to be conditionally independent and

L{xs,t|F<t} = Bi(N, ps,t), (1)

ln ps,t
1−ps,t

=
n∑

i=1

as,ixi,t−1 +
m∑
j=1

bs,jzj,t, t ∈ Z, s ∈ S, (2)

where xs,t ∈ A = {0, . . . , N}; zj,t ∈ R, j = 1, . . . ,m is an observed (known) level of
the j-th exogenous factor at time t which influences xs,t; as = (as,1, . . . , as,n)

′ ∈ Rn,
bs = (bs,1, . . . , bs,m)

′ ∈ Rm, s ∈ S, θs = (a′s, b
′
s)

′ ∈ Rn+m, θ = (θ′1, . . . , θ
′
n)

′ ∈ Rn(n+m) is
the composed vector of the parameters of the model; ps,t can be calculated as follows:

ps,t = ps (Xt−1, Zt) ::= exp{θ′sYt}/(1 + exp{θ′sYt}), s ∈ S, t ∈ Z,

where Zt = (z1,t, . . . , zm,t)
′ ∈ Rm is the column vector specifying exogenous factors at

time t; Xt = (x1,t, x2,t, . . . , xn,t)
′ ∈ An is the column vector specifying the time slice of

the process at t ∈ Z; Yt =
(
X ′

t−1, Z
′
t

)′ ∈ Rn+m, t ∈ Z.
Probabilistic properties of the Poisson conditional autoregressive models are given

in [3]. Here we will give probabilistic property for the binomial autoregressive model
of spatio-temporal data.

Let L =
{
lj = (l1,j, . . . , ln,j)

′ ∈ An : j = 1, . . . , (N + 1)n
}
be the ordered set of all

admissible values of the vector Xt; |L| = ν = (N + 1)n.

Theorem 1. For the model (1), (2) the observed vector process Xt is the n-dimensional
nonhomogeneous Markov chain with the finite state space L and the one-step transition
probability matrix Q(t) = (qI,J(θ, t)), I = (Is), J = (Js) ∈ L:

qI,J (θ, t) =
n∏

s=1

CJs
N (exp {a′sI + b′sZt−1})Js

(1 + exp {a′sI + b′sZt−1})N
, t ∈ Z.

Corollary 1. Under conditions of Theorem 1, if vector of exogenous factors Zt = Z =
(z1, . . . , zm)

′ ∈ Rm does not depend on t, then the one-step transition probability matrix
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does not depend on t, and Markov chain Xt is homogeneous:

Q = (qI,J(θ)) ∈ [0, 1]ν×ν , I, J ∈ L,

qI,J(θ) =
n∏

s=1

CJs
N (exp {a′sI + b′sZ})

Js(1 + exp {a′sI + b′sZ})
−N
.

Also Xt is ergodic and has the unique stationary distribution π = (πI) ∈ [0, 1]ν:

Q′π = π,
∑
I∈An

πI = 1.

Lemma 1. For the model (1), (2) in case of any finite coefficients values {θs} and
finite {zi,t} the covariance matrix cov{Xt, Xt} is positively defined and takes the form:

cov{Xt, Xt} = Ndiag {pi(Xt−1, Zt)(1− pi(Xt−1, Zt))}+D ∈ Rn×n,

D = (dij) ∈ Rn×n, dij = N2cov
{
(1 + exp(−θ′iYt))−1, (1 + exp(−θ′jYt))−1

}
.

3 Statistical estimation of parameters

Theorem 2. The loglikelihood function for the model (1), (2) under the observed
spatio-temporal data {Xt : t = 1, 2, . . . , T} takes the additive form:

l(θ) =
n∑

s=1

ls (θs) , ls (θs) =
T∑
t=1

(
xs,tθ

′
sYt − N ln (1 + exp {θ′sYt}) + lnC

xs,t

N

)
. (3)

To find the maximum likelihood estimators (MLE) {θ̂s} of the parameters we need
to maximize the loglikelihood function (3):

l(θ) → max
θ∈Rn(n+m)

. (4)

Theorem 3. In case of the model (1), (2), if m = 1, z1t = z ̸= 0 does not depend on t
and Markov chain Xt ∈ L is stationary, then for any finite coefficients values {θs} and
finite z ∈ R the Fisher information matrix is nonsingular block-diagonal matrix (with
Yt = (X ′

t−1, z)
′):

G = Ndiag {E {YtY ′
t pi(Xt−1, z)(1− pi(Xt−1, z))}} , i = 1, . . . , n. (5)

Theorem 4. Under Theorem 3 conditions, if T → +∞ the constructed by (4) maxi-
mum likelihood estimators {θ̂s} are consistent and asymptotically normally distributed:

L
{√

T (θ̂ − θ0)
}
→ Nn(n+1)

(
0, G−1

)
,

where G is determined by (5).
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Theorems 2-4 are used to construct statistical tests for testing of hypotheses on the
values of true unknown parameters {θ0s}:

H0 : θ
0 = θ∗;

H1 = H0 : θ
0 ̸= θ∗.

where θ∗ ∈ Rn(n+m) is some fixed (hypothetical) value of parameters. Let us consider
the statistic:

gT = g (X1, . . . , XT ) ::= T (θ̂ − θ∗)′G(θ̂ − θ∗) ≥ 0,

where θ̂ is estimator of model’s parameters, G is determined by (5).

Theorem 5. Under Theorem 3 conditions, if hypothesis H0 is true and T → ∞ then
statistic g is asymptotically chi-square distributed with n(n+ 1) degrees of freedom:

LH0{gT} → χ2
n(n+1).

The decision rule based on statistic g and Theorem 5 is

H0, gT < ∆;
H1, gT ≥ ∆,

where ∆ = F−1
χ2
n(n+1)

(α), α is asymptotic significance level.

Theorem 6. Under Theorem 3 conditions for the sequence of contigual hypotheses
H1T =

{
θ0 = θ∗ + T−1/2a

}
, T → ∞, the test statistic gT is asymptotically noncentral

chi-square distributed with n(n + 1) degrees of freedom and noncentrality parameter
∆2 = a′Ga:

LH1{gT} → χ2
∆2,n(n+1),

and the power of the test satisfies the asymptotics:

wT → w∗ = 1− Fχ2
∆2,n(n+1)

(
F−1
χ2
n(n+1)

(α)

)
.

4 Results of computer experiments

We consider the model (1), (2) with the following values of parameters: m = 1, z = 2,
N = 4, A = {0, 1, 2, 3, 4}, n = 3, S = {1, 2, 3}, θ1 = (−0.2, 0.18,−0.15, 0.2)′ , θ2 =
(−0.18, 0.24,−0.05,−0.1)′, θ3 = (0.13,−0.13,−0.29, 0.3)′.

Figure 1 plots dependence of experimental and theoretical mean square error of the
parameter estimators on the observation time T (T varies from 20 to 300). Experi-
mental mean square error was estimated by M = 1000 Monte-Carlo replications:

δ̂ = Ê

{∥∥∥θ̂ − θ
∥∥∥2} =

1

M

M∑
k=1

||θ̂(k) − θ||2,
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Figure 1: Mean square risk plotted against T

where θ̂(k) is the estimate for the kth realization. Theoretical mean square error was
calculated using Theorems 3-4:

δ =
1

T
tr(G−1),

where tr(·) is the trace of a matrix.
Figure 1 illustrates the property of consistency of the MLE θ̂.
In [3] experiments were carried out on real data that describes the incidence rate

of children leukemia in 3 sites (n = 3) of Republic of Belarus for 25 years (T = 25).
Results of computer experiments on simulated and real data illustrate the theoretical
results.

This research was supported by the Project financed by the Software Development
Company InDataLabs.
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Abstract

We consider multivariate time series where each component series is an un-
known linear combination of latent mutually independent stationary time series.
Multivariate financial time series have often periods of low volatility followed by
periods of high volatility. This kind of time series have typically non-Gaussian
stationary distributions, and therefore standard independent component analysis
(ICA) tools such as fastICA can be used to extract independent component series
even though they do not utilize any information on temporal dependence. In this
paper we review some ICA methods used in the context of stochastic volatility
models. We also suggest their modifications which use nonlinear autocorrelations
to extract independent components. Different estimates are then compared in a
simulation study.
Keywords: blind source separation, GARCH model, nonlinear autocorrelation,
multivariate time series

1 Introduction

In this paper we assume that the observed p-variate time series x = (xt)t∈Z follows the
basic independent component (IC) model

xt = µ+Ωzt, t ∈ Z,

where µ is a p-variate location vector, Ω is a full-rank p × p mixing matrix and z =
(zt)t∈Z is an unobservable p-variate stationary time series such that

(i) E(zt) = 0, (ii) COV(zt) = Ip and

(iii) the component series of z are independent.

Then x is also stationary with E(xt) = µ and COV(xt) = Σ = ΩΩ′. In independent
component analysis (ICA) the goal is to find, using the observed time series x1, . . . ,xT ,
an estimate of an unmixing matrix W such that Wx = (Wxt)t∈Z has independent
component series.

The IC model has recently achieved a lot of attention in financial time series analysis
as complicated p-variate time series models can then be replaced by p simple univariate
(e.g. ARMA or GARCH) models in parameter estimation and prediction problems.
The model also serves as a dimension reduction tool as often only few component series

30



in z are relevant and the rest of the components just present noise. For some recent
contributions, see [3, 6, 7, 11, 17].

In the literature standard ICA methods, such as fastICA, are often used to estimate
an unmixing matrix W in a time series context although such methods only use the
marginal distribution of xt and make no use of the information on temporal depen-
dence. On the other hand, there exist second order source separation methods, like
SOBI [1], which are particularly popular for analyzing biomedical data. Such methods
use autocovariances and cross-autocovariances for the estimation. They are capable
of separating time series with nonzero linear autocorrelations, but they do not utilize
nonlinear autocorrelations.

Volatility clustering is a common feature in economic and financial time series, i.e.
there are periods of lower and higher volatility. As the transitions between such peri-
ods do not typically have any clear pattern, they are treated as random occurrences.
There are a vast amount of different models that have been invented for such situa-
tions. Among stochastic volatility models, the GARCH process [2] has been the most
popular one. Another popular model is the SV (Stochastic Volatility) model [20]. In
our simulations we consider these two models. For further information on stochastic
volatility and a recent overview of stochastic volatility models, see for example [13].

In this paper we review various independent component estimators that use nonlin-
ear autocorrelations, and compare their performance to that of fastICA in a simulation
study where the independent time series components come from GARCH and SV mod-
els. The paper has the following structure. First, in Section 2 we define the univariate
stochastic volatility models. In Section 3 we discuss the ICA methods which are con-
sidered in this paper. Section 4 consists of the simulation study.

2 Stochastic volatility models for univariate series

Among stochastic volatility models, the GARCH (Generalized Autoregressive Condi-
tional Heteroscedasticity) process [2] has been the most popular one. A univariate
GARCH(p, q) process is given by

xt = σtϵt,

where ϵt is an independent white noise process and σ2
t a deterministic conditional

variance process

σ2
t = V ar(xt|Ft−1) = ω +

p∑
i=1

αix
2
t−i +

q∑
j=1

βjσ
2
t−j,

with ω > 0 and αi, βj ≥ 0 ∀i, j. For (second order) stationarity,
∑p

i=1 αi+
∑q

j=1 βj < 1.
Another popular model is the SV (Stochastic Volatility) model [20], defined as

xt = eht/2ϵt,

ht = µ+ ϕ(ht−1 − µ) + σηt,
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where ϵt and ηt are two independent white noise innovation processes. Parameter µ is
the level, ϕ is the persistence and σηt is the volatility of log-variance. The process ht is
called the volatility process and it is strongly stationary with N(0, 1) innovations and
initial state h0 ∼ N(µ, σ2/(1− ϕ2)). For stationarity, we require |ϕ| < 1 and µ ∈ R.

3 Source separation for multivariate time series

Under our model assumption, the standardized multivariate series of xt is given by
xst
t = Σ−1/2(xt − µ). One of the key results in ICA states that there exists an or-

thogonal matrix U = (u1, . . . ,up)
′ such that zt = Ux

st
t (up to signs and order of the

components) [16]. Here zt denotes the vector of independent series. The final unmixing
matrix functional is then given byW = UΣ−1/2. The estimate ofW is then obtained
by replacing Σ and U by their sample counterparts. For finding U , we next list the
criterion functions in different approaches.

In the symmetric fastICA [9] approach and symmetric squared fastICA [15], U
maximizes

p∑
i=1

|E
[
G(u′

ix
st
t )
]
| and

p∑
i=1

(
E
[
G(u′

ix
st
t )
])2

,

with a choice of a twice continuously differentiable, nonlinear and nonquadratic function
G such that E[G(y)] = 0 if y ∼ N(0, 1). Two common options are G(z) = z4 − 3 and
G(z) = log(cosh(z)) − E[G(y)], where y ∼ N(0, 1). Notice that both utilize only the
stationary (marginal) distribution of xt.

The estimators presented below make use of the joint distributions of (xt,xt+k), k =
1, 2, . . . . The classical SOBI uses only second moments and it was originally defined as
a method which jointly diagonalizes several autocovariance matrices. However, SOBI
can be reformulated as the maximizer of

p∑
i=1

K∑
k=1

(
E
[
(u′

ix
st
t )(u

′
ix

st
t+k)

])2
.

The solution is unique if, for all pairs i ̸= j there exists a k, 1 ≤ k ≤ K, such that
E(zt,izt+k,i) ̸= E(zt,jzt+k,j). SOBI fails to separate GARCH and SV time series as all
lagged autocovariances are then zero.

The gFOBI procedure proposed in [12] maximizes a sum of fourth moments

p∑
i=1

K∑
k=1

(
E
[
(u′

ix
st
t+k)||xst

t ||2
])2

.

For K = 0, the regular ICA method FOBI [4] is obtained.
The gJADE procedure [12], in turn, uses a much richer sum of fourth cumulants

and maximizes
p∑

i=1

p∑
r=1

p∑
s=1

K∑
k=1

(
κ(u′

ix
st
t+k,u

′
ix

st
t+k,x

st
t,r,x

st
t,s)
)2
,
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where

κ(z1, z2, z3, z4) = E(z1z2z3z4)− E(z1z2)E(z3z4)− E(z1z3)E(z2z4)− E(z1z4)E(z2z3).

Again, for K = 0, the regular ICA method JADE [5] is obtained. Both, gFOBI and
gJADE, were created having stochastic volatility models in mind.

FastICA does not use any knowledge of temporal dependence, but there exist some
fixed-point algorithms aimed for time series context. The FixNA (Fixed-point algo-
rithm for maximizing the nonlinear autocorrelation) method was introduced in [19],
and its criterion function to be maximized is

D1(U) =

p∑
i=1

K∑
k=1

E
[
G(u′

ix
st
t )G(u

′
ix

st
t+k)

]
,

where G is a twice continuously differentiable function. The G-functions suggested
in [19] are G(z) = log(cosh(z)) and G(z) = z2.

A similar function to be maximized is of the form

D2(U) =

p∑
i=1

K∑
k=1

∣∣∣E [G(u′
ix

st
t )G(u

′
ix

st
t+k)

]
− E

[
G(u′

ix
st
t )
]2∣∣∣ ,

and we will denote it as FixNA2. It was first proposed in [8], however only with
G(z) = z2, and K = 1. We further similarly suggest a natural extension of SOBI with
the criterion function

D3(U) =

p∑
i=1

K∑
k=1

(
E
[
G(u′

ix
st
t )G(u

′
ix

st
t+k)

]
− E

[
G(u′

ix
st
t )
]2)2

.

As a variant of SOBI, we call this estimator vSOBI.
To obtain the estimating equations for matrix U , the Lagrangian multiplier tech-

nique can be used as in [14]. The Lagrangian function to be optimized is

L(U ,Λ) = Dr(U)−
p−1∑
i=1

p∑
j=i+1

λiju
′
iuj −

p∑
i=1

λii(u
′
iui − 1), for r = 1, 2, 3,

where Λ = (λij) is a symmetric matrix that contains p(p+ 1)/2 Lagrangian multipliers.
Write next

T r,i = T r,i(U) =
∂

∂ui

Dr(U ), i = 1, . . . , p, r = 1, 2, 3,

and T r = T r(U) = (T r,1, . . . ,T r,p)
′. Solving the optimizing problem then gives the

estimating equations for U , namely,

UT ′
r = T rU

′ and UU ′ = Ip,

or, equivalently,
U = (T rT

′
r)

−1/2T r.

For some tolerance limit ε and initial value U 0, this leads to Algorithm 1.
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Data: Standardized time series xst
t = Σ−1/2(xt − µ)

Result: W = UΣ−1/2

U old = U 0;
∆ = ∞;
while ∆ > ε do
T r = T r(U old);

Unew = (T rT
′
r)

−1/2T r;
∆ = ||Unew −U old||;
U old = Unew;

end
U = Unew;

Algorithm 1: Algorithm for maximizing the criterion function Dr, r = 1, 2, 3.

4 Simulation study

The following simulations are conducted using R 3.2.2 [18] with the packages fGarch,
fICA, JADE and tsBSS. In the simulation study we compare due to space limitations
only the following methods:

• FixNA, FixNA2 and vSOBI with G(z) = z2 and lags 1, . . . , 12

• symmetric fastICA and symmetric squared fastICA with G(z) = z4 − 3

• gFOBI, gJADE with lags 0, 1, . . . , 12 and SOBI with lags 1, . . . , 12

The comparison is based on the Minimum Distance Index [10], which is defined as

D̂ = D̂(Ŵ ) =
1√
p− 1

inf
C∈C

||CŴΩ− Ip||,

where C is the set of all matrices with exactly one non-zero element in each row and
column, and || · || is the Frobenius (matrix) norm. The index has the range 0 ≤ D̂ ≤ 1,
where zero indicates perfect separation.

For time series of lengths T = 100, 200, . . . , 25600 we report the averages T (p−1)D̂2

based on 2000 repetitions. Such an average represents a global measure of variation of
an unmixing matrix, see [10] for details. As all the methods are affine equivariant, we
choose wlog Ω = Ip and consider the following two 4-variate settings:

• GARCH setting: The sources are four GARCH(1, 1) processes with normal
innovations. The parameters (α1, β1) are chosen so that the first eight moments
are finite, and are: (i) (0.05, 0.9), (ii) (0.1, 0.7), (iii) (0.1, 0.8) and (iv) (0.2, 0.5).

• SV setting: In the second setup the four sources are SV processes with nor-
mal innovations and (µ, ϕ, σ)-parameter vectors (−10, 0.8, 0.1), (−10, 0.9, 0.2),
(−10, 0.9, 0.3) and (−10, 0.95, 0.4). Again, all the first eight moments exist.
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Figure 1: Comparison of performance of algorithms in the GARCH setting (left panel)
and SV setting (right panel).

Figure 1 summarizes the results for both settings. As expected, SOBI does not work
here. The proposed vSOBI estimator works very well in both cases and outperforms
all the other estimators. Interestingly, both fastICA algorithms perform well in the
SV example but not in the GARCH example. FastICA2 algorithm produces slightly
better results than the fastICA algorithm. While gJADE works quite well in both cases,
gFOBI has much poorer performance. FixNA and FixNA2 algorithms are among the
best methods.

Convergence of FixNA2 algorithm and both fastICA algorithms is low in short
time series (see Figure 2), but gets much better when the time series length increases.
Convergence percentage of vSOBI is also good, and in time series of length 800 onwards
very close to 100%. SOBI, gFOBI and gJADE have very few convergence issues, if any.

5 Discussion

In this paper we surveyed different blind source separation methods suitable for multi-
variate time series with stochastic volatility features. Such methods were earlier quite
scattered in the literature. We also suggested some small modification yielding the
family of vSOBI estimators which showed in our simulations the best performance.
We have shown here the simulation results of vSOBI, both FixNA and both FastICA
algorithms only based on G functions of the form G(z) = zc. However, in an extended
version of this paper we plan to have a larger simulation study, including for example
also log(cosh(z)) as a nonlinearity.
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[6] Y. Chen, W. Härdle, and V. Spokoiny. Portfolio value at risk based on independent
component analysis. J. Comput. Appl. Math., 205:594–607, 2007.

36
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Abstract

We obtain results on both weak and almost sure asymptotic behavior of power
variations of a linear combination of independent Wiener process and fractional
Brownian motion. These results are used to construct strongly consistent pa-
rameter estimators in mixed models.

1 Introduction

These results are common with G. Shevchenko and M. Dozzi.
A fractional Brownian motion (fBm) is frequently used to model short- and long-

range dependence. By definition, an fBm with Hurst parameter H ∈ (0, 1) is a centered
Gaussian process {BH

t , t ≥ 0} with the covariance function

E[BH
t B

H
s ] =

1

2

(
t2H + s2H − |t− s|2H

)
.

For H > 1/2, an fBm has a property of long-range dependence; for H < 1/2, it is short-
range dependent and, in fact, is counterpersistent, i.e. its increments are negatively
correlated. For H = 1/2, an fBm is a standard Wiener process.

Two important properties of an fBm are the stationarity of increments and self-
similarity. However, these properties restrict applications of an fBm. So, let us consider
some generalizations. A simplest approach is to consider a linear combination

Xt =
N∑
k=1

akB
Hk
t , t ≥ 0, (1)

of independent fBms BHk with different Hurst parameters H1 < H2 < · · · < HN .
We consider a particular version of the process (1) with N = 2 and one of the Hurst

parameters equal to 1/2. In other words, we consider a process

MH
t = aBH

t + bWt, t ≥ 0 (2)

where a and b are some non-zero coefficients. Such process is frequently called a
mixed fractional Brownian motion. Its applications were considered in many papers,
see [2, 7, 10, 11].

There are only few papers concerned with parameter estimation in the mixed model,
but they address questions different from the one we are interested in. In particu-
lar, [6, 9] address the estimation of drift parameter in a model with mixed fractional
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Brownian motion. In [1], the authors construct several estimators based on discrete
variation, so their research is quite close to ours, but they also work in the low-frequency
setting, which is essentially different from the high-frequency setting we consider. In
both settings, the first order difference of the observed series is a stationary sequence.
However, in the low-frequency setting the covariance does not depend on the number of
observations, while in the high-frequency one, the covariance structure is very different.
As it was mentioned above, for H > 1/2, in a small scale the mixed fractional Brownian
motion behaves like Wiener process. Thus, the increments of Wiener process become
more and more dominating as the partition becomes finer, which makes estimation of
the Hurst parameter much harder in the case where H > 1/2.

As it was already mentioned, our main aim is the estimation of the parameters of
the process (2) based on its single observation on a uniform partition of a fixed interval.
To this end, we use power variations of this process.

In the future we plan to consider more advanced techniques as those developed
in [1, 4, 5, 8] to construct more efficient estimators.

2 Asymptotic behavior of mixed power variations

Let W = {Wt, t ≥ 0} be a standard Wiener process and BH = {BH
t , t ≥ 0} be

an independent of W fBm with Hurst parameter H ∈ (0, 1) defined on a complete
probability space (Ω,F , P ).

For a function X : [0, 1] → R and integers n ≥ 1, i = 0, 1, . . . , n − 1 we denote
∆n

iX = X(i+1)/n − Xi/n. In this section we will study the asymptotic behavior as
n→ ∞ of the following mixed power variations

n−1∑
i=0

(∆n
iW )p

(
∆n

i B
H
)r
,

where p ≥ 0, r ≥ 0 are fixed integer numbers. Since ∆n
iW and ∆n

i B
H are centered

Gaussian with variances n−1/2 and n−H respectively, we get that

E
[
(∆n

iW )p
(
∆n

i B
H
)r]

= n−rH−p/2µpµr,

where for an integer m ≥ 1

µm = E [N(0, 1)m] = (m− 1)!!1m is even

is the mth moment of the standard Gaussian law; (m − 1)!! = (m − 1)(m − 3) . . . is
the double factorial.

In view of this, we will study centered sums of the form

SH,p,r
n =

n−1∑
i=0

(
nrH+p/2 (∆n

iW )p
(
∆n

i B
H
)r − µpµr

)
.

We start with studying the almost sure behavior of SH,p,r
n . For brevity, the phrase

“almost surely” will be omitted throughout the article.
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Proposition 1. Let ε > 0 be arbitrary.
If r = 0, then SH,p,r

n = o(n1/2+ε), n→ ∞.
If p and r ≥ 2 are even, then

• for H ∈ (0, 3/4] SH,p,r
n = o(n1/2+ε), n→ ∞.

• for H ∈ (3/4, 1) SH,p,r
n = o(n2H−1+ε), n→ ∞.

If p is odd and r ≥ 1 is arbitrary, then for any H ∈ (0, 1) SH,p,r
n = o(n1/2+ε),

n→ ∞.
If p is even and r is odd, then

• for H ∈ (0, 1/2] SH,p,r
n = o(n1/2+ε), n→ ∞.

• for H ∈ (1/2, 1) SH,p,r
n = o(nH+ε), n→ ∞.

In particular, for any H ∈ (0, 1) the following version of the ergodic theorem takes
place: SH,p,r

n → 0, n→ ∞.

The following theorem summarizes the weak limit behaviour of SH,p,r
n . We remark

that some (but not all) of the results can be obtained either from the limit theorems
for stationary Gaussian sequences of vectors, see e.g. [3] or from the limit theorems
for arrays of Gaussian vectors, see [4]. However, we believe that our approach (using
one-dimensional limit theorems) is more accessible and leads quicker to the desired
results.

Denote

ρH(m) = E
[
BH

1 (BH
m+1 −BH

m)
]
=

1

2

(
|m+ 1|2H + |m− 1|2H − 2m2H

)
the covariance of the so-called fractional Gaussian noise {BH

k+1−BH
k }. It is easy to see

that ρH(m) ∼ H(2H − 1)m2H−2, m→ ∞.

Theorem 1. If p and r are even, r ≥ 2, then

• for H ∈ (0, 3/4)

n−1/2SH,p,r
n ⇒ N(0, σ2

H,rµ
2
p + σ2

p,r), n→ ∞, (3)

where

σ2
H,r =

r/2∑
l=1

(l!)2

(2l)!((r − 2l)!!)2

∞∑
m=−∞

ρH(m)2l, σ2
p,r = µ2r

(
µ2p − µ2

p

)
;

• for H = 3/4

S
3/4,p,r
n√
n log n

⇒ N(0, σ2
3/4,rµ

2
p + σ2

p,r), n→ ∞, (4)

where σ3/4,r = 3r(r − 1)/4;
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• for H ∈ (3/4, 1)
n1−2HSH,p,r

n ⇒ ζH,p,r, n→ ∞, (5)

where ζH,p,r is a special “Rosenblatt” random variable.

If p is odd and r ≥ 1 is arbitrary, then for any H ∈ (0, 1)

n−1/2SH,p,r
n ⇒ N(0, µ2pµ2r). (6)

If p is even and r is odd, then

• for H ∈ (0, 1/2]

n−1/2SH,p,r
n ⇒ N(0, σ2

H,rµ
2
p + σ2

p,r), n→ ∞, (7)

where σH,1 = 0,

σ2
H,r =

(r−1)/2∑
l=1

(r!)2

(2l + 1)!((r − 2l − 1)!!)2

∞∑
m=−∞

ρH(m)2l+1, r ≥ 3;

• for H ∈ (1/2, 1)
n−HSH,p,r

n ⇒ N(0, µ2
pµ

2
r+1), n→ ∞. (8)

Remark. For r = 0 we have the pure Wiener case, so for any H ∈ (0, 1)

n−1/2SH,p,r
n ⇒ N(0, µ2p − µ2

p), n→ ∞.

3 Statistical estimation in mixed model based on

quadratic variation

Now we turn to the question of parametric estimation in the mixed model

MH
t = aBH

t + bWt, t ∈ [0, T ], (9)

where a, b are non-zero numbers, which we assume to be positive, without loss of
generality. Our primary goal is to construct a strongly consistent estimator for the
Hurst parameter H, given a single observation of MH .

It is well-known (see [7]) that for H ∈ (3/4, 1) the measure induced by MH in
C[0, T ] is equivalent to that of bW . Therefore, the property of almost sure convergence
in this case is independent of H. Consequently, no strongly consistent estimator for
H ∈ (3/4, 1) based on a single observation of MH exists.

In this section we denote ∆n
iX = XT (i+1)/n −XTi/n and

V H,p,r
n =

n−1∑
i=0

(∆n
iW )p

(
∆n

i B
H
)r
.
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Consider the quadratic variation of MH , i.e.

V H,2
n :=

n−1∑
i=0

(
∆n

iM
H
)2

= a2V H,0,2
n + 2abV H,1,1

n + b2V H,2,0
n .

Note that V H,2
n depends only on the observed process but not on H. We use this

notation to specify the distribution. Namely, we will use it to refer to the limit behavior
of the quadratic variation for a specified value of the Hurst parameter H.

By Proposition 1, we have that V H,0,2
n ∼ T 2Hn1−2H , V H,2,0

n → T , V H,1,1
n = o(n1/2−H),

n → ∞. Therefore, the asymptotic behavior of V H,2
n depends on whether H < 1/2 or

not. Precisely, for H ∈ (0, 1/2),

V H,2
n ∼ a2T 2Hn1−2H , n→ ∞, (10)

so the quadratic variation behaves similarly to that of a scaled fBm.
For H ∈ (1/2, 1),

V H,2
n → b2T, n→ ∞, (11)

so the quadratic variation behaves similarly to that of a scaled Wiener process.
Let us consider the cases H < 1/2 and H > 1/2 individually in more detail.

3.1 H ∈ (0, 1/2)

We have seen above that this case is similar to the pure fBm case. Unsurprisingly, the
same estimators work, which is precisely stated below.

Theorem 2. For H ∈ (0, 1/2), the following statistics

Ĥk =
1

2

(
1− 1

k
log2 V

H,2
2k

)
and

H̃k =
1

2

(
log2

V H,2
2k−1

V H,2
2k

+ 1

)
are strongly consistent estimators of the Hurst parameter H.

Remark. At the first sight, there is no clear advantage of Ĥk or H̃k. But a careful
analysis shows that H̃k is better. Indeed, it is easy to see that

Ĥk = H − log2 a+H log2 T

k
+ o(k−1), k → ∞, (12)

while
H̃k = H +O(2k(2H−1)) + o(2k(−1/2+ε)), k → ∞. (13)

Now it is absolutely clear that H̃k performs much better (unless one hits the jackpot
by having aTH = 1).
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Abstract

A commonly used tool in probabilistic risk assessment is the species sensitivity
distribution (SSD) which allows to establish guidelines for setting environmental
quality standards. SSD models the variation in sensitivity of species, considered
representative of the ecological community they belong, to a particular toxic com-
pound [4, 1]. We propose robust estimation approach for hazardous concentration
thresholds for p% of species (HCp) in order to take into account the presence of
outliers in the data or data skewness, which may occur without any ecological
reason. Unusual observations are down-weighted rather than eliminated, with
the advantage of not reducing the already small sample size and therefore not
losing precision of the estimators [3]. Data transformations in conjunction with
robust estimation methods are recommended in case of heteroscedasticity [2].
Different scenarios using real data sets as well as simulated data are presented
in order to illustrate and compare the proposed approaches. As a by-product,
robust methods also allow to identify data outliers, which have an important
message for practitioners due to a different behavior of specific species.

References

[1] Hickey G.L., Craig P.S. (2012). Competing statistical methods for the L-fitting of
normal species sensitivity distributions: Recommendations for practitioners.Risk
Analysis, Vol. 32(7), pp. 1232–1243.

[2] Marazzi A., Yohai V.J (2006) Robust Box-Cox transformations based on minimum
residual autocorrelation. Computational Statistics & Data Analysis, Vol. 50(10),
pp. 2752–2768.

[3] Maronna R.A., Martin R.D., Yohai V.J. (2006). Robust Statistics. John Wiley &
Sons, Ltd.

[4] Posthuma P., Suter G.W., Traas T.P. (2002). Species Sensitivity Distribution in
Ecotoxicology. Lewis Publishers, Boca Raton, FL.

44



EXTRACTING INFORMATION FROM
INTERVAL DATA USING SYMBOLIC
PRINCIPAL COMPONENT ANALYSIS

M.R. Oliveira1, M. Vilela2, A. Pacheco3, R. Valadas4, P. Salvador5

1,2,3CEMAT and 1,2,3DM, 4Instituto Superior Técnico, Universidade de Lisboa
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Abstract

We address the definition of symbolic variance and covariance for random
interval-valued variables, and present four known symbolic principal component
estimation methods using a common insightful framework. In addition, we pro-
vide a simple explicit formula for the scores of the symbolic principal compo-
nents, equivalent to the representation by Maximum Covering Area Rectangle.
Furthermore, the analysis of a real dataset leads to a meaningful characterization
of Internet traffic applications.

1 Introduction

The low cost of information storage combined with recent advances in search and
retrieval technologies has made huge amounts of data available, the so-called big data
explosion. New statistical analysis techniques are now required to deal with the volume
and complexity of this data. One promising technique is Symbolic Data Analysis
(SDA), introduced in the late 1980s by Edwin Diday.

In conventional data analysis, the variables that characterize an object can only take
single values. SDA introduces symbolic random variables which can take values over
complex data structures like lists, intervals, histograms or even distributions. Symbolic
data may exist on their own right or may result from the aggregation of a base dataset
according to the researchers interest.

For example, suppose that our goal is to characterize the ages of university teachers.
The variable that records the teachers’ age will have as many observations as teachers,
and these can differ among universities. Let us assume that a given university has 1000
teachers, and the values ω1, . . . , ω1000 are the teachers’ ages. SDA calls these values
micro-data. In conventional statistical analysis, the universities would have to be char-
acterized by single-valued variables, e.g. the mean teachers’ age. SDA can deal with
more complex data structures, calledmacro-data. For example, the teachers’ age can be
aggregated into one interval or various intervals. Our main interest in this paper is on
interval-valued data, where macro-data corresponds to the interval between minimum
and maximum of micro-data values: [a, b] = [min {ω1, . . . , ω1000},max {ω1, . . . , ω1000}].
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The paper is organized as follows. Section 2 presents basic descriptive statistics,
including symbolic variances and covariances, for interval-valued data. Section 3 intro-
duces Symbolic Principal Component Analysis (SPCA) for interval-valued data. Sec-
tion 4 uses SPCA on the analysis of Internet data produced by six different Internet
applications. Finally, some conclusions are drawn in Section 5.

2 Basic descriptive statistics

There have been several proposals for definitions of symbolic versions of sample mean,
variance, covariance, and correlation, according to various types of symbolic data and
including interval-valued data [1].

We assume that the collected interval-valued data are realizations of random vec-
tors. As such, we consider a random interval-valued vector X = (X1, . . . , Xp)

t, where
Xj = [Aj, Bj], with Aj and Bj being random variables verifying P (Aj ≤ Bj) = 1, de-
notes the j-th random interval-valued variable of X. Even though this is the common
representation of random interval-valued variables, we follow the approach of [2, 3, 6]
and write the intervals Xj in terms of their centers, Cj = (Aj + Bj)/2, and their
ranges, Rj = Bj − Aj. This choice leads to a clear interpretation of an interval in
terms of its “location” on the real line along with its length; moreover it enables for
the unification of several results in the literature (cf. [2, 3, 6] and references therein).
Likewise, the random vector X is equivalently represented by the random vector of
centers, C = (C1, . . . , Cp)

t, and the random vector of ranges, R = (R1, . . . , Rp)
t.

Let (C1, . . . ,Cn)
t and (R1, . . . ,Rn)

t denote the vectors of centers and ranges ob-
tained from a random sample of size n from X, where Ci = (Ci1, . . . , Cip)

t and
Ri = (Ri1, . . . , Rip)

t characterizes the i-th entity or object of the sample. In this
setting, a natural proposal for sample symbolic mean of the interval-valued variable Xj

is to use the traditional sample mean of the centers, Xj = Cj with Cj =
∑n

i=1Cij/n.
As concerns the sample symbolic variance of the interval-valued variable Xj, we

express the proposals available in the literature as the sum of two components, the
first accounting for the variability of the associated centers and the second for the size
of the associated ranges, in the form

S (α)

jj =
n∑

i=1

(
Cij − Cj

)2
n

+ α

n∑
i=1

R2
ij

n
, (1)

with the nonnegative weight α accounting for the relevance given to the ranges. In
particular, we address three cases, with respective values 0, 1/4, 1/12 for the weight
α. The first case (α = 0) ignores the values of the ranges, simply turning the symbolic
variance into the variance of the centers. Concerning the second case (α = 1/4), we note
that as Rij/2 represents the radius of the interval associated with i-th entity, measured
on the j-th random interval-valued variable,

∑n
i=1R

2
ij/(4n) may be interpreted as the

sample second order moment of the radius of the j-th random interval-valued variable.
The third case (α = 1/12) corresponds to choosing the weight derived in [2] assuming
that micro-data are uniformly distributed on the random intervals.
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In the same manner, we consider proposals for the sample symbolic covariance
between two interval-valued variables Xj and Xl that express it as the sum of two
components, the first accounting for the sample covariance of the associated centers
and the second for the size of the associated ranges, in the form

S (β)

jl =
n∑

i=1

(Cij − Cj)(Cil − C l)

n
+ β

n∑
i=1

RijRil

n
, (2)

with the nonnegative weight β accounting for the relevance given to the ranges associ-
ated to the interval-valued variables Xj and Xl.

In sequence, we may use (1)-(2) to construct a sample symbolic covariance matrix
S (α,β) having on the diagonal the sample symbolic variances S (α)

jj , given in (1), and

outside the diagonal the sample symbolic covariances S (β)

jl , j ̸= l, given in (2), leading
to

S (α,β) = SCC + (α− β)Diag

(
RtR
n

)
+ β

RtR
n

, (3)

with SCC denoting the sample covariance matrix of the centers and R = [Rij] the
(n × p) matrix of observed ranges. Particular cases of sample symbolic covariance
matrices, S (α,β), with α ∈ {0, 1/4, 1/12} and β = α or β = 0, have been introduced
in the literature ( [2, 6] and references therein). Details about the links between these
sample symbolic covariance matrices and SPCA for interval-valued data are discussed
in the next section.

3 Symbolic Principal Component Analysis

Principal component analysis (PCA) is one of the most popular statistical methods
to analyse real data. There have been several proposals to extend this methodology
to the symbolic data analysis framework, in particular to interval-valued data. The
majority of the available methods rely on a strategy called symbolic-conventional-
symbolic, meaning that: (i) input data is symbolic (interval-valued, in here), (ii) the
data is converted into conventional, to which the conventional PCA method is applied,
and (iii) at the end, the PCA results are turned into symbolic, usually by a method
called Maximum Covering Area Rectangle (MCAR), see [3, 6] and references therein
for details.

We study four SPCA methods: CPCA, VPCA, CIPCA, and SymCovPCA. CPCA
and VPCA corresponds to the first SPCA methods proposed in the literature and the
last two are among the most recent alternatives. All these four methods rely on the
symbolic-conventional-symbolic strategy, which can be specified as follows: (i) compute
the associated (p× p) sample symbolic covariance matrix S (α,β) (see Table 1 and [3]);
(ii) obtain the spectral decomposition of S (α,β), as in the conventional PCA, and (iii)
transform the conventional scores into symbolic scores, e.g. using MCAR.

Note that S ( 14 ,0) and S ( 1
12 ,0) (see Table 1) are covariance matrices that use a defini-

tion of symbolic variance of an interval-valued variable that does not coincide with the
definition of symbolic covariance between the same interval-valued variable and itself.
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Table 1: Sample symbolic covariance matrices S (α,β), defined by the combination of
several proposals for symbolic variances and covariances along with the corresponding
SPCA method.

(α, β) S (α,β) SPCA Method

(0,0) SCC CPCA

(14 ,
1
4) SCC +

1

4

RtR
n

—

( 1
12 ,

1
12) SCC +

1

12

RtR
n

SymCovPCA

(14 , 0) SCC +
1

4
Diag

(
RtR
n

)
VPCA

( 1
12 , 0) SCC +

1

12
Diag

(
RtR
n

)
CIPCA

This violates a basic rule in the conventional framework, namely that the variance of
a variable equals the covariance of the variable with itself. In spite of this fact, the
CIPCA’s authors, who proposed S ( 1

12 ,0) [3], argue that this is an advantage of their
method.

Similarly to the conventional PCA, it may be interesting to define the SPCA based
on standardized interval-valued variables, and to do so we introduce the sample cor-

relation matrix as: P (α,β) = U−1
(α)S

(α,β)U−1
(α), where U (α) = Diag

(
S
(α)

11 , . . . , S
(α)
pp

)1/2
,

for S (α,β) = [S (α,β)

jl ], where S (α,β)

jj = S
(α)

jj and S (α,β)

jl = S
(β)
jl , for j ̸= l. Equivalently,

S (α,β) = U (α)P
(α,β)U (α). Thus, SPCA methods based on standardized interval-valued

variables just have to use P (α,β) instead of S (α,β).
The most common way to transform conventional objects into symbolic ones for

methods following the symbolic-conventional-symbolic strategy is the MCAR repre-
sentation. Following the same line of work as before, in [3] we deduced an explicit
formulation of the MCAR representation in terms of centers and ranges. Furthermore,
the sample scores of the i-th object on the j-th symbolic principal component (SPC),
according with MCAR, are:

ŜPCij =
[
γ̂t
j(Ci − µ̂C)−

1

2
|γ̂j|tRi, γ̂

t
j(Ci − µ̂C) +

1

2
|γ̂j|tRi

]
, (4)

where γ̂j is the j-th eigenvector of S (α,β), the sample symbolic covariance matrix under
consideration, |γ̂j| = (|γ̂1j|, . . . , |γ̂pj|)t, and µ̂C is the vector of center sample means.

As a direct consequence of (4), the centers of the scores, γ̂t
j(Ci − µ̂C), are a linear

combination of the centers of the original interval-valued variables, whose weights are
given by the eigenvectors of the corresponding symbolic covariance matrix. Addition-
ally, the scores ranges, |γ̂j|tRi, are also a linear combination of the original ranges,
whose weights have the same magnitude as the centers but are all positive. This for-
mulation makes clear that MCAR’ score ranges are never negative.
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4 Analysis of Internet Data

In this section we illustrate the use of SPCA through a dataset of Internet traffic,
typically observed in backbone networks, and measured during July 2014. Specifically,
the dataset contains traffic produced by six different Internet applications, namely
Web browsing (produced by HTTP), file sharing (produced by Torrent), streaming,
video (YouTube), port scans (produced by NMAP), and snapshots. The first four
applications correspond to regular traffic and the last two to Internet attacks. The
analysis usually aims at detecting the various Internet applications within a traffic
aggregate and/or the separation between regular and illicit traffic.

The dataset comprises 917 traffic objects, corresponding to packet flows of specific
applications, which we call datastreams. For each datastream, we registered five dif-
ferent traffic characteristics observed in 0.1 seconds intervals, during 5 minutes. The
traffic characteristics registered were the following: number of upstream packets (PUp),
number of downstream packets (PDw), number of upstream bytes (BUp), number of
downstream bytes (BDw), and number of active TCP sessions (Ses). Thus, each ob-
ject is characterized by a total of 3000 observations per traffic characteristic, which
constitutes our micro-data.

The conventional approach to analyse this data is based on summary statistics of
each traffic characteristic. In particular, [4, 5] used 8 summary statistics (minimum,
1st quartile, median, mean, 3rd quartile, maximum, standard deviation, and median
absolute deviation) for the above five traffic characteristics, giving a total of 40 variables
to describe the datastreams. This approach usually requires a pre-processing step to
remove irrelevant and redundant variables; Pascoal [5] used a robust feature selection
method based on mutual information for that purpose.

This dataset is naturally symbolic, since each traffic characteristic is multi-valued.
SDA takes into consideration the complex structure of these data, and may lead to
clearer interpretation and new insights. In our case, we will use interval-valued variables
for each traffic characteristic (our macro-data), instead of the 8 summary statistics
listed above.

Given the nature of the data and the existence of potential atypical observations
among the micro-data, we decided to trim 1% of the lower and 1% of the higher
values. This was only done for the regular applications given that illicit ones have
few datastreams and small variability and would be completely eliminated from the
dataset, even for such small trimming percentiles. Apart from that, and following
the recommendations in [4, 5], data was smoothed using a logarithm transformation
(ln(x + 1), to overcome the existence of zeros). SPCs were estimated using the four
methods under study. The conventional analysis of the eigenvalues of the various
sample symbolic covariance matrices (not shown here, see [3] for details) suggests to
retain two principal components, which explain between 80.3% (CIPCA) and 95.6%
(SymCovPCA) of the total sample variance associated with S (α,β).

The results obtained with CPCA and SymCovPCA are similar, and so are the
results obtained with VPCA and CIPCA. Moreover, these similarities are easily ex-
plained by the expressions of Table 1. For these reasons, only the estimates associated
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Table 2: Eigenvectors of the sample symbolic covariance matrices for each estimation
method, called loadings.

SymCovPCA CIPCA
γ̂1 γ̂2 γ̂1 γ̂2

ln(PDw + 1) -0.264 -0.171 -0.125 -0.059
ln(BDw + 1) -0.730 -0.043 -0.932 0.337
ln(PUp + 1) -0.255 -0.168 -0.113 -0.070
ln(BUp + 1) -0.571 0.075 -0.318 -0.937
ln(Ses + 1) -0.079 0.967 -0.029 -0.027

with the most recent methods (SymCovPCA and CIPCA) are shown in this paper.
Table 2 shows the loadings of the first and second SPC, obtained with SymCovPCA

and CIPCA. In the case of SymCovPCA, the number of upstream and downstream
bytes (BUp, BDw) have the highest loading (on absolute value) in the definition of
the first SPC. Thus, the center and range of the first SPC can be interpreted as a
weighted sum of the number of upstream and downstream bytes. The number of bytes
is sometimes referred to as the traffic volume. For the center, the negative coefficients
indicate that datastreams with high (low) number of bytes in both directions have
low (high) center values on the first SPC. For the range, the coefficients are taken in
absolute value, so datastreams with high (low) number of bytes in both directions have
high (low) range values on the first SPC. Recall that the range expresses the inner
variability of micro-data. As for the second SPC, the loading associated with number
of sessions stands out. Thus, datastreams characterized by an high (low) number of
sessions have high (low) center and range values on the second SPC.

The SymCovPCA scores are shown in Figure 1(a). Each datastream is represented
by a rectangle, defined by the centers and ranges of the first two SPC. It can be said
that the various Internet applications are, in general, well identified, since the datas-
treams show similar patterns for the same application. Most datastreams have a small
minimum traffic volume (number of bytes), with the corresponding rectangles leaning
to the right side. HTTP shows no distinctive characteristic, since the datastreams
spread over all score ranges. This can be explained by the heterogeneity of user be-
haviours and accessed Web pages, typical of Web browsing. Torrent is concentrated
on the upper part of the graph, due to its high number of sessions. The high number
of sessions and large variability of the traffic volume is mostly explained by the vari-
ation on the number of available peers during traffic sharing sessions. The graph also
suggests the existence of several Torrent groups, but this pattern will become clearer
with the CIPCA method. The behaviour of video related with the second SPC con-
trasts with that of Torrent: it is concentrated in the lower part of the graph, due to
its low number of sessions. Moreover, video is the application with the highest traffic
volume. We may say that video datastreams are characterized by a low number of high
volume sessions, and Torrent by a high number of high volume sessions. Streaming
has a behaviour similar to video, but with higher number of sessions and lower traffic
volume. NMAP is the application with smallest volume and variability, and has also
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a relatively low number of sessions. Finally, the behaviour of snapshot is in-between
video and streaming, both in terms of volume and number of sessions. Snapshot has
two clear groups, that differ on the peak traffic volume, and correspond to full desktop
and partial desktop uploads, respectively.

Table 2 shows that the loadings obtained with CIPCA are much higher (in absolute
value) for BDw (first component) and BUp (second component). Thus, the first SPC
can be interpreted as the number of bytes down (BDw) and the second one as the
number of bytes up (BUp). The CIPCA scores are shown in Figure 1(b). Snapshot
has the highest upstream peak traffic volume, and is now better separated from video
and streaming. NMAP is again the application with smaller rectangles. However, it is
now better separated from HTTP, since most HTTP datastreams have higher traffic
volume range simultaneously in the upstream and downstream directions. Video and
streaming are also well separated, since video datastreams have consistently higher
traffic volume ranges simultaneously in both directions. Regarding Torrent, it is now
possible to distinguish among three groups: the group centers occur at approximately
the same upstream traffic volume; one group has small traffic range in both directions
(small rectangles) and high downstream volume, another has high traffic ranges in
the downstream direction but small in the upstream direction, and a third one has
small downstream volumes but high upstream traffic ranges. These groups emerge
from differences on the relative location of peers and the quality/stability of links. The
first group corresponds to closer peers from which it is possible to download at higher
speeds, the third to farther peers for which the links are less stable and unable to
download at high speeds, and the third group is a mixture of the two previous ones.
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(a) SymCovPCA.
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Figure 1: Symbolic scores, estimated by MCAR method.

5 Conclusion

Starting from the definition of symbolic variance and covariance for random interval-
valued variables, we have used a common insightful framework to present four symbolic
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principal component estimation methods that rely on a symbolic-conventional-symbolic
strategy: CPCA, VPCA, CIPCA, and SymCovPCA.

The analysis of a symbolic dataset containing Internet traffic lead to a clear interpre-
tation of the underlying Internet applications (Web browsing, file sharing, streaming,
video, port scans, and snapshots). The analysis highlighted the difficulties in sepa-
rating illicit traffic from regular one, suggesting the need to develop outlier detection
methods for symbolic data.

.
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In recent years some fractional generalisations of the Poisson process appeared.
The space-fractional Poisson process Nα(t), t > 0, recently studied, share with the
homogeneous Poisson process N(t), t > 0, the property of independence of increments.
The space-fractional Poisson process Nα(t) is a time-changed Poisson process

Nα(t) = N(Sα(t)), 1 < α < 0, (1)

where Sα(t) is a stable subordinator. The probability generating function of Nα reads

EuNα(t) = e−t(λ(1−u))α , t > 0, λ > 0, |u| ≤ 1. (2)

From (2) the probability distribution pk(t), k ≥ 0 of Nα(t) can be extracted together
with the moments and satisfies the difference-differential equation

dpk
dt

= −λα(I −B)αpk, (3)

where B is the shift operator.
For the hitting tims Tk of levels k, namely

Tα
k := inf (s : Nα(s) = k), k ≥ 1, (4)

we are able to show that

P{Tα
k <∞} =

Γ(k + α)

Γ(α)

1

k!
< 1, ∀ k ≥ 1, (5)

and study its behavior with respect to k and α.
For the n-times iterated subordinator

Nα(Sγ1(Sγ2(. . . Sγn(t))))
d
= Nα

∏n
j=1 γj(t), γj ∈ (0, 1) (6)

we study the limiting behavior. When
∏∞

j=1 γj = 0 the limiting process of (6) is a
degenerate r.v. with values 0 and ∞. If 0 <

∏n
j=1 γj < 1, instead, we still have a space-

fractional Poisson process. Also the space-time fractional Poisson processNα,ν(t), t > 0
is studied and we show that it has not a renewal structure. Its p.g.f. has the form

Gα,ν(t) = Eν,1(−tν(λ(1− u))α), |u| ≤ 1, ν, α ∈ (0, 1) (7)

and for ν = 1 coincides with the space-fractional Poisson while for α = 1 gives the time-
fractional Poisson process. A large class of generalized Poisson processes is obtained
by considering processes with p.g.f.

EuNf (t) = e−tf(λ(1−u)), (8)
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where f is a Bernstein function, that is a function with integral representation

f(x) =

∫ ∞

0

(1− e−xs)ν(ds), (9)

ν being the so-called Lévy measure on (0,∞). For f = xα, we have the space-fractional
Poisson process while for different forms of f we have a large class of generalized Poisson
processes, sharing the property of independence of increments and the characteristic
that jumps have arbitrary size. Furthermore N f (t) is a time-changed Poisson process

N f (t) = N(Sf (t)), (10)

where Sf (t) is a general subordinator related to the Bernstein function f . A special
attention is devoted to the cases f(x) = (x+ λ)α − λα and f(x) = ln(1 + x).
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Abstract

Let N be a set of N elements and F1, F2, . . . be a sequence of random in-
dependent equiprobable mappings N → N . For a subset S0 ⊂ N , |S0| = n,
we consider a sequence of its images Sk = Fk(. . . F2(F1(S0)) . . .), k = 1, 2 . . .,
and a sequence of their unions Ψk = S1 ∪ . . . ∪ Sk, k = 1, 2 . . . An approach to
the exact computation of distribution of |Sk| and |Ψk| for moderate values of
N is described. Two-sided inequalities for M|Sk| and M|Ψk| such that upper
bound are asymptotically equivalent to lower ones for N,n, k → ∞, nk = o(N)
are derived. The results are of interest for the analysis of time-memory tradeoff
algorithms.

This work was supported by RFBR, grant 14-01-00318.

1 Introduction

One of the well-known time-consuming task is the search for solution of the equation

G(x) = a, (1)

where G be a mapping of the finite set N = {1, . . . , N} to itself such that the complex-
ity of any known method to compute the value G−1(a) is comparable with exhaustive
search over the entire set N . The trivial method of searching the solution of the equa-
tion (1) is the sequential computation of values G(x) for all x ∈ N until the solution
of (1) will be found. The implementation of such method requires a memory of slowly
growing size for N → ∞ (necessary to calculate a value of the function G for any
x ∈ N ), but the time (number of operations) needed this method has the order O(N).

M.E.Hellman [2] proposed the universal (independent of the type of function G)
method for searching the solutions of the equation (1), permitting (after the prelim-
inary stage of the complexity O(N)) to find the solution of equation (1) with a high
probability for a time in order less than O(N) by means of tables having volume less
than O(N). This approach has been called the time-memory tradeoff.

We consider a simplified mathematical model of the “rainbow” table construction
(this model corresponds to the version of the time-memory tradeoff method that has
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been proposed in [6]). The model is as follows: an initial subset S0 ⊂ N , |S0| = n, is
chosen and its images

S1 = F1(S0), S2 = F2(F1(S0)), . . . , St = Ft(Ft−1(. . . (F1(S0)) . . .))

are calculated, where F1, . . . , Ft are independent random mappings of the set N to
itself having uniform distribution on the set ΣN , |ΣN | = NN , of all such mappings.

We propose the method to compute distributions of random variables φk = |Sk|
and ζt = |S1∪S2∪ . . .∪St| by means of Markov chains, applicable for moderate values
of N , and obtain two-sided estimates for the expectation of these random variables
and for the probabilities that an element x ∈ N , independent of the iterated mappings
F1, F2, . . ., belongs to the set Sk or to the set S1∪S2∪ . . .∪St. Upper and lower bounds
are asymptotically equivalent for N,n, t→ ∞, if nt = o(N). These results may be used
to optimize the methods of the time-memory tradeoff.

2 Basic results

Let, as before, F1, F2, . . . be independent random mappings of the set N = {1, . . . , N}
to itself, S0 ⊂ N , |S0| = n, Sk = Fk(Sk−1), Ψk = ∪k

j=1Sj, k > 1. Let φ0 = |S0|,
ζ0 = 0, φk = |Sk|, ζk = |Ψk|, k > 1. Since the mappings F1, F2, . . . are independent
and identically distributed, the sequences {φk}k>0 and {ζk}k>0 form the Markov chains.

Assertion 1. The transition probability matrix of the Markov chain {φk}k>0 has the
form

P = ∥pi,j∥Ni,j=1,

pi,j =


(
N
j

) (
j
N

)i j∑
m=0

(−1)m
(
j
m

) (
1− m

j

)i
, 1 6 j 6 i 6 N,

0, j > i.

The transition probability matrix of the Markov chain {(φk, ζk)}k>0 has the form

Q = ∥q(i,r),(j,s)∥Ni,j,r,s=1,

q(i,r),(j,s) =


pi,j

(N−r
s−r )(

r
j−s+r)

(Nj )
=
(
N−r
s−r

)(
r

j−s+r

) (
j
N

)i j∑
m=0

(−1)m
(
j
m

) (
1− m

j

)i
,

if 1 6 j 6 i 6 N, 1 6 r 6 s 6 min{N, r + j},
0 otherwise.

The transition probabilities of the Markov chain {φk}k>0 for k steps form the matrix

P (k) = ∥p(k)(i,j)∥Ni,j=1 = P k. Thus the collections of numbers {p(k)(n,j) = P{φk = j |φ0 =

n}, j = 1, . . . , N} define the distributions of φk that allows to find the numerical values
of the distribution characteristics of φk for the moderate values of N .

The two-sided estimates of P{x ∈ Sk |φ0 = n}, P{x ∈ Ψk |φ0 = n} and the first
moments of the random variables φk, ζk are contained in the following Theorem.
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Theorem 1. Let F1, F2, . . . be the independent equiprobable mappings of the set N =
{1, . . . , N} to itself, S0 ⊆ N , |S0| = n,Sk = Fk(. . . (F1(S0)) . . .), k > 1. For any
element x ∈ N , which does not depend on F1, F2, . . ., for all 1 6 k, n 6 N we have

n
N
− C2

n
k
N2 6 P{x ∈ Sk |φ0 = n} < n

N
− C2

n
k
N2 +

n3k2

4N3 ,

nt
N
− C2

t+1
3n2

2N2 < P
{
x ∈ Ψt | φ0 = n

}
< nt

N
− C2

nC
2
t+1

1
N2 +

n3(t+1)3

12N3 .
(2)

The following inequalities are also valid:

n− C2
n

k
N

6 M{φk |φ0 = n} < n− C2
n

k
N
+ n3k2

4N2 , (3)

nt− C2
t+1

3n2

2N
<M

{
ζt | φ0 = n

}
< nt− C2

nC
2
t+1

1
N
+ n3(t+1)3

12N2 ,

D{φk |φ0 = n} < kn3

N

(
1 + (n+2)k

4nN

)
. (4)
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Abstract

Performance of the informational correlation coefficient (Linfoot, 1957) is ex-
perimentally studied. To reduce the bias of estimation, a symmetric version
of this correlation measure is proposed. This modified informational correlation
coefficient outperforms Linfoot’s correlation measure at the bivariate normal dis-
tribution on large samples.

1 Introduction

Pearson’s correlation coefficient is a well-defined measure of the linear dependence
between continuous random variables X and Y . This partially refers to closely related
to it rank measures as the quadrant, Spearman and Kendall correlation coefficients.
However, if one is interested either in processing discrete data or in revealing the
possible nonlinear relationship between random variables, then difficulties may arise
both in the implementation of those classical measures as well as in their interpretation.

In the literature, several proposals were made to solve these problems, for instance,
Gebelein’s (1941), Sarmanov’s (1958) correlation coefficients, and the distance correla-
tion coefficient of Szekely (2007).

In what follows, we focus on the informational measures of association between
random variables [7]. Joe’s dependence measure [4] exploits the concept of the relative
entropy that measures the similarity of two random variables with the distributions
p(x) and q(x) in the discrete case

D(p||q) =
∑
x

p(x) log
p(x)

q(x)
.

Silvey [8] uses the measure of dependence between two random variables defined by
the ratio of their joint density and the product of their marginal densities φ(x, y) =
p(x, y)/[p(x)p(y)]. The introduced measure is defined as follows: ∆ = E[d(x)], where
d(x) =

∫
y:φ(x,y)>1

[
p(y|x)− p(y)

]
dy. Thus, it can be rewritten as

∆ =

∫ ∫
(x,y):φ(x,y)>1

[
p(x, y)− p(x)p(y)

]
dxdy.
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Granger [2] introduces another measure of dependence

Sp =
1

2

∫ ∫ [
p(x, y)1/2 − [p(x)p(y)]1/2

]2
dxdy.

Joe’s measure of dependence is not symmetric, and Silvey’s and Granger’s measures are
hard to compute. Mutual information (I(X, Y )) for any pair of discrete and continuous
random variables X and Y is defined as follows

I(X,Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
, I(X, Y ) =

∫ ∫
f(x, y) log

f(x, y)

f(x)f(y)
dxdy .

The informational correlation coefficient (ICC), firstly introduced by Linfoot [6],
is defined as follows

ρICC(X, Y ) =
√

1− e−2I(X,Y ) . (1)

Note that ICC is equal to the classical Pearson’s correlation coefficient at the bivariate
normal distribution: ρICC(X, Y ) = ρ.

2 Problem Setting

In spite of the fact that ICC was introduced more than 60 years ago, its properties as a
statistical measure of correlation have not yet been studied; it was not checked how well
this measure estimates the correlation coefficient based on the sample of a given size.
We are going to experimentally examine the following statistical properties of ICC: (i)
unbiasedness, (ii) consistency, (iii) Monte Carlo performance on small (N ≤ 20) and
large samples, and (iv) robustness. Moreover, in order to improve the performance of
ICC, namely, to reduce its bias, we propose and study a modified symmetric version
of ICC denoted as MICC.

3 Monte Carlo Experiment

3.1 Description of the computational algorithm

All numerical experiments are performed using R language, especially its “entropy”
library. The first problem is how to compute mutual information, which is used in (1).
This is solved by applying a shrink-algorithm [3].

There exist several different algorithms of computing I(X,Y ); in our work, we
choose the most precise one, not the fastest (for comparative analysis, see [3]). All
experiments are performed at the standard bivariate normal distribution with density
f(x, y) = N(x, y; 0, 0, 1.1, ρ).

The general algorithm can be described as follows:

1. Generate a sample of the fixed size: N = 20, 60, 100, 1000, 10000.

2. Extract x- and y-components from the sample, which are dependent random
variables with the correlation coefficient ρ.
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3. Construct the table of frequencies–the discrete analog of the joint distribution–we
take a rectangle [xmin, xmax] × [ymin, ymax] on plane and divide it into nx × ny

“bins” of equal size. Thus, the table of dimension nx, ny is built, each element
of which is equal to the number of points in the corresponding bin.

4. Mutual information I(X, Y ) and ICC are computed using this table of frequen-
cies.

This sequence is repeated 1000 times, allowing us to compute Monte Carlo estimates
of the mean and variance of the correlation coefficient ρ: computations are performed
for ρ = 0, 0.1, 0.2, . . . , 0.9, 1; the number of bins is taken equal to 400. Typical results
are exhibited in Fig. 1.

Figure 1: Monte-Carlo Biases of ICC

3.2 Monte Carlo results for ICC

1. From Fig. 1 it follows that estimation biases are considerably big (on small sam-
ples, they can even be greater than 0.5. Relatively small biases are observed only
on large samples N = 1000 andN = 10 000.

2. Satisfactory performance is observed in the case of a strong correlation—biases
decrease with the growth of the sample size.

3. We may also add that the coefficient of variance is less than 0.2 for all examined
combinations of (ρ,N).

4. A remark on the choice of the number of bins. The shrink-algorithm takes the
table of frequencies as an input. It appeared that the algorithm performance
depends on the relation N/K2, where K is the linear dimension of the table.
We observed that results are almost independent of the changes of K, as they
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depend only on the coefficient B = N/K2. For ρ = 0.5, the value B = 7 is
optimal. Given a data sample, we can choose an appropriate value of K, which
is a variable in our algorithm.

4 Main Result: A Symmetric Modification of ICC

Mutual entropy, also known as the Kullback-Leibler distance, has a serious disadvan-
tage — it is not symmetric, i.e., DKL(p||q) ̸= DKL(q||p). Thus, the Kullback-Leibler
divergence is used [5]:

Div(p||q) = DKL(p||q) +DKL(q||p). (2)

Analogously, a symmetric version of mutual information can be introduced

J(x, y) = I(x, y) + I∗(x, y)

=

∫ ∫
f(x, y) log

f(x, y)

f(x)f(y)
dxdy +

∫ ∫
f(x)f(y) log

f(x)f(y)

f(x, y)
dxdy .

Our idea is to repeat Linfoot’s derivation of formula (1), replacing the mutual infor-
mation I(X,Y ) with its symmetric version J(X, Y ). In this case, the following result
holds.

Theorem 1. A modified symmetric analog of the Linfoot’s informational correlation
coefficient (1) called as the modified informational correlation coefficient (MICC) is
given by:

ρMICC =

√
1− 2

W (2e2(J+1))
, (3)

where W (x) is the Lambert function [1], inverse w.r.t. xex. In particular, ρMICC = ρ
at the standard bivariate normal distribution.

The results of comparison of these two correlation measures are exhibited in Fig. 2–
Fig. 4: from them it follows that MICC outperforms ICC on all examined combina-
tions of sample sizes and correlation coefficients. The observed improvement is more
considerable on small samples and low values of the correlation coefficient — just in
the most difficult cases for ICC.

5 Conclusions

1. The statistical performance of the Linfoot’s informational correlation coefficient
is studied: considerable biases of estimation are observed.

2. To reduce the biases of ICC, a modified symmetric version of it, namely MICC,
is proposed, which proved to provide much lesser estimation biases as compared
to the original one.

3. The proposed modified informational correlation coefficient MICC is recom-
mended for processing Big Data.
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Figure 2: Monte-Carlo Biases of ICC and MICC at ρ = 0

Figure 3: Monte-Carlo Biases of ICC and MICC at ρ = 0.5
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Figure 4: Monte-Carlo Biases of ICC and MICC at ρ = 0.9
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Abstract

The paper deals with the automated method for early detection of eye fundus
pathological changes in the main vessels, which is useful for retinal disease diag-
nosing. The target users are primary care physicians and optometrists that use
the digital portable eye fundus imaging devices. In the experiments, the digital
portable eye fundus camera is used.

1 Introduction

Retinal vessel segmentation algorithms are a major component of computer-aided reti-
nal disease diagnosis systems [1]. Ophthalmologists have ascribed subtle changes in
the diameter of arteries and veins to several diseases such as diabetic retinopathy,
atherosclerosis, hypertension, choroidal neovascularization, and so on [2]. Diseases af-
fect arteries and veins differently leading to an abnormal artery to the vein width ratio
in cardio vasculature. Typical arteries and veins can be discriminated by color, illumi-
nation, width, central reflex size and topological properties, however, these properties
are actual for classifying vessels only near the optic disc and depend on the quality of
images and the region at eye fundus [3]. The structural characteristics of vessels could
be used as rules: arteries never cross arteries and the same is true for veins. Thus, at
any any crossover points, where two vessels cross each other, one of them is artery and
the other is vein; the retinal blood vasculature follows the structure of a binary tree.
Therefore, a vessel branches into two vessels of the same type, which means that at
every bifurcation point, three vessel segments connected to each other, are from the
same class of vessels [4]. Vessels in the outer regions of the image are often darker, the
width of vessels change is least, branches of the same vessel lie next to each other. Also
biological characteristics, e.g., changes in color of retina, are individual for each person
and influence the classification results. The aim of this research is to develop a fully
automated method for early detection of eye fundus pathological changes in the main
vessels. It will serve as a helpful tool for diagnosing and will be used by primary care
physicians and optometrists. The created method is suitable for the analysis of image,
obtained by digital hand-held eye fundus imaging devices, available on the market.
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Figure 1: The main steps of the algorithm: 1 - initial image; 2-4 - preprocessing;
5 - gray color image; 6-10 - vessel extraction; 11-19 - optical disc detection.

2 Proposed Method

An automated method for segmentation and classification of arteries and veins as well
as measurement of arteriolar-to-venular diameter ratio (AVR) in eye fundus images
are presented. The method includes optic disc segmentation in order to determine the
arteriolar-to-venular diameter ratio in the measurement zone, as well as retinal vessel
segmentation, vessel classification into arteries and veins, selection of major vessel pairs,
and measurement of AVRs.

As a background, we have taken the idea from two articles ( [5] and [6]) that presents
a high efficiency of detecting the eye fundus elements, mostly using mathematical
morphological operations. All the steps of the algorithm are shown in Fig 1.

After the eye fundus image Vinit is taken (Fig. 1.1), preprocessing of the image
is performed. CLAHE (contrast limited adaptive histogram equalization) method is
applied (Fig. 1.2). A median filter of size s = 5 (Fig. 1.3) and the Gaussian filter (Fig.
1.4) of size s = 7 with σ = 1 are applied. Then the preprocessed image Vpr is used in
other calculations. The green color channel VG is used for a further analysis (Fig. 1.5).
The proportion coefficient p = width(Vpr)/576 is calculated according to the width of
the fundus image. This coefficient is used for the adjustment of parameters given in ( [5]
and [6]) in order to use full size images. The most evident blood vessels are extracted.
The mathematical morphological closing operations of sizes s = 8 · p (Fig. 1.6) and
s = 4 · p (Fig. 1.7) are performed on VG. The obtained images are subtracted and the
image Vvs is obtained (Fig. 1.8). The image Vvs is thresholded from (max(Vvs) · 0.1)
to 255. The obtained binary image is processed with a median filter of size s = 11 in
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order to remove smaller isolated parts and to make the image more smooth. The main
blood vessels Vvm are obtained by this processing (Fig. 1.11). Finally, blood vessels
have thinned and the resulting noise is removed by removing isolated pixels. The main
thinned blood vessel net Vvt is obtained (Fig. 1.10).

Detection of the preliminary optic nerve disc ODp center. Vvt is used for line detec-
tion using the Hough transformation. Lines are selected with more then 20 ·p votes and
with slopes more then 45◦. According to these lines with the slope difference larger then
1◦ the intersection map is created (Fig. 1.11). The line intersection map is dilated by
the kernel of size s = 5 ·p and proportionally added to the green channel VG (Fig. 1.12).
Then the resulting image is blurred using Gaussian filter of size s = 30 · p (Fig. 1.13).
The most intense point is selected as the preliminary optic nerve disc center ODp.

Optic nerve disc detection ODr. A square 250·p wide is masked out (Fig. 1.14) at the
detected preliminary optic nerve disc ODp center. A morphological closing operation
of the kernel of size s = 25 · p is applied to eliminate blood vessels (Fig. 1.15 - 1.16).
The obtained image is blurred using the Gaussian filter with the kernel of size s = 4 · p
(Fig. 1.17). A gradient image is received using the Sobel filter and thresholded from 7
to 255 (Fig. 1.18). The circle extraction by the Hough transformation is applied to the
gradient image and the best circle with the center closest to the detected preliminary
optic disc ODp center is chosen as the real optic nerve disc ODr (Fig. 1.19).

Figure 2: Results of algorithm performance. Vessels detected before (left) and after
(right) the sport load. The white circle marks the detected optic nerve disc. The red
line denotes the detected artery and the blue line denotes the detected vein.

Blood vessel measurements are performed at the distance of a double optic disc
size from the center of ODr. The algorithm measures in main vessels Vvm and finds
intersections. Then it measures the minimum width of the vessels between 4 · p and
30 · p at these points. Next two largest top vessels and two largest bottom vessels are
selected.
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3 Data for Experiments

The data of 11 different men who do not practice sports actively were used. They play
soccer twice a week (age=44.9±6.6 years; height=178.2±6.7 cm; body weight=85±11.4
kg; BMI=26.8± 3.8 kg/m2). The eye fundus was observed using a digital portable eye
fundus camera Smartscope M5-2 EY3 (Optomed OY). Taking pictures of the central
part of retina with a narrow pupil, using a digital format of high resolution allowed
us to measure the changes in retinal vessels. The automatically selected main vessels
are classified as vein which mean intensity along the detected diameter is smaller. The
other are classified as arteries (Fig. 2). The clearing of upper and lower branches next
to eye nerve disc of retinal central artery and central vein was measured using the
proposed algorithm.

4 Conclusions

The experiments show that preprocessing must be enhanced in order to remove the
gradient noise, which is caused by extra light and causes some places of fundus image
to become brighter. This fact leads to missing detection of the optical disc as well
as classification of veins and arteries. A simple removal of the gradient can effect
the corruption of the optical disc, because it is lighter then the surroundings. The
algorithm of blood vessel crack filling algorithm must be integrated. It is especially
important on the edge of the optic nerve disc. Overlying and side-by-side parallel blood
vessels should be detected.
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Abstract

In this paper we introduce a measure of closeness of partial rankings based
on a metric on permutations, and we analyze some of its properties.

1 Introduction

In many situations, there are different methods for analyzing the same data. For
example, several methods exist for finding differentially expressed genes using RNA-seq
data. They tend to produce similar, but not identical significant genes and rankings
of the gene list. When comparing different methods applied to the same data, we
are interested in how close are their outputs. The main idea is to define appropriate
distance of the sample space. Further, the interpretation of the rough distance between
two rankings should be made on the basis of its statistical significance. That means we
need to know the distribution of the distance under some common hypotheses about a
sample of rankings. In recent years, many new applications appear in different areas
including bioinformatics pattern recognition, information retrivial [7], [6], [1], [4], [5],
etc.

In this paper we define an appropriate mathematical framework that include special
cases of partially ranked lists of genes. Any ranked list can be complete, which means
all n genes are ranked, or incomplete, which means some genes are not ranked. The
incomplete ranking include the case where the most significant k genes are ranked,
with group k + 1 consisting of the remaining genes. Any ranking of n items corre-
sponds a permutation ⟨α(1), . . . , α(n)⟩ from the set of all permutations Sn. We define
appropriate distance measures on Sn in order to compare full or incomplete rankings
or rankings of different types. The distance can be thought of as a measure of the
similarity of the two rankings.

Let α and β be two permutations from Sn corresponding to two rankings and let d
be a metric on the permutation group Sn. Then d : Sn×Sn → [0,∞) satisfies the usual
axioms: d(α, β) ≥ 0 ∀α, β ∈ Sn, d(α, β) = 0 ⇔ α = β; d(α, β) = d(β, α) ∀α, β ∈
Sn; and the triangle inequality d(α, β) ≤ d(α, γ) + d(γ, β) ∀α, β, γ ∈ Sn.

Invariance is natural in many problems. Right-invariance means that the distance
does not depend on arbitrary labeling or reordering of the data:

d(α, β) = d(ατ, βτ).
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Here ατ is the product of two permutations α and τ and defined by ατ(i) = α(τ(i)).
Right-invariant property allows to compute the distance between two permutations α
and β through the the distance of αβ−1 to the identity permutation.

Further in our analysis we are using a popular statistical measure of similarity on
Sn called Spearman’s ρ. For α, β ∈ Sn it is defined by

R2(α, β) =
n∑

i=1

(α(i)− β(i))2.

Strictly speaking, Spearman’s ρ is not a metric in the above definition, however, its
square root is the Euclidean metric on permutations. It is easy to see that Spearman’s ρ
is right-invariant. By right-invariance of a distance it is sufficient to study its statistical
properties when one of the rankings is the identity permutation.

2 Complete or incomplete ranking

A ranking of n items is represented by an ordered n-tuple, which simply lists the items
in their ranked order. The most preferred item is listed first, and the least preferred
item appears in the n-th position. Any ranking corresponds to a permutation which is
an element of the set Sn of permutations. Given a set of rankings, the problem of their
comparison reduced to a problem of choosing appropriate measure of association on
the set of all rankings. There are several usefull distance measures on Sn thoroughly
discussed in statistical literature like Kendall’s τ , Spearman’s ρ, Spearman’s footrule.
Therefore, for two permutations α, β ∈ Sn the distance d(α, β) can be thought of as a
measure of similarity of the two rankings. Excellent references on statistical analysis
of rankings are the monographs by Diaconis [3], Critchlow [2], and Marden [8].

[Classification into r ordered categories.] Suppose the list of genes is splitted
into several groups, so that there is a ranking between the groups and not necessarily
within each group. It can be describe formally following Critchlow [2].

Let n1, . . . , nr be an ordered sequence of r strictly positive numbers summing to
n. Such an ordered partition corresponds to a partial ranking with n1 items in the
first group, n2 items in the second group and so on. No further information is con-
veyed about orderings within each group. The special case of ranking the top k items
corresponds to n1 = · · · = nk = 1, nk+1 = k + 1.

Formally, denote N1, . . . , Nr are the following partition of {1, . . . , n}:

N1 = {1, . . . , n1}
N2 = {n1 + 1, . . . , n1 + n2}
. . . (1)

Nr = {n1 + · · ·+ nr−1 + 1, . . . , n}.

Let S denote the subgroup of all rankings which permute the first n1 items among
the first n1 ranks, and which permute the next n2 items among the next n2 ranks, and
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so on. The equivalence class [α], that assigns the same set of ranks to the items from
the each category as α, is the right coset Sα. There is a one-to-one correspondence
between the partitioning ”of type n1, . . . , nr” and the right cosets of S.

2.1 Distances on partial rankings

In the above algebraic structure the problem of comparing of partial rankings is reduced
to a problem of extending the metrics on the permutation group Sn to metrics on
the corresponding coset space. We discuss an extension of the above metrics for the
cases of partial rankings. One natural way of extending it is to construct the induced
Hausdorff metrics. Its particular benefit is that it keeps the metric properties of the
original distance.

Let the two partial rankings be of types n1, . . . , nr. Denote nij the number of
elements in the set {α−1(Ni) ∩ β−1(Nj)}. Then the function

Rfv(α, β) =
r∑

i=1

r∑
j=1

|ci − cj|2nij.

is a right-invariant metric on partial rankings induced by Spearman’s ρ. Here ci =
n1 + · · ·+ ni−1 +

ni+1
2

is the average of the ni numbers in the set Ni defined by (1).
The interpretation of this function is that it computes Spearman’s ρ distance be-

tween the two rankings using the “pseudo-ranks” ci and cj instead the ordinary ranks
to those items in {α−1(Ni)∩β−1(Nj)}. The function is called the “fixed vector” metric
on Sn/S induced by Spearman’s ρ. Its main advantage is that it preserves the distance
properties and the right invariance as well [9]. Additionally, some useful statistical
properties are known in the literature.

2.2 Comparing partial rankings of different types

We consider the most general case of comparing partial rankings of different types. Let
the two partial rankings be of types n1, . . . , nr and n

′
1, . . . , n

′
r′ respectively.

Let N1, . . . , Nr be as defined in (1) and let N ′
1, . . . , N

′
r be a second partition of

{1, . . . , n}:

N ′
1 = {1, . . . , n′

1}
N ′

2 = {n′
1 + 1, . . . , n′

1 + n′
2}

. . .

N ′
r′ = {n′

1 + · · ·+ nr′−1 + 1, . . . , n}.

Let nij be the number of elements in the set {α−1(Ni) ∩ β−1(N ′
j)}. Then

R∗(α, β) =
r∑

i=1

r′∑
j=1

|ci − c′j|2nij.

is a right-invariant metric on partial rankings. Here c′j = n′
1 + · · ·+ n′

j−1 +
n′
j+1

2
is the

average of the n′
j numbers in the set N ′

j defined by (2).
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3 Large sample approximation of a distance distri-

bution

Now, we estimate the mean and the variance of R2∗ and find approximations of its
distribution.

Definition 1. The metric d∗ on Sn/S is asymptotically normally distributed if for
partial rankings α∗ and β∗ the following limit distribution is valid

lim
n→∞

P

(
d∗(α∗, β∗)− E d∗(α∗, β∗)√

var(d∗(α∗, β∗))
≤ x

)
= Φ(x)

for all real numbers x, where Φ, is the standard normal cumulative distribution func-
tion.

The significance of the distance is useful to estimate the similarity between the two
partial rankings. For this one needs to calculate the probability that d∗ is less than
or equal to the observed value d∗(α∗, β∗). This probability is the p-value for α∗ and
β∗. Smaller values of p indicate stronger evidence that α∗ and β∗ are ”similar”. To
compute the p-value, Critchlow [2] finds the probability distribution of some popular
metrics on permutations under the appropriate uniformity assumption.

The mean and the variance of R2∗ are given by [2]:

E(R2∗) =
r∑

i=1

r∑
j=1

|ci − cj|2
ninj

n

var(R2∗) =
1

n2(n− 1)

r∑
i=1

r∑
j=1

r∑
k=1

r∑
l=1

ninjnknl(|ci − cj|2 + |ck − cl|2 − 2|ck − cj|2),

where ci = n1 + · · · + ni−1 +
ni+1
2

is the average of the ni numbers in the set Ni =
{n1 + · · ·+ ni−1 + 1, . . . , n1 + · · ·+ ni−1 + ni}.

For equal partition sizes these reduce to

E(R2∗) = n3 (r
2 − 1)

6r2

var(R2∗) =
n6

n− 1

(r2 − 1)2

6r5
.

Normal approximation is valid for the distance distribution under the assumption
that they were generated, independently, from a uniform distribution on all possible
partial rankings. For equal partition sizes Gamma distribution with shape parameter
= µ2/σ2 = n− 1 gives better approximation.

Example (Palejev & Stoimenova [10]). A simulation study is based on one million
repetitions of gene sequences of size 13932. Each of them contains data for the sig-
nificance of gene expression. Further, the genes are splitted into six groups by values
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according the size of the p-values. Intervals reasonable for application are determined
by 0, 10−4, 10−3, 10−2, 0.05, 10−1, 1. For this unbalance case the distances between any
two of the partial rankings are calculated. The distributions of the distances is shown
on Figure 1. Gamma distribution approximation is also suitable for this case.
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Figure 1: Distribution of distances between 2 random permutations
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Abstract

Concept of data depth provides one possible approach to the analysis of mul-
tivariate data. Among other it can be also used for classification purposes. The
present paper summarizes main ideas how the depth can be used in classification.
Two step scheme of the typical depth-based classifiers is discussed. Different
choices of the depth function and classification procedure used in this scheme
lead to different classifiers with different properties. Different distributional as-
sumptions might lead to the preference of either global or local depth functions
and classification procedures.

1 Introduction

Depth function is basically any function which provides ordering (or quasi-ordering) of
points in multidimensional space. Existence of ordering enables generalization of many
nonparametric techniques proposed for univariate variables and thus the data depth
creates one possible basis of nonparametric multivariate data analysis.

Data depth has been also applied in classification. The aim of classification is to
create a rule for allocation of new observations into one of two (or more) groups. Several
such rules, known as classifiers, based on data depth were proposed since 2000. The
aim of the present paper is to summarize main ideas how the depth can be used in
classification and to present new trends in this area.

2 Concept of data depth

There are several depth functions commonly used in applications – halfspace depth,
projection depth, spatial depth, Mahalanobis depth, zonoid depth, simplicial depth
and some others. Their survey can be found in [8]. We recall here the first three
of the depth functions listed above since they are used most frequently in context of
classification:

• The halfspace depth of a point x in Rd with respect to a probability measure P
is defined as the minimum probability mass carried by any closed halfspace con-
taining x, that is

D(x, P ) = inf
H

{
P(H) : H a closed halfspace in Rd : x ∈ H

}
.
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• The projection depth of a point x in Rd with respect to a probability measure P
is defined as

D(x, P ) =
1

1 +O(x, P )
, where O(x, P ) = sup

∥u∥=1

|uTx− µPu|
σPu

,

where µPu is some location and σPu is some scale measure of distribution of
random vector uTX, usually the median and MAD.

• The spatial depth (also called L1-depth) of a point x in Rd with respect to a
probability measure P with variance matrix Σ is defined as

D(x, P ) = 1− E

∥∥∥∥∥∥∥
Σ−1/2(x−X)∥∥∥Σ−1/2(x−X)

∥∥∥
∥∥∥∥∥∥∥ .

All three depth functions listed above have desirable properties like affine invariance,
maximality at a point of symmetry (if the distribution is symmetric in some sense, e.g.
angularly), monotonicity on rays from the point with the maximal depth – so called
deepest point, which can be considered as multivariate analogy to median. See [10] for
the discussion of desirable properties of the depth functions.

The very important difference among the considered depth functions consists in
different behaviour of their empirical versions. While the empirical halfspace depth
is equal to zero for any point which lies outside of the convex hull of the data, the
empirical projection depth (as well as empirical spatial depth) are nonzero everywhere.

The depth of a point is a characteristic of the point specifying its centrality or
outlyingness with respect to the considered distribution. Since the whole distribution
is considered, the depth is said to be a “global” characteristic of the point. However,
in recent years there have been attempts to “localize” depth, see [7] or [3]. Later we
will discuss importance of these attempts for classification purposes.

3 Maximal depth classifier

Let us first shortly recall the two-classes classification problem. We consider two un-
known absolutely continuous probability distributions P1 and P2 on Rd. Independent
random samples from these distributions are available. Together they constitute so
called training set. Empirical distributions based on the training set are denoted P̂1

and P̂2. The class to which the observation x is assigned is denoted by d(x).
The maximal depth classifier – the very first depth-based classifier – is simple:

d(x) = argmax
i=1,2

D(x; P̂i) (1)

The points close to the centre (multivariate median) of some distribution have high
depth with respect to this distribution and it seems to be natural to classify them to
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Figure 1: Scheme of typical depth-based classifier.

this distribution. The idea of the maximal depth classifier is thus in accordance to
common sense.

However Ghosh and Chaudhuri [2] proved that the maximal depth attains minimal
possible probability of misclassification (known as Bayes risk) only in very special cases
– they showed optimality when the considered distributions are elliptically symmetric
with the density decreasing from the centre, differing only in location and having equal
prior probabilities. The optimality is lost even if only one of these assumptions is not
fulfilled.

4 Advanced depth-based classifiers

The paper by Ghosh and Chaudhuri [2] started the search for depth-based classifiers
which would be applicable in broader class of distributional settings. Typical depth-
based classifier can be described as a two-steps procedure:

1. The first step consists in computation of depths of the new observation x with
respect to both parts of the training set. Each point is characterized by a pair of
depths, these pairs lies in so called DD-space (depth-versus-depth space). Typ-
ically the DD-space is subset of [0, 1] × [0, 1] ⊂ R2 and thus the first step can
be usually considered as reduction of dimensionality – from Rd to the compact
subset of R2. This step is connected with the question “Which depth function
should be used?”

2. The second step consists in application of some classification procedure in the DD-
space. This step is connected with the question “Which classification procedure
should be applied in the DD-space?”

The scheme of typical depth-based classification procedure is shown in Figure 1.
The difference among the classifiers proposed in literature consists mainly in dif-

ferent answers to the two questions connected with the two steps – different depth
functions can be applied in the first step and different classification procedures can be
applied in the second step.

4.1 Which depth function should be used

The classifiers which use any global depth function perform well only if the considered
distributions have some global properties like symmetry or unimodality. In more gen-
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eral settings, for example in the case of multimodality or nonconvexity of levelsets of
density, some local depth should be used - see e.g. [1] or [4].

4.2 Which classification procedure should be applied in the
DD-space

Procedures that are applied in the DD-space can be also either “global” or “local” in
nature. As the global we denote the procedures that take into account all points of
the training set when constructing the classifier while the local procedures take into
account only points of the training set close to the point which is classified. Let us
mention at least some of the both global and local procedures:

• The DD-classifier proposed by Li et al. [6] belongs to the global depth-based
classifiers. The idea of the classifier is to separate the groups in DD-space by line
(or more generally by a polynom) to minimize number of errors when classifying
points from the training set.

• The DD-alpha procedure proposed by Lange et al. [5] is another global depth-

based classifier. Instead of the pair [D(x, P̂1), D(x, P̂2)], it works with a vector

z := [D(x, P̂1), D(x, P̂2), D(x, P̂1) ·D(x, P̂2), D(x, P̂1)
2, D(x, P̂2)

2].

Lange et al. proposed a heuristic for finding proper parameters which spec-
ify separating hyperplane given by the equation aD(x, P̂1) + bD(x, P̂2) +

cD(x, P̂1)D(x, P̂2) + dD(x, P̂1)
2 + eD(x, P̂2)

2 = 0. The procedure was success-
fully tested on many real datasets leading usually to low misclassification rates.
The procedure was implemented in the R-package ddalpha.

• The classifier which uses kernel density estimation proposed by Ghosh and
Chaudhuri [2] is a local depth-based classifier. In the case of elliptically sym-
metric distribution the classifier which minimizes probability of misclassification
can be expressed as

d(x) = argmax
i=1,2

πiθi(D(x, P̂i)),

where θi, i = 1, 2 are some unknown real functions that can be estimated by
kernel density estimation. This procedure can be used even if the distributions
are nonelliptical.

• The k depth-nearest neighbour classifier used by Vencalek [9] is another local
depth-based procedure. The idea is quite simple – to use the well known k-
nearest neighbour procedure in the DD-space. The question is which metric
should be used to measure distances between distinct points.

5 Conclusion

The data depth provides basis for nonparametric inference on multidimensional data.
It can be also applied in classification. Although one can expect broad applicability of
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the nonparametric depth-based classifiers their optimality can be guaranteed usually
only under some restrictive assumptions. Global depth functions and global classifi-
cation techniques applied on the DD-space lead to good results only if the considered
distributions have some global properties like unimodality. In more general settings
localization is needed – one can use local depth functions or local classifiers used in the
DD-space.
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Abstract
Let x = (x1, . . . , xn) be a sample from a distribution Pθ, θ = (θ1, θ2), where

θ1 ∈ R is a location parameter and θ2 > 0 is a scale parameter. To estimate θ
strong two-dimensional confidence regions of given confidence level α ∈ (0, 1) are
considered. The quality of a Borel confidence set B(x) is characterized by the
risk function defined as R(θ,B) = Eθλ2(B(x)), where λ2(B(x)) is the Lebesgue
measure of B(x). Among confidence regions we distinguish those having the
minimal risk and call them optimal. The method for construction of an optimal
confidence region is well-known (see, e.g., [1]) and is based on using a pivot.
Let xi:n represents the ith order statistic of the sample x for i = 1, . . . , n. To
construct a pivot two statistics t1 and t2 are taken; both statistics depend on
given k ≤ n order statistics, say t1(x) =

∑k
i=1 aixmi:n, t2(x) =

∑k
i=1 bixmi:n,

where 1 ≤ m1 < m2 < . . . < mk ≤ n. The case k = 2 was considered in [4]. If
k > 2, then the problem of choosing {ai, bi} is appeared. Here given {mi} the
coefficients {ai, bi} are taken in such a way that t1 and t2 are the asymptotically
best linear estimators of θ1 and θ2, respectively (see, e.g., [3]). The main goal of
the paper is to make the best choice of order statistics, that is the best choice
of {mi}, to minimize the risk function, as n → ∞, under the assumptions that
mi/n → pi, i = 1, . . . , k, 0 ≤ p1 < p2 < . . . < pk ≤ 1. It turns out that
such a problem is quite close to that considered in e.g. [2], Section 10.4. In the
paper the problem of choice the value of k is also discussed. Several examples of
location-scale families of distributions are presented.
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Abstract

At present time there are several approaches to estimation of survival func-
tions of vectors of life times. However, some of these estimators either are in-
consistent or not fully defined in range of joint survival functions and hence not
applicable in practice. Almost all of these estimators have an exponential or
product structures. In this work we present absolutely other estimator of power
structure for bivariate survival function of bivariate lifetime vector, which is cen-
sored from the right by censoring vector of random variables. We prove weak
convergence and strong consistency results for estimators. Moreover, propose
estimators of bivariate survival function from random censored observations in
the presence of covariate and study the large sample properties of estimators.

1 Introduction

The problem of estimation of multivariate distribution (or survival) function from in-
complete data is considered with beginning of 1980’s (Campbell (1981), Campbell &
Földes (1982), Hanley & Parnes (1983), Horváth (1983), Tsay, Leurgang & Crow-
ley (1986), Burke (1988), Dabrowska (1988, 1989), Gill (1992), Huang (2000), Ab-
dushukurov (2004) etc.)(see, [1-20]). In the special bivariate case, there are the nu-
merous examples of paired data representing the times to death of individuals (twins
or married couples), the failure times of components of system which are subjected to
random censoring with possible dependence between the two censoring variables. At
present time there are several approaches to estimation of survival functions of vectors
of life times. However, some of these estimators either are inconsistent or not fully
defined in range of joint survival functions and hence not applicable in practice. Al-
most all of these estimators have an exponential or product structures. In this work
we present also the estimator of power structure for bivariate survival function F (t, s)
and present some large sample properties of estimators.

2 Random right censoring model

Let {Xi = (X1i, X2i)}∞i=1 be a sequence of independent and identically distributed two-
dimensional random vectors with a common continuous survival function F (s; t) =

81



P (X11 > s,X21 > t),(s, t) ∈ R2. This sequence is censored from the right by se-
quence {Yi = (Y1i, Y2i)}∞i=1 of independent two-dimensional random vectors with sur-
vival functions

{
G(i)(s; t) = P (Y1i > s, Y2i > s)

}∞
i=1

,(s, t) ∈ R2. The statistical model
is such that at the n-th stage of the experiment the observation is available the sample
V (n) = {(Zi,∆i), 1 ≤ i ≤ n}, where Zi = (Z1i, Z2i),∆i = (δ1i, δ2i), Zki = min (Xki, Yki)
and δki = I(Zki = Xki),k = 1, 2. The problem is consist in estimating of F from the
sample V (n). Let H(i)(s; t) = P (Z1i > s, Z2i > t),(s, t) ∈ R2. The model is a generaliza-
tion of two-dimensional non-homogeneous random right censorship, where the vectors
Xi and Yi may be dependent. Note that this type of two-dimensional random right
censoring is not considered by other authors.

The proposed estimators for F will be constructed by using the two-dimensional
cumulative hazard function − logF (s; t) = L(s; t). We introduce the average functions

G(n)(s; t) =
1

n

n∑
i=1

G(i)(s; t), H
(n)(s; t) =

1

n

n∑
i=1

H(i)(s; t),

M (n)(s; t) =
1

n

n∑
i=1

M(i)(s; t), N
(n)(s; t) =

1

n

n∑
i=1

N(i)(s; t),

M̃ (n)(s; t) =
1

n

n∑
i=1

M̃(i)(s; t), Ñ
(n)(s; t) =

1

n

n∑
i=1

Ñ(i)(s; t),

where

M(i) (s; t) = P (Z1i ≤ s, Z2i > t) , N(i) (s; t) = P (Z1i > s, Z2i ≤ t) ,

M̃(i) (s; t) = P (Z1i ≤ s, Z2i > t, δ1i = 1) ,

Ñ(i) (s; t) = P (Z1i > s, Z2i ≤ t, δ2i = 1) .

Let’s consider also the cumulative hazard functions corresponding to previously
defined functions:

Λ
(n)
1 (s; t) =

∫
(−∞;s]

M (n) (du; t)

H(n) (u−; t)
, Λ

(n)
2 (s; t) =

∫
(−∞;t]

N (n) (s; dv)

H(n) (s; v−)
,

Λ̃
(n)
1 (s; t) =

∫
(−∞;s]

M̃ (n) (du; t)

H(n) (u−; t)
, Λ̃

(n)
2 (s; t) =

∫
(−∞;t]

Ñ (n) (s; dv)

H(n) (s; v−)
,

and their estimators from the sample V (n):

Λ1n (s; t) =

∫
(−∞;s]

Mn (du; t)

Hn (u−; t)
, Λ2n (s; t) =

∫
(−∞;t]

Nn (s; dv)

Hn (s; v−)
,

Λ̃1n (s; t) =

∫
(−∞;s]

M̃n (du; t)

Hn (u−; t)
, Λ̃2n (s; t) =

∫
(−∞;t]

Ñn (s; dv)

Hn (s; v−)
.
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Here

Mn (s; t) =
1

n

n∑
i=1

I (Z1 ≤ s, Z2i > t), Nn (s; t) =
1

n

n∑
i=1

I (Z1i > s, Z2i ≤ t),

M̃n (s; t) =
1

n

n∑
i=1

I (Z1i ≤ s, Z2i > t, δ1i = 1),

Ñn (s; t) =
1

n

n∑
i=1

I (Z1i > s, Z2i ≤ t, δ2i = 1)

- empirical analogues of functions M (n) (s; t) , N (n) (s; t) , M̃ (n) (s; t) and Ñ (n) (s; t) .
Let’s introduce

Λ(n) (s; t) = Λ
(n)
1 (s;−∞) + Λ

(n)
2 (s; t) , Λ̃(n) (s; t) = Λ̃

(n)
1 (s;−∞) + Λ̃

(n)
2 (s; t) ,

Λn (s; t) = Λ1n (s;−∞) + Λ2n (s; t) , Λ̃n (s; t) = Λ̃1n (s;−∞) + Λ̃2n (s; t) .

For a function of two arguments ψ (s; t), put

ψ (∆s; t) = ψ (s; t)− ψ (s−; t) , ψ (s; ∆t) = ψ (s; t)− ψ (s; t−) .

Consider the problem of estimation of the function F (s, t) by previously estimating
the following functionals:

F
(n)
1 (s; t) = exp

(
−Λ̃(n) (s; t)

)
=

= exp
(
−
(
Λ̃

(n)
1 (s;−∞) + Λ̃

(n)
2 (s; t)

))
,

F
(n)
2 (s; t) = exp

(
−
(
Λ̃

(n)c

1 (s;−∞)
))

·
∏
u≤s

(
1− Λ̃

(n)
1 (∆u;−∞)

)
·

· exp
(
−
(
Λ̃

(n)c

2 (s; t)
))∏

v≤t

(
1− Λ̃

(n)
2 (s; ∆v)

)
, (1)

F
(n)
3 (s, t) =

[
H(n)(s, t)

]R(n)(s,t)
,

where R(n) (s; t) = Λ̃(n)(s;t)

Λ(n)(s;t)
. The plug-in estimates of functionals (1) are

F1n (s; t) = exp
(
−Λ̃n (s; t)

)
= exp

(
−
(
Λ̃1n (s;−∞) + Λ̃2n (s; t)

))
,

F2n (s; t) =
∏
u≤s

(
1− Λ̃1n (∆u;−∞)

)
·
∏
v≤t

(
1− Λ̃2n (s; ∆v)

)
, (2)

F3n (s; t) = [Hn (s; t)]
Rn(s;t),

where Rn (s; t) =
Λ̃n(s;t)
Λn(s;t)

. We give some properties of the estimates (2). The following
result allows to estimate the difference between the estimates. We propose some results
from [1-4].
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Theorem 1. [1-4]. For all (s, t) ∈
(
−∞, Z1(n)

)
×
(
−∞, Z2(n)

)
we have

(I) 0 ≤ F1n(s, t)− F2n(s, t)
a.s.
= O( 1

n
);

(II) |F1n(s, t)− F3n(s, t)| ≤ πn(s, t), a.s.,
(III) |F3n(s, t)− F2n(s, t)| ≤ πn(s, t) +O( 1

n
), a.s.,

where πn(s, t) = |− logHn(s, t)− Λn(s, t)| and Zm(1) ≤ ... ≤ Zm(n) are order statistics
corresponding to the Zmj, m = 1, 2; j = 1, ..., n.

In the following theorem we give conditions of strong uniform consistency of esti-
mates (2), when the censors are identically distributed, although not necessarily inde-
pendent from the censoring random vectors.

Theorem 2. [1-4]. Let the pairs {(Xi;Yi) , i ≥ 1} are identically distributed and
in the case of m = 3 function G (s; t) = P (Y11 > s, Y21 > t) is a continuous. For
m = 1, 2, 3 equality

P

(
lim
n→∞

sup
(s;t)∈Q

|Fmn (s; t)− F (s; t)| = 0

)
= 1, (3)

occurs if and only if for all (s; t) ∈ Q = Supp (N) ∩ Supp (M) ∩ Supp
(
Ñ
)
∩

Supp
(
M̃
)
̸= ∅. :{

P (Y11 ≥ s/X11 = s) = P (Y11 ≥ s/X11 > s) ,
P (Y11 > s, Y21 ≥ t/X11 > s,X21 = t) = P (Y11 > s, Y21 ≥ t/X11 > s,X21 > t) .

(4)

Corollary 1. It is easy to see that if the pair(X11, Y11) of the first components of the
vectors X1 = (X11, X21) and Y1 = (Y11, Y21) is independent from the pair (X21, Y21) of
second components, then the system (4) can be written as follows:

P (Y11 ≥ s/X11 = s) = P (Y11 ≥ s/X11 > s) ,

P (Y21 ≥ t/X21 = t) = P (Y21 ≥ t/X21 > t) .
(5)

Note also that for estimators (2) we prove results of weak convergence to the ap-
propriate Gaussian processes.
Example. Let the joint distribution function of the pairs {(Xk1, Yk1), k = 1, 2} is
the two-dimensional exponential distribution of Marshall-Olkin with parameters
{(λ1,k, λ2,k, λ3,k) , k = 1, 2} :

P (Xk1 > s, Y2k > t) = exp {−λ1,ks− λ2,k − λ3,k max{s, t}} , (s, t) ∈ (0,∞)2.

then it is easy to see that system (5) is hold.
It should be noted that all these results authors generalized to the case of random

Poisson sample size. In [6-8, 14] the authors consider the problem of estimation of
multivariate survival functions in dependent models of random censoring using copula
functions and in the presence of covariates.
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Abstract

The problem of group detection with no prior knowledge, i.e clustering, is one
of the most important tasks in data analysis. It has been addressed in many ap-
plications in various fields. Data clustering becomes challenging when the group
sizes are very different–this is called imbalanced data–with different densities
and shapes. This task is even more difficult in the context of high-dimensional
data since it is very hard do state any assumption about specific characteristics
of groups (sizes, densities, or shapes). However, many clustering techniques are
built upon some of these assumptions. For instance, the most popular k-means
method [3] can be shown as a particular case of the EM algorithm for data gen-
erated by Gaussian mixtures [1]. In addition, many clustering algorithms (also
k-means) require the ad-hoc specification of parameters, especially the number of
clusters. This is almost impossible to know beforehand. Unfortunately, the final
clustering solution usually depends on the choice of the predefined parameters.

We propose an algorithm which identifies the clusters in imbalanced high-
dimensional data. Our procedure incorporates an existing clustering method in
order to detect the homogeneous set of initial clusters. These initial clusters are
successively merged in order to build final clusters. Merging a pair of initial
clusters is based on Local Outlier Factor [2] (LOF) which captures the final
clusters of arbitrary sizes without assumptions on cluster characteristics. The
fact of small group sizes in imbalanced data makes the observations of those
groups atypical. Therefore, our special focus is towards the ability of finding these
interesting groups next to the description of the data structure. The usefulness of
our approach is demonstrated with imbalanced media data sets, and it is shown
that state-of-the-art methods are outperformed.
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Abstract

The problem of the error probabilities evaluation for the sequential probability
ratio test (SPRT) if observations have the Markov dependence is considered.

1 Introduction

The sequential method of hypotheses testing is widely used for information processing
in medicine, statistical quality control, biology [7] and finance [6]. A profit of the
sequential procedures is that the average number of observations is less than the fixed
number of observations for the equivalent tests procedures [1].

The sequential test proposed by A.Wald [1] is considered in the paper.
One of the sequential approach disadvantages is that the probabilities of types I

and II errors are influenced greatly by the distortions in observations. Tukey-Huber
outliers in sequential testing when observations are independent random variables are
considered in [3]. Functional distortions in L1-, L2- and C-metrics are considered in [4]
and [5]. It should be noted that the probabilities of types I and II errors of the se-
quential tests could not be calculated exactly in general case. Therefore providing
robustness analysis one should use not the values of error probabilities, but their ana-
lytical approximations. So the construction of such approximations is actual problem.
In [8] and [3] the approach for approximate calculation of error probabilities is de-
scribed when observations are independent random variables. In this paper the case
where observations form Markov sequence is considered.

2 Mathematical Model

Let λ1, λ2, . . . be the homogeneous Markov chain on the measurable space (Ω,F). Let
D be the state space of (λn), D ⊆ R, |D| < ∞, p(x|y) – the transition function and
f1(x) – stationary probability density function. It is clear that the random sequence
(λn+1, λn) is homogeneous Markov chain as well. Let f2(x, y) be stationary distribution
of (λn+1, λn). Suppose that f1(x) satisfies sup{f1(x)} ≤M < +∞ if x ∈ D.

As it is done in [8] let us try to transform the random sequence λn with continuous
state space into the Markov chain ξn with finite (enumerable) state space. As D is
the state space of λn, then a1, . . . , am, ak ∈ D, is the set space of ξn, where m is the
parameter of transformation λn into ξn. Divide D by m subsets A1, A2, . . . , Am, i.e.
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D =
m
⊔
k=1

Ak, and ak corresponds to Ak. Let ϕm(·) be the function of such correspon-

dence, i.e. ξn = ϕm(λn).
The example of described function ϕm(·) is ϕm(x) = A +

[
x−A
h

]
h, where λn ∈

[A;B] = D. In this case ak = A+ (k − 1)h, Ak = [A+ (k − 1)h;A+ kh), |Ak| → 0 at
m→ ∞.

Let us investigate when constructed random sequence ξn forms the Markov chain.

Theorem 1. Under specified assumptions the random sequence ξn is the first order
Markov chain iff observations λn are independent.

Now let ξn not to be a Markov chain, but only “similar” to one. What can we say
about random sequence λn, if transition probabilities of ξn are “almost” Markovian?

Theorem 2. Transition probabilities of ξn satisfy

P{ξn+1 = aj | ξn = ai, ξn−1 = ak} = P{ξn+1 = aj | ξn = ai}+ εm,

where εm → 0 at m→ ∞ iff observations λn are independent.

Due to given theorems it is impossible to approximate the Markov sequence with
continuous space by the Markov sequence with finite space, so the method in [8] of ap-
proximation of error probabilities of the sequential test with independent observations
is not suitable for the case when observations have Markov dependence.
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Abstract

A simple stochastic algorithm is proposed for estimating the elements of a
matrix as well as its decomposition under the condition that only the matrix-
vector product is accessible. Theoretical results on convergence of the algorithm
are presented.

1 Introduction

Consider the following linear system of equations

Φx = b, (1)

where Φ ∈ Rm×n, b ∈ Rm, x ∈ Rn. In (1) b is a known vector, Φ is unknown, but
b′ = Φx′ is known once x′ is given. The problem we are interested in is to estimate the
matrix Φ and to decompose it into the product of two matrices, Φ = Φ1Φ2.

The motivation for solving the aforementioned problems arises in many engineering
inverse problems. As an example, consider the filtering problem

xk+1 = Φxk + wk, zk+1 = Hxk+1 + vk+1, (2)

Φ ∈ Rn×n, H ∈ Rp×n. Based on the set of observations zl, l = 1, 2, ..., k, under standard
conditions, a minimum mean squared estimate x̂k can be obtained by the Kalman filter
(KF) [5]. In many engineering problems, Φ is unknown and its dimension n is very high,
for example, of orders O(106)−O(107). In such situations, it is very important to have
a possibility to estimate numerically Φ, to store and manipulate it. Here the product
b′ = Φx′ is known once x′ is given. For moderate n, a component-wise integration
method is of common use (see [1]).

2 Estimation of matrix

For b := (b1, ..., bm)
′, the derivatives of bi with respect to (w.r.t.) to the vector x is

defined as

dbi/dx = (∂bi/∂x1, ..., ∂bi/∂xn) = (ϕi1, ..., ϕin), i = 1, . . . ,m,
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where ϕij are the ij element of Φ. We can write then

db/dx = [(db1/dx)
′, . . . , (dbm/dx)

′]′ = Φ.

In what follows we present a low-cost algorithm for approximating derivatives of
b w.r.t. x, independently of the dimension of x, and to estimate Φ. The idea on
estimation of high dimensional Φ on the basis of stochastic simultaneous perturbation
(SSP) has been first briefly presented in [3]. Remember that in [7] Spall proposes
a simultaneous perturbation stochastic approximation (SPSA) algorithm for seeking
optimal parameters by minimizing some objective function. The main feature of this
algorithm resides in the way to approximate the gradient vector : a sample gradient
vector is estimated by SSP of all components of the unknown vector. This method
requires only two or three measurements of the objective function, regardless of the
dimension of the vector of unknown parameters.

Let ∆̄ := (∆1, ...,∆n)
′, ∆i, i = 1, ..., n be Bernoulli independent and identically

distributed (i.i.d.) variables assuming two values +/- 1 with equal probabilities 1/2.
Introduce [∆̄]−1 := (1/∆1, ..., 1/∆n)

′, ∆̄c := c∆̄, c > 0 is a small positive value.
In the context of estimating Φ, the proposed algorithm looks as follows:
Algorithm 2.1. Suppose it is possible to compute the product Φx = b(x) for a given

x. At the beginning let l = 1. Let the value u be assigned to the vector x, i.e. x := u,
L be a (large) fixed integer number.

Step 1. Generate ∆̄(l) whose components are lth samples of the Bernoulli i.i.d.
variables assuming two values +/- 1 with equal probabilities 1/2;

Step 2. Compute δb(l) = Φ(u+ ∆̄
(l)
c )− Φu, ∆̄

(l)
c = c∆̄(l), c is a small positive value;

Step 3. Compute g
(l)
i = δb

(l)
i [∆̄

(l)
c ]−1, δbi is the i

th component of δb, g
(l)
i is the column

vector consisting of derivative of bi(u) w.r.t. to u, i = 1, ...,m.
Step 4. Go to Step 1 if l < L. Otherwise, go to Step 5.
Step 5. Compute

Φ̂(L) := Dxb = [ĝ1, ..., ĝm]
′, ĝi = L−1

∑L
l=1 g

(l)
i , i = 1, . . . ,m.

Theorem 1. Consider Algorithm 2.1 for estimation of the elements of the matrix
Φ. Then this algorithm will yield the estimates for the elements of Φ with the mean
squared error (MSE) O(1/L) where L is the number of samples used in the estimation
procedure.

3 Estimation of decomposition of Φ

For very high dimensional Φ, it is impossible to store all the elements of Φ. This
difficulty can be overcome by approximating Φ by some matrix in a subspace of fewer
dimensions (for example, the class of matrices of given rank).

Let Φ ∈ Rm×n,m ≤ n with rank(Φ) = m. We want to find a best approximation
for Φ within the class of matrices:

Φe = AB′, A ∈ Rm×r, B ∈ Rn×r, m ≥ r = rank(AB′). (3)
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Under the condition (3), the optimization problem is formulated as

J(A,B) = ||Φ− Φe||2F = ||Φ− AB′||2F → min(A,B), (4)

where ||.||F denotes the Frobenius matrix norm.
Consider Φ and let UΣV ′ be SVD (singular value decomposition) of Φ [2], i.e.

Φ = UΣV ′, U ∈ Rm×m, V ∈ Rn×n,Σ = [Σm|0],
Σm = diag[σ1, ..., σm], σ1 ≥ σ2 ≥ ... ≥ σm ≥ 0. (5)

Theorem 2. Suppose AoB
′
o is a solution to the problem (4),(3). Then

J(Ao, Bo) =
m∑

k=r+1

σ2
k (6)

Theorem 2 implies that Φo
e := AoB

′
o is equal to the matrix formed by truncating

the SVD of Φ (5) to its first r singular vectors and singular values.
By the same way as seen in Algorithm 2.1, one can write out the algorithm for

estimating A and B. The vector of unknown parameters θ consists of all the elements
of A and B. We have to perturb simultaneously all the components of θ stochastically,
compute the gradient of J(A,B) w.r.t. to θ and iterate the estimation procedure.

4 Simulation experiment

It is important to emphasize that for a finite number of samples L, the estimation error
for Φ̂(L) depends on the number of non-zero elements of Φ. That is why an appropriate
assumption on sparsity of Φ plays the important role on quality of the estimate Φ̂(L).
To see the impact of this assumption, consider the nonlinear transport problem (page
109, [6]). Applying upwind difference scheme, the numerical model obtained has the
state vector x(tk) of dimension n = 51 with δx = 1/(n − 1), δt = 0.00833. The
observation vector has the form zi(k) := xj(k) + vi, i = 1, ..., 25, j = 2i. Mention
that Φ of the linearized system has a diagonal structure with non-zero diagonal Φ(i, i)
and up-diagonal elements Φ(i, i + 1). Different Extended KFs (EKFs) are used to
estimate the system state subject to different estimates for Φ obtained by: (A0) exact
linearization; (A1) Algorithm 2.1 without any assumption on structure of Φ; (A2)
Algorithm 2.1 with the assumption that all elements of Φ are zero except for ϕ(i, j),
|i−j| ≤ 1; (A3) Algorithm 2.1 with exact structure of Φ. Figure 1 shows performances
of different EKFs.

5 Conclusion

A simple algorithm for estimating an unknown matrix as well as the way to decompose
it into a product of two matrices, have been proposed. Based on this algorithm, different
numerical problems like SVD decomposition, Nearest Kronecker Problem (NKP) in
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Figure 1: Rms of prediction error (PE) resulting from different EKFs

high dimensional setting can be solved in a simple and efficient way, compared to
classical algorithms (see [2], for example). This algorithm constitutes also a basis for
estimation of the error covariance matrix using the hypothesis on separation of vertical
and horizontal variables [4] for geophysical systems.
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Abstract

We present a robust and sparse linear classifier for multiclass problems. Re-
gression methods with the desirable properties of outlier detection and variable
selection have got a lot of attention recently. The optimal scoring approach
enables a propagation of such regression methods to classification problems.

1 Introduction

Linear discriminant analysis (LDA) is a very simple and popular method for classi-
fication, but the model can be distorted by a single anomalous observation. Several
robust methods for linear classification have been introduced (see for an overview [3])
to address this issue. These methods are restricted to settings with more observations
than variables.

One popular approach in regression analysis for data with a large number of vari-
ables compared to the number of observations is Lasso regression. An L1 norm penalty
on the coefficient estimate favours exact zero entries and so excludes uninformative
variables from the model. This idea has been incorporated in least trimmed squares
(LTS) regression and yields a sparse and robust regression method [1].

2 Optimal Scoring

Optimal scoring is an approach where the class labels are modelled as continuous values
and so the classification problem is recast into a regression framework. Let X be an
n×p data matrix, Y an n×G matrix of dummy variables coding the class membership
of the observations, G be the number of classes and H = G− 1. For h = 1, ...., H

min
βh,θh

{∥Y θh −Xβh∥2} s.t.
1

n
θThY

TY θh = 1, θThY
TY θl = 0 ∀l < h. (1)

Adding an L1 penalty for βh to the minimization problem leads to sparse discriminant
analysis as proposed by [2].
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3 Methodology

We propose to propagate the robustness and sparsity properties of sparse LTS to clas-
sification problems via the optimal scoring approach. The optimal scoring problem is
solved iteratively for βh and θh. For fixed θh we replace the least squares minimization
in (1) by trimmed least squares with L1 penalty and solve it with a fast sparse LTS
algorithm. This leads to a sparse and robust estimation of βh for h = 1, . . . , H. Then
LDA with robustly estimated scatter matrix and centre is applied to (Xβ̂1, ...,Xβ̂H).

4 Evaluation

A simulation study is conducted to illustrate the properties of the proposed algorithm.
Its performance is compared to classical sparse discriminant analysis by means of cor-
rectly selected variables and the ratio of misclassified observations. For simulation
settings with more observations than variables further comparison is made with LDA
and robust LDA methods.
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Abstract

The problem of sequential testing of simple hypotheses for time series with a
trend is considered. Analytical expressions and asymptotic expansions of error
probabilities and expected numbers of observations are obtained. The result is
illustrated numerically.
Keywords: sequential test, time series, trend, error probability, expected num-
ber of observations

1 Introduction

The sequential approach to test parametric hypotheses was proposed by Wald (see [6])
and is applied in many practical problems of statistical data analysis. The problem of
sequential test characteristics (error probabilities and expected number of observations)
evaluation is well studied for the case of identical distribution of observations (see [1] –
[6]). In this paper, the model of non-identical distribution is considered.

Let x1, x2, ... be observations of time series with a trend:

xt = θTψ(t) + ξt, t = 1, 2, 3, ..., (1)

where ψ(t) = (ψ1(t), ψ2(t), ..., ψm(t))
T , t ≥ 1, are the vectors of basic functions of

trend, θ = (θ1, θ2, ..., θm)
T ∈ Rm is an unknown vector of coefficients, and {ξt, t ≥ 1} is

the sequence of independent identically distributed random variables, ξt ∼ N(0, σ2).
Consider two simple hypotheses:

H0 : θ = θ0, H1 : θ = θ1, (2)

where θ0, θ1 ∈ Rm are known vectors.
Denote the accumulated log-likelihood ratio statistic:

Λn = Λn(x1, x2, ..., xn) =
n∑

t=1

λt, (3)

where λt = ln

(
pt(xt, θ

1)

pt(xt, θ0)

)
is the log-likelihood ratio calculated on the observation xt,

and pt(x, θ) is the probability density function of xt provided the parameter value is θ.
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To test these hypotheses, after n observations one makes the decision:

d = 1[C+,+∞)(Λn) + 2 · 1(C−,C+)(Λn). (4)

The thresholds C− and C+ are the parameters of the test. Decisions d = 0 and d = 1
mean stopping of the observation process and acceptance of H0 or H1 correspondently.

According to Wald (see [6]) we use C+ = ln

(
1− β0
α0

)
and C− = ln

(
β0

1− α0

)
, where

α0, β0 are the given values for probability errors of types I and II respectively.

2 Main results

Introduce the notation: E(k)(·), D(k)(·) are conditional expected value and variance
provided hypothesis Hk is true (k = 0, 1); for n ≥ 1,

σ2
n =

(θ0 − θ1)Tψ(n)ψT (n)(θ0 − θ1)

σ2
, µ(k)

n =
(−1)k+1σ2

n

2
, s2n =

n∑
t=1

σ2
t , m

(k)
n =

(−1)k+1s2n
2

,

An = {aij}n×n, aij =

{
1, i ≥ j,

0, otherwise;
Xn = (λ1, λ2, ..., λn)

T ,

Tn = (Λ1,Λ2, ...,Λn)
T = AnXn, µ

(k)
Tn

= AnE
(k)(Xn),ΣTn = AnCov(Xn, Xn)A

T
n ;

Φ(·) is the cumulative distribution function of the standard normal distributionN(0, 1).
PutN = inf{n ∈ N : Λn /∈ (C−, C+)},Γ = (θ0−θ1)(θ0−θ1)T andHn =

∑n
i=1 ψ(i)ψ

T (i).
Let α, β be the factual values of the error type I and II probabilities for test (3), (4).

Theorem 1. If the trace of the matrix ΓHn tends to +∞ when n → +∞, then the
test terminates finitely with probability 1.

Proof. The proof is derived from the fact that Pk(N > n) ≤ Pk(Λn ∈ (C−, C+)).

Corollary 1. If tr{ΓHn} is bounded, then there exists a positive constant L so that
s2n → L when n→ +∞. In this case, we have:

lim
n→+∞

Pk(Λn ∈ (C−, C+)) = Φ

(
2C+ − (−1)k+1L

2
√
L

)
− Φ

(
2C− − (−1)k+1L

2
√
L

)
> 0.

Theorem 2. Under the Theorem 1 condition following expressions are valid for the
characteristics of test (2):

E(k)(N) = 1 +
+∞∑
i=1

∫ C+

C−

dsi

∫ C+

C−

dsi−1...

∫ C+

C−

ni(s, µ
(i)
Ti
,ΣTi

)ds1, k = 0, 1;

α =

∫ +∞

C+

n1(s1, µ
(0)
1 , σ2

1)ds1 +
+∞∑
i=2

∫ +∞

C+

dsi

∫ C+

C−

dsi−1...

∫ C+

C−

ni(s, µ
(0)
Ti
,ΣTi

)ds1,

β =

∫ C−

−∞
n1(s1, µ

(1)
1 , σ2

1)ds1 +
+∞∑
i=2

∫ C−

−∞
dsi

∫ C+

C−

dsi−1...

∫ C+

C−

ni(s, µ
(1)
Ti
,ΣTi

)ds1.
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Proof. The results above are proved directly by using the properties of multivariate
normal distributions.

Corollary 2. Under the Theorem 1 condition, the following inequalities hold:

E(k)(N) ≤ 1 +
+∞∑
i=1

∫ iC+

iC−

n1(x, m̄
(k)
i , s̄2i )dx, k = 0, 1;

α ≤ 1− Φ

(
C+ − µ

(0)
1

σ1

)
+

+∞∑
i=2

∫ +∞

C+

∫ C+

C−

n1(x,m
(0)
i−1, s

2
i−1)n1(y, x+ µ

(0)
i , σ2

i )dxdy,

β ≤ Φ

(
C− − µ

(1)
1

σ1

)
+

+∞∑
i=2

∫ C−

−∞

∫ C+

C−

n1(x,m
(1)
i−1, s

2
i−1)n1(y, x+ µ

(1)
i , σ2

i )dxdy,

where m̄
(k)
i =

(−1)k+1

2

i∑
j=1

(i+ 1− j)σ2
j , s̄

2
i =

i∑
j=1

(i+ 1− j)2σ2
j .

To construct asymptotic expansions, split the state space of Λn into K + 2 cells:

A0 = (−∞, C−), Ai = [Ci−1, Ci), i = 1, K, AK+1 = [C+,+∞)

C− = C0 < C1 < C2 < ... < CK = C+, Ci = C− + ih, h =
C+ − C−

K
, i = 1, K.

Denote f
C+

C−
(x) =

([
x− C−

h

]
+ 1

)
· 1(C−,C+)(x) + (K + 1) · 1[C+,+∞)(x).

For the random sequence Λn, let us introduce the discrete random sequence Zn with
the finite state space V = {0, 1, ..., K + 1}. Put Z1 = f

C+

C−
(Λ1) and for n ≥ 2:

Zn =


0, if Zn−1 = 0,

K + 1, if Zn−1 = K + 1,

f
C+

C−
(Λn), otherwise.

In this case, Zn is an inhomogeneous Markov chain with a finite state space
{0, ..., K + 1}, in which 0 and K + 1 are absorbing states. In order to simplify the
notation, let us renumerate the states space of Zn: V = {{0}, {K + 1}, {1}, ..., {K}}.

Introduce the notation:

P (n)(θi) =

(
I2 O2×K

Rn(θ
i) Qn(θ

i)

)
, i = 0, 1;P (n)(θi) = {p(n)kl (θ

i)}(K+2)×(K+2),

p
(n)
kl (θ

i) =

∫
Ak
n1(y,m

(i)
n−1, s

2
n−1)

∫
Al
n1(x, y + µ

(i)
n , σ2

n)dxdy∫
Ak
n1(y,m

(i)
n−1, s

2
n−1)dy

,

S(θi) = IK +
+∞∑
k=1

k+1∏
j=1

Qj(θ
i), B(θi) = R2(θ

i) +
+∞∑
k=2

k∏
j=1

Qj(θ
i)Rk+1(θ

i);

B(j)(·) is the jth-column of matrix B(·), π(θi) is the probability distribution of Z1, 1K

is the vector of size K with all components equal to 1, t(θi) = E(N |θi), i = 0, 1.
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Theorem 3. If infn tr(Γψ(n)ψ
T (n)) ≥ C,C = const > 0, then the characteristics of

the test (2) satisfy the following expansions:

t(θi) = 1 + (π(θi))
′
S(θi) · 1K +O(h), i = 0, 1;

α = (π(θ0))
′
B(2)(θ

0) + πK+1(θ
0) +O(h), β = (π(θ1))

′
B(1)(θ

1) + π0(θ
1) +O(h).

Proof. The approximations are derived from properties of inhomogeneous Markov
chains.

3 Numerical results

The probability model (1) was considered and the hypotheses (2) were tested by (3),
(4) with the following values of parameters:

m = 4, σ = 2, ψ(t) = (1, t/10, t2/100, t3/1000)T , θ0 = (1, 2, 3, 0.9)T , θ1 = (1, 1, 1, 1)T .

The infinite sum was limited to 1000 summands. The thresholds C−, C+ were calculated
according to Wald. Denote the sample estimate of a characteristic γ with Monte-Carlo
method by γ̂. The number of runs used in this method was 100 000. The results of
Corollary 2 are given in Table 1, where ti = E(N |θi), i = 0, 1.

α0 β0 α ≤ β ≤ α̂ β̂ E(0)(N) ≤ E(1)(N) ≤ t̂0 t̂1
0.1 0.1 0.0545 0.0545 0.0477 0.0480 12.674 12.674 9.428 9.434

0.05 0.05 0.0230 0.0230 0.0207 0.0216 13.685 13.685 10.275 10.266

0.01 0.01 0.0037 0.0037 0.0034 0.0036 15.359 15.359 11.532 11.538

Table 1. Upper bounds and Monte-Carlo estimates
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Abstract

In nonparametric statistic there are various procedures to constructing rank
tests via metrics on the permutation group. In this paper Critchlow’s unified
approach is applied to Lee distance. The two-sample location problem is con-
sidered and the distribution of the test statistic under null hypothesis is derived
and studied.

1 Introduction

Let X1, X2, . . . , Xm and Y1, Y2, . . . , Yn be two independent random samples with con-
tinuous distribution functions F (x) and G (x), respectively. We consider rank tests for
the two-sample location problem of testing the null hypothesis H0 against the alterna-
tive H1

H0 : F (x) ≡ G (x)
H1 : F (x) ≥ G (x),

with strict inequality for some x. Let α(i) be the rank of Xi for i = 1, 2, . . . ,m and
α(m + j) be the rank of Yj for j = 1, 2, . . . , n among X1, X2, . . . , Xm, Y1, Y2, . . . , Yn.
Then α = (α(1), α(2), . . . , α(m+ n)) is the rank vector of all observations and
α ∈ Sm+n, where Sm+n is the permutation group generated by the first m + n nat-
ural integers. The class of permutations, which are most in agreement with the al-
ternative H1 is E = Sm × Sn = {π ∈ Sm+n : π(i) ≤ m, ∀i ≤ m}. The left coset
[α] = α (Sm × Sn) = {α ◦ π : π ∈ Sm × Sn} consists of all permutations in Sm+n which
are equivalent to α. Many rank statistics could be obtained by using distances be-
tween sets of permutation. Critchlow [2] proposed a unified approach to constructing
nonparametric tests which produces many well-known rank statistics. The method is
based on finding the minimum interpoint distance between the class of equivalence [α]
and the extremal set E:

d ([α] , E) = min
π∈[α]
σ∈E

d(π, σ), (1)

where d is an arbitrary metric on Sm+n. The proposed test rejects the null hypothesis
H0 for small values of the statistic d ([α] , E). This contrasts with the structure of
some parametric test, where H0 is rejected if the distance from H0 is large. Since the
minimal value of the proposed test statistic is zero and d ([α] , E) = 0 if and only if
d (α, σ) = 0 for some σ ∈ E, the strongest evidence for rejecting H0 occurs if and only
if the observed permutation α is equivalent to some extremal permutation σ ∈ E.
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2 Lee distance on SN

The goal of this paper is to derive and study the rank test statistic in (1) induced by
the Lee distance function on SN :

L (a, b) =
N∑
i=1

min (| a(i)− b(i) |, N− | a(i)− b(i) |) .

In nonparametric statistics the right-invariance of a metric is necessary requirement
since it means that the distance between rankings does not depend on the labelling of
the observations.

Definition 1. The metric d on SN is called right-invariant, if and only if d (α, β) =
d (α ◦ γ, β ◦ γ) for all α, β, γ ∈ SN .

Deza and Huang [4] includes extensive discussion of some metrics on the permu-
tation group SN which are widely used in applied scientific and statistical problems.
Critchlow [2] obtained the minimal value defined by (1) for four basic distance func-
tions: Spearman’s footrule, Ulam distance, Kendall’s tau and Hammning distance, and
proved that the induced test statistics are equivalent to some familiar rank statistics.
Stoimenova [6] derived the test statistic induced by Chebyshev metric. More properties
of these distances can be found in Critchlow [1, 3], Deza [4] and Diaconis [5].

Since L (a, b) is right-invariant it follows

L ([α] , E) = min
π∈[α]
σ∈E

L(π, σ) = min
π∈[α]

L(π, e)

= min
π∈[α]

{
m+n∑
i=1

min (| a(i)− i |,m+ n− | a(i)− i |)

}
, (2)

where e = (1, 2, . . . ,m + n) is the identity permutation. After solving the optimal
problem (2), L ([α] , E) can be expressed as

L ([α] , E) = 2
∑
i∈Km

min
(
| α(i)− γ−1

n (k + 1− γm (α(i))) |,

m+ n− | α(i)− γ−1
n (k + 1− γm (α(i))) |

)
(3)

where

Km = {i ∈ {1, 2, . . . ,m} : α(i) > m} , (4)

Kn = {i ∈ {m+ 1,m+ 2, . . . ,m+ n} : α(i) ≤ m} ,

k is the number of elements of Km (k =| Km |=| Kn |), γm (α(i)) is the rank of α(i)
among {α(i) : i ∈ Km}, γn (α(i)) is the rank of α(i) among {α(i) : i ∈ Kn} and γ−1 is
the inverse of γ, i.e. γ−1 (γ (α (i))) = α (i). The statistic L ([α] , E) is equivalent to

L :=
L ([α] , E)

2
. (5)
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There is an interpretation of the rank test statistic
L in terms of graph theory. Let C be a simple cycle
graph with vertices {i}m+n

i=1 and edges
∪m+n−1

i=1 {i, i + 1}
and {m+n, 1}. Then L is the minimum sum of distances
over C between the elements of Km and the elements of
Kn. An example when m = 6, n = 4, Km = {3, 5}
and Kn = {8, 9} is illustrated on Figure 1. In this case
L = (10− | 3− 9 |)+ | 5− 8 |= 4 + 3 = 7.

1

2

3

4

5

6

7

8

9

10

Figure 1: Lee distance on C.

The value of L depends not only on the elements in Km and Kn, but also on the
way in which their elements are paired. Formula (3) gives that the minimal sum of
distances between pairwise elements of Km and Kn is obtained when the smallest ele-
ment of Km is combined with the largest element of Kn, the second smallest element
of Km is combined with the second largest element of Kn, . . . , the largest element of
Km is combined with the smallest element of Kn. Using this fact the distribution of
the test statistic could be calculated for fixed number k of elements in Km and Kn,
k =| Km |=| Kn |. Let [Km ×Kn]

∗ be the described above set of pairs and s−1 be the
number of pairs (x, y) ∈ [Km ×Kn]

∗ for which the shortest path on C goes over the edge
{m,m+ 1}. Obviously, s is between 1 and k + 1. If for some pair (x, y) ∈ [Km ×Kn]

∗

the paths over {m,m+ 1} and over {m+ n, 1}
are with the same length, then the path over
{m + n, 1} is considered to be the shortest.

For i = 0, 1, . . . , s − 1 let a
(m)
i be the num-

ber of elements in {1, 2, . . . ,m}\Km which
are in the shortest path of exactly i pairs
(x, y) ∈ [Km ×Kn]

∗ connected by the edge

{m,m + 1}. For j = 1, 2, . . . , k − s + 1 let b
(m)
j

be the number of elements in {1, 2, . . . ,m}\Km

which are in the shortest path of exactly
j pairs (x, y) ∈ [Km ×Kn]

∗ connected by
the edge {m + n, 1}. Similarly the numbers

{a(n)i }s−1
i=0 and {b(n)j }k−s+1

j=1 are defined for the set
{m+ 1,m+ 2, . . . ,m+ n}\Kn. An illustration
of the used notation is shown on Figure 2. Figure 2: Notations.

For the considered example on Figure 1, m = 6, n = 4, [Km ×Kn]
∗ =

{(3, 9) , (5, 8)}, s = 2, a
(m)
0 = 1 =| {4} |, a(m)

1 = 1 =| {6} |, b(m)
1 = 2 =| {1, 2} |,

a
(n)
0 = 0, a

(n)
1 = 1 =| {7} | and b(n)1 = 1 =| {10} |.

Theorem 1. Let L be defined by (5) and K =| Km | be the number of elements of the
set Km, defined by (4). Then the joint distribution of L and K under H0 is given by

P (L = l,K = k) =


m!n!

(m+ n)!
, for l = 0 and k = 0∑

s

∑
a,b

m!n!

(m+ n)!
, for 1 ≤ k ≤ min(m,n) and

(6)
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[
k2 + 1

2

]
≤ l ≤

[
(m+ n− k) k + 1

2

]
, where [x] is the integer part of x.

The first summation in (6) is taken over all s such that (s− 1)2 + (k − s+ 1)2 ≤ l.

The second summation is over all nonnegative integers {a(m)
i }s−1

i=0 , {a
(n)
i }s−1

i=0 , {b
(m)
j }k−s+1

j=1

and {b(n)j }k−s+1
j=1 that satisfy:

(i)
s−1∑
i=0

a
(m)
i +

k−s+1∑
j=0

b
(m)
j = m− k (ii)

s−1∑
i=0

a
(n)
i +

k−s+1∑
j=0

b
(n)
j = n− k

(iii) l = (s− 1)2 + (k − s+ 1)2 +
s−1∑
i=0

i
(
a
(m)
i + a

(n)
i

)
+

k−s+1∑
j=0

j
(
b
(m)
j + b

(n)
j

)

(iv) 2 (s− 1)+
s−1∑
i=0

(
a
(m)
i + a

(n)
i

)
≥ 2 (k − s)+

k−s+1∑
j=0

(
b
(m)
j + b

(n)
j

)
, if s ∈ {1, 2, . . . , k}

(v) 2 (s− 2) +
s−1∑
i=1

(
a
(m)
i + a

(n)
i

)
< 2 (k − s+ 1) + a

(m)
0 + a

(n)
0 +

k−s+1∑
j=0

(
b
(m)
j + b

(n)
j

)
,

if s ∈ {2, 3, . . . , k + 1}. The indexes b
(m)
0 and b

(n)
0 are defined to be zeros, b

(m)
0 := 0,

b
(n)
0 := 0, for completeness in conditions (i)-(v).

Given the joint distribution of L and K the marginal distribution of L under H0

can be easily derived.
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Abstract

We provide a novel view on group structure in data. Projecting observations
onto a subspace spanned by a small selection of observations, we calculate or-
thogonal distances as a measure for dissimilarity. Sequentially exchanging the
observations, used to span the subspace, we recieve a series of distances. Ob-
servations, taken from a similar group structure will behave similar along those
projections.

This leads to a visualisation of high dimensional data providing some basic
diagnostic on group structures and outliers. The series of distances can be further
utilized to perform cluster algorithms, leading to significant improvement when
facing clusters located in different subspaces.
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Abstract

Chi-square test based on the Pearson statistics is used to check whether fre-
quencies of the finite number of outcomes correspond with their hypothetical
probabilities. A sequential version of this test is based on several Pearson statis-
tics computed for nested samples; this version was considered in several papers.
Formulas for the joint distributions of the Pearson statistics for nested samples
are very cumbersome. Here we present exact formulas for the covariance of two
Pearson statistics computed for nested samples and asymptotic relations con-
necting the error probabilities of one- and two-dimensional chi-square tests.

1 Introduction

Suppose that independent identically distributed trials with m outcomes having prob-
abilities p1, . . . , pm are performed. Denote by νi(n) the frequency of the j-th outcome

in the first n trials. Pearson statistics χ2(n) :=
∑m

j=1
(νi(n)−npj)

2

npj
is widely used to test

the hypothesis H(p): “outcomes have law p = (p1, . . . , pm)”, because χ
2(n) converges

in distribution to the standard χ2
m−1 at n→ ∞. So, if πm−1(α) is the (1− α)-quantile

of χ2
m−1, then the rule, accepting H(p), if χ2(n) < πm−1(α), has type I error ≈ α.
A sequential version of the chi-square test is based on the statistics

(χ2(n1), . . . , χ
2(nr)) for n1 < · · · < nr; it was studied by Zakharov et al. [5] and oth-

ers [2, 3]. In the sequential version H(p) is rejected if and only if χ2(nk) > πm−1(αk)
for all k = 1, . . . , r.

For true hypothesisH(p) we find (Theorems 1, 2) the covariance cov(χ2(n1), χ
2(n2))

and an asymptotic relation between error probabilities P{A1} ∼ α1, P{A2} ∼ α2 and
P{A1A2}, Aj = {χ2(nj) > πm−1(αj)}, as n1, n2 → ∞, n1/n2 → const, α1, α2 → 0.

2 Main results

Theorem 1. If n1 ≤ n2, then

cov(χ2(n1), χ
2(n2)) =

(
2(n1 − 1)(m− 1)−m2 +

∑m

k=1
p−1
k

)/
n2.

Corollary 1. cov(χ2(n1), χ
2(n2)) is nonincreasing in n2 for fixed n1 ≤ n2.

Note that if n2

n1
→ ∞, then the covariance tends to 0. It follows from the Theorem 1

that the variance Dχ2(n) = 2(m− 1) + 1
n

(
2− 2m−m2 +

∑m
k=1

1
pk

)
, this expressions

was obtained in [4].
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Zakharov, Sarmanov and Sevastyanov [5] have derived asymptotic formulas for the
error probabilities of the sequential chi-square test in the form of integrals containing
Infeld functions and exponential functions. By means of these formulas we obtain
explicit asymptotic expressions for the error probability in the case r = 2.

Theorem 2. Let m ≥ 3, n1, n2 → ∞, n1

n2
→ c2, c ∈ (0, 1), α1 :=

limP{χ2(n1) > πm−1(α1)}, α2 := limP{χ2(n2) > πm−1(α2)} and α = limP{χ2(n1) >

πm−1(α1), χ
2(n2) > πm−1(α2)}. If α1, α2 → +0 and

√
lnα2

lnα1
= P ∈ (c, 1

c
), then

α =
(1− c2)

3
2 · P m

2
−1 · (− lnα1)

m
2
−2 ·Q− 1

2(1−c2)

2cm− 1
2
√
πΓ
(
m−1
2

)
(P − c)(1− cP )

· (1 + o(1)),

where

Q =
P 2(m−3)(1− c

P
)(

Γ
(
m−1
2

))4(1−Pc)
· (− lnα1)

(m−3)(2−c(P+P−1)) · α−2(P 2−2Pc+1)
1 .

Corollary 2. If conditions of the Theorem 2 hold and α2 = α1 (i.e. P = 1), then

α =
(1− c2)

3
2

(
Γ(m−1

2
)
) 1−c

1+c

2cm− 1
2
√
π(1− c)2

·
(
− lnα1

)m
2
−m−3

1+c
−2(

α1

) 2
1+c (1 + o(1)).

Note that 2
1+c

∈ (1, 2) since c ∈ (0, 1).
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Abstract

Low-complexity and computationally fast Huber M -estimates of scale are
proposed to approximate the highly robust and efficient Qn-estimate of scale of
Rousseeuw and Croux (1993). The parameters of approximation are chosen to
provide high robustness and efficiency of the proposed M -estimates of scale at
an arbitrary underlying data distribution. A special attention is payed to the
particular cases of the Gaussian and Cauchy distributions.

1 Introduction and Problem Set Up

The problem of estimation of a scale parameter is one of most important in statistical
analysis. In present, the commonly used highly robust and efficient estimate of scale is
given by theQn-estimate [4]. This estimate is defined as the first quartile of the distance
between observations: Qn = c{|xi − xj|}(k), where c is a constant that provides the
consistency of estimation, k = C2

h, h = [n/2] + 1.
TheQn-estimate is highly robust with the highest breakdown point ε∗ = 0.5 possible

and high efficiency 82% at the Gaussian. Its drawback is the high asymptotic compu-
tational complexity: generally, it requires O(n2) of computational time and memory.

On the contrary, Hubers’ robust M -estimates of scale are of low-complexity having
a potential for enhancing their efficiency. Thus, the main goals of our work are:

1. to construct a low-complexity, computationally fast and highly robust approxi-
mation to the Qn-estimate,

2. to adapt this approximation to data distributions of a general shape.

In what follows, we consider the class of Hubers’ M -estimates Ŝ of scale given by
the implicit estimating equation [3]∑

χ(xi/Ŝ) = 0, (1)

where χ(x) is a score function commonly even and nondecreasing for x > 0.
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2 Approximation of the Qn-estimate: General Case

An important tool for the statistical analysis of estimation in robustness is given by the
influence function IF (x;S, F ), which defines a measure of the resistance of an estimate
functional S = S(F ) at a distribution F to gross errors at a point x [2]. Further, the

asymptotic variance of the estimate Ŝ is given by

AV (Ŝ, F ) =

∫
IF (x;S, F )2 dF (x) .

The class of Huber M -estimates of scale (1) has a convenient feature: the influence
function IF (x;S, F ) is proportional to the score function χ(x): IF (x;S, F ) ∝ χ(x).
Thus, it is possible to construct an M -estimate with any admissible influence function,
and accordingly, efficiency.

It is known that the influence function of the Qn-estimate is given by [4]

IF (x;Q,F ) = c ·
(
1

4
− F (x+ c−1) + F (x− c−1)

)/(∫
f(y + c−1)f(y)dy

)
. (2)

Since the score χ in Equation (1) is defined up to an arbitrary factor, the nor-
malization integral in the denominator of (2) can be omitted. Then, the Qn-estimate
corresponds to the M -estimate generated by the score function

χQ(x) =
c

4
− c · (F (x+ c−1)− F (x− c−1)), (3)

hence the influence function IF (x;χQ, F ) is identical with IF (x;Q,F ), ensuring the
match of the derivatives of its characteristics.

Now we transform Equation (3). At first, let us make the substitution α = c−1,
generally not fixing α and considering it as an estimate parameter. Then we expand
the distribution function F in a Taylor series, leaving only the first three terms:

F (x± α) = F (x)± αf(x) +
1

2
α2f ′(x)± 1

6
α3f ′′(x) + o(α3). (4)

Combination of (3) and (4) leads to the following.

Definition 1. Let f be an analytic probability density function on R. One-parametric
family of M -estimates with score functions

χα(x) = cα − 2f(x)− 1

3
α2f ′′(x), (5)

is called f -based MQn-family (of f -based MQn-estimates). The scalar constant cα in
Equation (5) provides consistency of defined MQn-estimates.
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3 Approximation of the Qn-estimate: Gaussian

Case

In this section we use the recent results of [5].
Consider the proposed M -estimate in the case of the Gaussian distribution density:

f(x) = φ(x) = 2π−1/2 exp(−x2/2). Then φ′′(x) = (x2 − 1)φ(x), and the score function
takes the form

χα(x) = cα − 1

3
(6 + α2(x2 − 1))φ(x), cα =

12− α2

12
√
π
. (6)

In the important special case when α = 0, the expression takes the following form

χ0(x) =
1√
π
− 2φ(x). (7)

This score is similar to a Welsh generalized error score [1] given by

χ(x) =

√
d

d+ 2
− exp

(
−x

2

d

)
, d > 0.

For d = 2 this score yields the same M -estimate of scale as the score given by (7). The
highest possible asymptotic efficiency of estimates defined by (7) is 95.9%.

In the Gaussian case, the following result holds.

Theorem 1. The Gaussian-based MQn-estimates for α ∈ [0;
√
2] at the Gaussian

distribution are B-robust with the bounded influence function of the form

IF (x;MQ,Φ) =
2(12− α2)− 8

√
π(6 + α2(x2 − 1))φ(x)

3(4− α2)
.

The asymptotic efficiency of the fast low-complexity MQn-estimate with the score
function (7) is 81%, just 1% less than that of the Qn-estimate at the Gaussian.

4 Approximation of the Qn-estimate: Cauchy Case

Now we consider the Cauchy-basedMQn-estimates with the score (5) derived from the
heavy-tailed Cauchy distribution density

f(x) =
1

π(1 + x2)
.

For the sake of low-complexity, take theMQn-estimate with α = 0, as other parameter
values are of no interest because of worse performance. In this case, the following result
holds.
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Theorem 2. The Cauchy-based MQn-estimate with α = 0 and score function

χ0(x) =
1

π
· x

2 − 1

x2 + 1

coincides with the MLE estimate of scale for the Cauchy distribution.

The highest possible asymptotic efficiency of this estimate of scale is 100% at the
Cauchy distribution but the asymptotic relative efficiency at the Gaussian is 50%.

5 Conclusions

1. A class MQn of low-complexity, computationally fast and highly robust M -
estimates of scale close in efficiency to the highly efficient and robust Qn-estimate
is proposed.

2. The important Gaussian and Cauchy distribution particular cases are thoroughly
studied both theoretically in asymptotics and experimentally on small samples—
the obtained results confirm effectiveness of the proposed approach.

3. In our talk, we plan to exhibit the theoretical and Monte Carlo results of appli-
cation of the proposed approach in the parametric families of t- and exponential-
power distributions.
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Abstract

One of the main goals in metabolomics is the identification of biomarkers
metabolites which are capable of distinguishing between groups of, e.g., healthy
and unhealthy patients. There are various methods for identifying biomarkers
in the statistical field. Difficulties arise by facing the so-called size effect, which
occurs due to different sample volume or concentration. In that case, the true
signal is hidden in the data structure, and it can be revealed only after a spe-
cial treatment. One possibility is to normalize the data first, other possibilities
include certain transformations, see e.g. [1].

Here we propose a method that makes use of the log-ratio approach [2]. We
use the elements of the variation matrix, which are defined as the variance of
log(xi/xj), for all pairs of variables xi and xj . The advantage of log-ratios is
that the absolute concentration is irrelevant, which is appropriate in this context.
The variation matrix is computed for the joint data, as well as for the single
groups separately. A statistic is then constructed, involving all three sources
of information. Since the distribution of the statistic is unknown, we use the
bootstrap technique; biomarkers are then considered as variables where most of
their pairwise log-ratios are significantly different.

The method has been tested on simulated data as well as on real data sets.
The simulations have been carried out according to the scheme outlined in [1]. In
both the low-dimensional (9 variables) and the high-dimensional (500 variables)
situation, the new proposal shows excellent behavior with respect to the true
positives, false discovery and false negative rates. These simulations reveal slight
advantages over PQN normalization, the method which turned out in [1] as the
best among all considered options. The new pairwise log-ratio method has the
big advantage that it can easily be robustified against outliers in the data, by
simply using a robust estimator of the variance.

References

[1] Filzmoser P., Walczak B. (2014). What can go wrong at the data normalization
step for identification of biomarkers? J. Chromatography A, Vol. 1362, p. 194.

[2] Pawlowsky-Glahn V., Egozcue R., Tolosana-Delgado J.J. (2015). Modeling and
Analysis of Compositional Data, Wiley, Chichester, UK.

111



ASSIGNMENT OF ARBITRARILY
DISTRIBUTED RANDOM SAMPLES TO THE
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ITS RISK
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Abstract

The problem of statistical assignment of arbitrarily distributed random sam-
ples to the fixed probability distribution is considered. The decision rule based
on the maximum likelihood method is proposed and its efficiency is analytically
examined. The case of two samples of the same size and the Fisher model is
studied.

1 Introduction

Let m ≥ 2 random samples X(1), . . . , X(m) be determined in the observation space RN

(N ≥ 1) and the following conditions be satisfied.

1. Each sample X(i) = {x(i)t }ni
t=1 consists of independent and identically distributed

random vectors x
(i)
t ∈ RN , t = 1, ni (ni is the sample size) with the same proba-

bility density pi(x):

pi(x) ≥ 0, x ∈ RN :

∫
RN

pi(x)dx = 1, i = 1,m. (1)

2. Samples X(1), . . . , X(m) are independent in total.

Suppose that all densities {pi(x)}mi=1 from (1) are unknown and distinguished from
the fixed probability density function, which is often referred as hypothetical density
function [1, 2]:

p(x) ≥ 0, x ∈ RN :

∫
RN

p(x)dx = 1. (2)

The problem is to choose the one of samples {X(i)}mi=1 that is closer to the hypo-
thetical density (2) in terms of the distribution simillarity.

Note, that the declared problem differs from so-called “goodness of fit testing”
problem [1, 2]: samples {X(i)}mi=1 are obtained from corresponding probability densities
(1), but not from the hypothetical density (2). Also the problem differs from the
classification problem [3, 4]: there is the only one class, determined by the density (2),
to which one of samples {X(i)}mi=1 should be assigned.
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The problem is to construct the decision rule (DR):

d = d(X(1), . . . , X(m)) ∈M, M = {1, . . . ,m}, (3)

to solve the specified assignment problem.

2 Maximum likelihood method and its risk

As it earlier was proposed in [4], the maximum likelihood method [1, 2, 3, 4] can be
used to solve the assignment problem:

d = d(X(1), . . . , X(m)) = argmax
i∈M

P (X(i)); (4)

P (X(i)) =

ni∏
t=1

p(x
(i)
t ), i ∈M,

where P (X(i)) is the hypothetical likelihood function [1, 2] evaluated for the sample
X(i).

Theorem. Let the following integrals be finite:∫
RN

| ln(p(x))|pi(x)dx < +∞, i ∈M, (5)

where {pi(x)}i∈M , p(x) are densities from (1), (2).
If for values

Hi = H(pi(·), p(·)) =
∫
RN

ln(p(x))pi(x)dx, i ∈M, (6)

the condition

∃d0 ∈M : Hd0 > Hi, ∀i ̸= d0, i ∈M,

is satisfied, and all samples {X(i)}mi=1 have the same size:

ni = n, i ∈M, (7)

then for the decision rule (4) the following statement is true:

d = d(X(1), . . . , X(m))
a.s.−→ d0, n→ +∞; (8)

d0 = argmax
i∈M

Hi.

Analytical results described above allow us to introduce the generalization of the
traditional risk (like as in [4]) as the measure of efficiency of the decision rule (4):

r = r(d(X(1), . . . , X(m))) = P{d(X(1), . . . , X(m)) /∈ D0}; (9)

113



D0 = {k : Hk = max
j∈M

Hj}.

Here establishment of set D0 allows us to deal with the situation when some of values
Hi may be the same.

The risk (9) means the probability not to assign to hypothetical distribution (4)
those samples of {X(i)}i∈M that are closer to (4) in terms of the distribution similarity
expressed in values (6).

If all values {Hi}i∈M are distinguished then the risk (9) is simplified:

r = r(d(X(1), . . . , X(m))) = P{d(X(1), . . . , X(m)) ̸= d0}; (10)

d0 = argmax
i∈M

Hi.

3 The asymptotical investigation of the risk in the

case of two samples of the same size. The Fisher

model.

Now let us assume the situation when there are only two (m = 2) samples X(1) =

{x(1)t }nt=1, X
(2) = {x(2)t }nt=1 of the same size (n1 = n2 = n) given for assignment to the

hypothetical distribution (2). Then it becomes possible to rewrite DR (4) in the form:

d(X(1), X(2)) =

{
1, if ξn(X

(1), X(2)) ≤ 0;

2, if ξn(X
(1), X(2)) > 0,

(11)

where

ξn(X
(1), X(2)) =

1

n

n∑
t=1

ln
p(x

(2)
t )

p(x
(1)
t )

(12)

and p(·) is the hypothetical probability density from (2).
Also the risk r (9), (10) of the decision rule (11), (12) takes form:

r =


P{ξn(X(1), X(2)) ≤ 0}, if H1 < H2;

1− P{ξn(X(1), X(2)) ≤ 0}, if H1 > H2;
0, if H1 = H2,

(13)

where H1, H2 are values from (6).

Theorem. Let us consider the assignment problem of two samples (m = 2) of the
same size (n1 = n2 = n) and let the following conditions be true:

Gi =

∫
RN

(ln(p(x)))2pi(x)dx < +∞, Gi −H2
i ̸= 0, i = 1, 2, (14)

where p1(·), p2(·) and p(·) are densities from (1), (2).
Then the risk (13) can be calculated asymptotically (assuming H1 ̸= H2 ):
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r

r̃
→ 1, n→ +∞; r̃ = Φ

(
−

√
n

|H1 −H2|√
G1 +G2 − (H2

1 +H2
2 )

)
, (15)

where

Φ(z) =
1√
2π

∫ z

−∞
exp

(
−w

2

2

)
dw, z ∈ R,

is the standard Gaussian distribution function.

For further results let us assume that all densities p1(·), p2(·) and p(·) are multi-
variate Gaussian with the same covariance matrix. Such assumption is often used in
various applications and it is known as the Fisher model [1, 3, 4]:

pi(x) = nN(x|µi,Σ), i = 1, 2; (16)

p(x) = nN(x|µ,Σ);

nN(x|µ,Σ) = (2π)−
N
2 |Σ|−

1
2 exp

(
−1

2
(x− µ)′ Σ−1 (x− µ)

)
, x ∈ RN ,

where

µi =

∫
RN

x pi(x)dx, i = 1, 2; µ =

∫
RN

x p(x)dx

are appropriate mathematical mean N -vectors and

Σ = E{(x− µi)(x− µi)
′|do = i}, i ∈ S,

is the common non-singular covariance (N ×N)-matrix.
Under the Fisher model (16) the asymptotical risk r̃ (15) takes the form:

r̃ = Φ

(
−

√
n

|ρ2(µ, µ1)− ρ2(µ, µ2)|
2
√
N + ρ2(µ, µ1) + ρ2(µ, µ2)

)
, (17)

where ρ(µ, µi) =
√
(µ− µi)′Σ−1(µ− µi) is the Mahalanobis distance [1, 3, 4] between

µ and µi (i = 1, 2).
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Abstract
Regression model under classification of the dependent variable is considered.

Asymptotic properties of plug-in predictive statistic are obtained.

1 Introduction

In this paper we consider a regression model with incompletely observed dependent
variable: instead of its true value we observe only one of the given intervals (classes)
in which the true value falls. We denote this type of distortion by classification. Clas-
sification is a special case of grouping [2].

In discriminant function analysis [3] we use previous observations to predict the
class numbers for a future moment. However, in this paper we give a point prediction
for the dependent variable.

2 Regression time series under classification of the

dependent variable

Let
Yt = F (Xt; θ

0) + ξt, t = 1, . . . , T, (1)

be a multiple regression time series defined on some probability space (Ω,F ,P), where
T is the sample size; θ0 = (θ01, . . . , θ

0
m)

′ ∈ Θ ⊂ Rm is the unknown regression vector
parameter; Xt = (Xt,1, . . . , Xt,N)

′ ∈ X ⊆ RN is the observed N -dimensional vector of
predictors; Yt ∈ R1 is the nonobservable dependent variable; ξt ∈ R1 is the normally
distributed random error with mean E{ξt} = 0 and unknown variance 0 < D{ξ2t } =
(σ0)2 < +∞; {ξt}nt=1 are jointly independent. The true model parameter is a composite
vector-column δ0 = (θ0

′
, (σ0)2)′ ∈ Ξ ⊆ Rm+1.

Let the set of real numbers R be divided into K nonintersecting intervals (2 ≤ K <
+∞):

Ak = (ak−1, ak], k ∈ K = {1, 2, . . . , K}, −∞ = a0 < a1 < · · · < aK = +∞. (2)

This set of intervals defines classification of the dependent variable Yt:

Yt belongs to class νt ∈ K, if Yt ∈ Aνt . (3)

Instead of exact values of Y1, . . . , YT we observe only corresponding class (interval)
numbers ν1, . . . , νT ∈ K. Our aim is to construct a forecast of the dependent variable
YT+1 for some future predictor XT+1.
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3 Maximum likelihood estimator

Introduce the notation:

P (k; δ,X) = Φ

(
ak − F (X; θ)

σ

)
− Φ

(
ak−1 − F (X; θ)

σ

)
,

where k ∈ K, δ = (θ′, σ2)′ ∈ Ξ, X ∈ X, Φ(·) is the standard normal distribution
function. Model assumptions (1), (2), (3) determine the probability distribution of the
random observations νt ∈ K:

PXt,δ{νt = k} = PXt,δ{Yt ∈ Ak} = P (k; δ,Xt), t = 1, . . . , T ;

observations {νt}nt=1 are jointly independent.

Lemma 1. Under model assumptions (1), (2), (3) the log-likelihood function is

l(δ;H,X ) =
T∑
t=1

ln

(
Φ

(
aνt − F (Xt; θ)

σ

)
− Φ

(
aνt−1 − F (Xt; θ)

σ

))
, (4)

where X = {X1, . . . , XT} is the experimental design, H = {ν1, . . . , νT} is the set of
classified observations.

Maximum likelihood estimator (MLE) δ̂T of the model parameter δ0 is determined
by maximization of the log-likelihood function (4):

δ̂T = (θ̂T , (σ̂T )2)′ : l(δ̂T ;H,X ) = max
δ∈Ξ

l(δ;H,X ). (5)

The following theorems present asymptotic properties of MLE δ̂T [1].

Theorem 1. Let the following conditions hold:

SC1. K > 2.

SC2. Regression coefficient space Θ is a closed bounded subset of Rm; there are known
bounds σ̄2 > 0 and ¯̄σ2 > 0, that σ̄2 ≤ (σ0)2 ≤ ¯̄σ2.

SC3. Regressors space X ⊆ RN is a compact space.

SC4. Function F (X; θ) is continuous on X×Θ.

SC5. For any ε > 0 there exists γ = γ(ε) > 0 that the following limit expression

lim
T→∞

1
T

∑T
t=1 I{|F (Xt;θ0)−F (Xt;θ)|≥γ} = b

holds for any θ ∈ Θ, |θ − θ0| ≥ ε, where 0 < b = b(θ, θ0, γ, F (·)) ≤ 1, I{A} is the
identifier of event A.
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Then MLE δ̂T is strongly consistent:

δ̂T
P=1−−−→
T→∞

δ0.

Define Fisher information matrix:

ΓT (δ) =
T∑
t=1

EXt,δ0{(∇δlnP (νt; δ,Xt))(∇δlnP (νt; δ,Xt)
′)}.

Theorem 2. Let the following conditions hold:

A1. MLE δ̂T is a consistent estimator of the parameter vector δ0.

A2. For any fixed δ ∈ Ξ functions F (X; θ), ∂F (X;θ)
∂θi

, ∂2F (X;θ)
∂θi∂θj

, ∂3F (X;θ)
∂θi∂θj∂θs

, i, j, s =

1, . . . ,m, are bounded on X;

A3. Γ̄T (δ
0) = 1

T
ΓT (δ) is a positive definite matrix: Γ̄T (δ

0) ≻ 0.

A4. lim
T→∞

∣∣Γ̄T (δ
0)
∣∣ = b > 0.

Then MLE δ̂T is asymptotically normal distributed:

L
{
T

1
2 (Γ̄T (δ

0)
1
2 )(δ̂T − δ0)

}
−−−→
T→∞

Nm+1(0m+1, Im+1).

4 Plug-in predictive statistic

Under model assumptions (1), (2), (3) plug-in forecasting statistic is

ŶT+1 = F (XT+1; θ̂
T ). (6)

Let us present Fisher information matrix ΓT (δ
0)−1 in a block form:

ΓT (δ
0)−1 =

[
(ΓT (δ

0)−1)(1,1) (ΓT (δ
0)−1)(1,2)

(ΓT (δ
0)−1)(2,1) (ΓT (δ

0)−1)(2,2)

]
,

where dimensions of matrices (ΓT (δ
0)−1)(1,1), (ΓT (δ

0)−1)(1,2), (ΓT (δ
0)−1)(2,1),

(ΓT (δ
0)−1)(2,2) are m×m, m× 1, 1×m, 1× 1 correspondingly.

Theorem 3. Let MLE δ̂T be strongly consistent and asymptotically normal distributed
estimation of δ0 and function F (X; θ) be twice continuously differentiable with regard
to θ. Then forecast (6) is asymptotically unbiased:

EXT+1,δ0{ŶT+1 − YT+1} −−−→
T→∞

0,

and its mean squared risk is

R = EXT+1,δ0{(ŶT+1 − YT+1)
2} −−−→

T→∞

−−−→
T→∞

(σ0)2 + (∇δF (XT+1; θ
0))′(ΓT (δ

0)−1)(1,1)(∇δF (XT+1; θ
0)).
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5 Computer simulations

Consider regression time series:

Yt = F (Xt; θ
0) + ξt = θ01X

θ02
t,1X

θ03
t,2 + ξt, t = 1, . . . , T.

where θ0 = (2.248, 0.404, 0.803)′, (σ0)2 = 1. Let K = 3, a0 = −∞, a1 = 12, a2 = 24,
aK = +∞ and {Xt,1, Xt,2}Tt=1 be an analytical grid on [0, 10] × [0, 10]. For each T we

run Q = 100 Monte-Carlo simulations and find forecasts Ŷ q
T+1, q = 1, ...Q, for XT+1 =

(11, 11)′. We estimate mean squared risk using R̂1 =
1
Q

∑Q
q=1

(
Ŷ q
n+1 − Y q

n+1

)2
and R̂2 =

1
Q

∑Q
q=1

(
(σ̂T,q)2 + (∇δF (XT+1; θ̂

T,q))′(ΓT (δ̂
T,q)−1)(1,1)(∇δF (XT+1; θ̂

T,q))
)
. Simulation

results are presented in Figure 1. From the figure we see that mean squared risk
converges to (σ0)2 = 1.
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Figure 1: Estimations of squared prediction risks
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Abstract

Stationary Gaussian time series observed under right censoring are consid-
ered. Statistical estimators of the model parameters are constructed by using the
method of moments for special auxiliary time series. Consistency of constructed
estimators is proved under some additional general conditions.

Consider Gaussian time series xt observed under right censoring. It means that
instead of the exact values x1, . . . , xT at the time moments Tc = {t : xt ≥ c} only
random events are observed [2, 3]:

A∗
t = {xt ∈ [c,+∞)}, t ∈ Tc,

where c ∈ R is the censoring level, T ∈ N is the length of the observation process.
Let X = (x1, . . . , xT )

′ ∈ RT be the vector of the exact observations. Then for
Gaussian time series the vectorX has a normal distribution L(X) = N (µ,Σ), where the
mathematical mean µ and the covariance matrix Σ depend on some unknown parameter
θ ∈ Θ ⊆ Rm of the time series model (e.g. for AR(p) model θ = (φ1, . . . , φp, σ

2), where
φ1, . . . , φp are the autoregression coefficients and σ2 is the variance of the Gaussian
innovation process [1]).

Define the auxiliary time series yt for the right censored time series xt [3]:

yt = fc(xt) =

{
xt, t ∈ {1, . . . , T}\Tc
c, t ∈ Tc

= min{xt, c}.

Using the method of moments for auxiliary time series yt, them values of the second
moments στ = E{xtxt+τ} for the initial time series xt can be estimated, i.e. estimators
σ̂τ , 0 ≤ τ < m, can be found. These σ̂τ with help of the method of moments for initial
time series xt allow to obtain estimators of the model parameters θ̂. The example of
this estimation procedure is proposed for the AR(p) model.

The consistency of the constructed estimators θ̂ is proved.
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Abstract

Self-similarity of network traffic has a strong impact on performance of the
network and is a common property of modern telecommunication networks, which
makes the study relevant to the industry needs [1].

One of the first steps in modelling network traffic with α-stable processes is
research of self-similarity property to find out if the considered process has the
long range dependency property. One of the most important parameters related
to the self-similarity property is Hurst exponent. There are multiple methods of
estimation of the Hurst exponent from the existing data. This work is aimed to
compare statistical properties of the most popular estimation techniques applied
to α-stable processes.

The aim of the work is to estimate Hurst exponent H from samples of α-
stable processes and to perform comparative analysis of statistical properties
of the estimates, retrieved using different methods. The following methods are
covered in this paper: R/S analysis, variance-time analysis, wavelet analysis and
detrended fluctuation analysis. Stable process is considered as a model random
process with fractal properties.

The results of the modelling α-stable processes with Hurst exponent H are
presented in the work, varying 0.5 < H < 1. For the retrieved sample the H
is estimated using considered methods. The theoretical and empirical research
of the statistical properties of the estimates is performed, in particular bias,
standard deviation and consistency of the estimates [2].

1 Introduction

Self-similar processes play an important role in probability because of their connection
to limit theorems and they are widely used to model natural phenomena. For instance,
persistent phenomena in internet traffic, hydrology, geophysics or financial markets are
known to be self-similar. Stable processes have attracted growing interest in recent
years: data with “heavy tails” have been collected in fields as diverse as economics,
telecommunications, hydrology and physics of condensed matter, which suggests using
non-Gaussian stable processes as possible models. Self-similar α-stable processes have
been proposed to model some natural phenomena with heavy tails.

The stochastic process X(t) is statistically self-similar if x(at)
d
= aHX(at), where

a > 0. Long-range dependence means slow (hyperbolic) decay in the time of the
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Figure 1: Hurst exponent estimates using
R/S analysis

Figure 2: Hurst exponent estimates using
variance-time analysis

autocorrelation function of a process. The parameter H (in general 0 < H < 1) is
called the Hurst exponent and is a measure of self-similarity or a measure of duration
of long-range dependence of a stochastic process.

Stable distributions are a class of probability laws, and they have intriguing the-
oretical and practical features. The α-stable distributions are quite effective in the
analysis of the financial time series because they can generalize the normal distribution
and allow heavy tails and skewness. Despite the fact that the student-t, hyperbolic
and normal inverse Gaussian distributions have heavy tail features, the most impor-
tant reason for preferring the α-stable distributions is that they are supported by the
generalized Central Limit Theorem. There is no a close form of α-stable distribution
except for Normal, Cauchy and Levy distributions. However, one dimensional stable
distribution can be described by the following characteristic function of X Sα(β, γ, σ):

ϕ(t) =

{
exp

{
−σα|t|α

[
1− iβsgn(t) tan(πα

2
)
]
+ iµt

}
if α ̸= 1

exp
{
−σ|t|

[
1 + iβsgn(t)

(
2
π

)
log |t|

]
+ iµt

}
if α = 1

where 0 < α ≤ 2, −1 ≥ β ≤ 1, µ, σ ∈ R, σ > 0.
In accordance with the fractional Brownian motion, the non-integer alphas in the

range 1 < α ≤ 2 are described via long memory and statistical self-similarity properties;
these are fractals. Additionally, α is the fractal dimension of the probability space of
the time series and can be shown as α = 1

H
, where H is the Hurst exponent and

measures the statistical self-similarity.

2 Estimation of Hurst exponent

The estimation is performed using the following approach: at first 100 samples from
stable process of size 1024 is generated for each of the considered H values. After that
the estimation of Hurst exponent Ĥ is performed for the samples using each method,
the mean and standard deviation of estimates are calculated.

R/S analysis. This empirical method suggested by G. Hurst is still one of the
most popular methods of research of fractal series of different nature.
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Figure 3: Hurst exponent estimates using
detrended fluctuation analysis

Figure 4: Hurst exponent estimates using
wavelet analysis

Table 1: Standard deviation of estimates of Hurst exponent

Estimation method Standard deviation SĤ Depends on real H
R/S analysis 0.029 ≤ SĤ ≤ 0.044 Increases with H

Variance-time analysis SĤ ≈ 0.03 No
Detrended fluctuation analysis 0.028 ≤ SĤ ≤ 0.041 Increases with H

Wavelet analysis SĤ ≈ 0.04 No

The estimates for Hurst exponent using R/S analysis are biased (see Figure 1) and
their standard deviation increases with real H values (see Table 1).

Variance-time analysis is most often used to processes researches in telecommu-
nication networks.

The estimates for Hurst exponent using variance-time analysis are biased (see Fig-
ure 2) and their standard deviation does not depend on real H values (see Table 1).

Detrended fluctuation analysis (DFA). DFA is the main method of determin-
ing self-similarity for nonstationary time series nowadays. This method is based on the
ideology of onedimensional random walks.

The estimates for Hurst exponent using detrended fluctuation analysis are biased
(see Figure 3) and their standard deviation increases with real H values (see Table 1).

Wavelet-based estimation. Of recent, the effective tool for a time series analysis
is the multiresolution wavelet analysis, whichs main idea consists in the expansion of
a time series on an orthogonal base, formed by shifts and the multiresolution copies of
the wavelet function.

The estimates for Hurst exponent using wavelet analysis are unbiased (see Figure 4)
and their standard deviation does not depend on real H values (see Table 1).
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3 Conclusion

The best estimates of Hurst exponent for samples from alpha-stable processes can be
retrieved using wavelet analysis, which is confirmed by their theoretical statistical prop-
erties [3]. The estimates retrived using this method are unbiased and their standard
deviation does not depend on real H values. Estimates retrived using the other meth-
ods are biased, which is confirmed empirically. Additionally, the standard deviation of
estimates decreases with the increase of sample size for all methods. In case of small
sample size to achieve better estimation accuracy the one may want to use the average
of fixed unbiased estimates retrieved using multiple methods.
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Abstract

Initially, our aim was to prove that in testing the hypothesisH0 about uniform
distribution on [0, 1] based on the frequencies ν1, . . . , νN of falling the n observa-
tions into N equiprobable (under H0) subintervals of [0, 1] the chi-squared test
based on

∑
ν2i is asymptotically optimal (as N,n → ∞) in the class of symmet-

ric (permutation-invariant) tests. This is the most natural class of tests in the
absence of specific alternatives to H0.

We succeeded in solving the simpler problem that obtains by first taking
the limit as n → ∞. Then the frequencies, properly centered and normalized,
turn into normally distributed r.v.’s xNi ∼ N (µNi, 1), i = 1, . . . , N , and the
hypothesis becomes H0 : µNi = 0, i = 1, . . . , N . The r.v.’s xNi are assumed
independent. The constraint

∑
νi = n implies the condition

∑
xNi = 0, which

is, however, taken into account by the resulting statistic Z2
N .

It was proved that for any sequence of alternatives µN = (µNi)
N
i=1, such

that
∑

µNi = 0, ∥µN∥ = (
∑

µ2
Ni)

1/2 = O(N1/4) and (µNi)
N
i=1 satisfy a cer-

tain uniform negligibility condition, the sequence of tests based on the statistics
Z2
N =

∑N
i=1(xNi− x̄N )2 is asymptotically most powerful within the class of tests

symmetric w.r.t. the ordering of components (xNi)
N
i=1.

The alternatives of order ∥µN∥ ≍ N1/4 are those for which the test achieves
a nontrivial power.
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Abstract

Given the neighbourhood structure, the problem of classifying a scalar Gaus-
sian CAR observation into one of two populations specified by different para-
metric drifts is considered. This paper concerns with classification procedures
associated with a parametric plug-in conditional Bayes rule (PBR) obtained by
substituting the unknown parameters by their maximum likelihood (ML) esti-
mators in the Bayes rule. For the particular prior distributions of unknown
parameters the Bayesian estimators are used. The closed-form expression for
the actual error rate associated with aforementioned classification rule and the
approximation of the expected error rate (AER) associated with aforementioned
PBR is derived. This is the extension of the previous one to the case of complete
parametric uncertainty, i.e. when all drift and covariance function parameters
are unknown. CAR observations sampled on regular 2-dimensional lattice with
respect to the neighbourhood structure based on Euclidean distance between
sites is used for simulation experiment.

1 Introduction

Suppose that model of observation Z(s) in population Ωj is

Z(s) = x′(s)βj + ε(s), (1)

where x(s) is a q × 1 vector of non random regressors and βj is the q × 1 vector of
parameters, j = 1, 2. The error term ε(s) is generated by zero-mean CAR {ε(s) : s ∈
D} with respect to the undirected graph (nodes with neighbourhood system) that will
be described later. For given training sample, consider the problem of classification of
the Z0 = Z(s0) into one of two populations when x′(s0)β1 ̸= x′(s0)β2, s0 ∈ D.

Suppose that the set of spatial locations {si ∈ D; i = 1, ..., n} forming regular or
irregular lattice where training sample T ′ = (Z(s1), ..., Z(sn)) is taken, and call it the
set of training locations. Indexing spatial locations by integers 0, 1, .., n, denote lattices
by Sn = 1, ..., n and S0

n = Sn ∪ {0}. Let Z(si) = Zi, i = 0, ..., n then training sample is
defined by T = (Z1, ..., Zn)

′ and T0 = (Z0, Z1, ..., Zn)
′. Assume that Sn is partitioned

into union of two disjoint subsets, i.e. Sn = S(1) ∪ S(2) , where S(j) is the subset of Sn

that contains nj locations of feature observations from Ωj, j = 1, 2.
Assume that lattice S0

n is endowed with a neighbourhood system N0 = {Nk : k =
0, 1, ..., n} and lattice Sn is endowed with a neighbourhood system N = {Nk : k =
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1, ..., n} where Nk denotes the collection of sites that are neighbours of site, sk. So
we formed undirected graph G0 specified by lattice S0

n and neigbourhood system N0

and its subgraph G specified by lattice Sn and neigbourhood system N . Define spatial
weight wkl > 0 as a measure of similarity between sites k and l, and put wkl = wlk and
hk =

∑
l∈Nk

wkl .

The n × 2q design matrix of training sample T is denoted by X. Then training
sample T would be modeled by the joint distribution (Oliveira and Ferreira, 2011)

T ∼ Nn(Xβ, σ
2V (α)) (2)

where
V (α) = (In + αH)−1 (3)

and σ > 0 is a scale parameter and α ≥ 0 is a spatial dependence parameter and n×n
matrix H = (hkl : k, l = 1, ..., n) is given by

hkl =


hk if k = l
−wkl if k ∈ Nl.
0 otherwise

In the following set Σ = σ2V (α). Then the variance-covariance matrix of vector T0
is var(T0) = σ2(In+1 + αH0)−1 where H0 = (hkl, k, l = 0, 1, ..., n).

This is the case, when spatial classified training data are collected at fixed locations.
Let t denote the realization of T . Set k = 1 + αh0.

Since Z0 follows model specified in (1)-(3), the conditional distribution of Z0 given
T = t,Ωj is Gaussian with mean

µ0
jt = E(Z0|T = t; Ωj) = x′0βj + α′

0(t−Xβ), j = 1, 2 (4)

and variance
σ2
0 = var(Z0|T = t; Ωj) = σ2/k, (5)

where α′
0 = αw′

0/k and w′
0 = (w01, ..., w0n).

Under the assumption of complete parametric certainty of populations, the Bayes
discriminant fuction (BDF) minimizing the overall misclassification probability (OMP)
is specified by (McLachlan, 2004)

Wt(Z0,Ψ) =
(
Z0 −

1

2
(µ0

1t + µ0
2t)
)
(µ0

1t − µ0
2t)/σ

2
0 + γ, (6)

where γ = ln(π1/π2) and Ψ = (β′, θ′)′, θ′ = (α, σ2). Here π1, π2(π1 + π2 = 1) are
respectively prior probabilities of the populations Ω1 and Ω2, for observation at location
s0.

The squared Mahalanobis distance between conditional distributions of Z0 given
T = t is specified by

∆2
0 = (µ0

1t − µ0
2t)

2/σ2
0 = x′0(β1 − β2)k/σ

2.
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Denote by P (Ψ) the OMP for BDF defined in (6). Then using the properties of
normal distribution we obtain

P (Ψ) =
2∑

j=1

(
πjΦ(−∆0/2 + (−1)jγ/∆0)

)
, (7)

where Φ(·) is the standard normal distribution function.

2 Error rates for plug-in BDF

As it follows we shall write hat above parameters for their estimators based on realiza-
tion of training sample T = t. Put Ψ̂ = (β̂′, θ̂′)′ and θ̂ = (α̂, σ̂2), α̂0 = α̂w0/(1 + α̂h0).
Then by using (4), (5) we get the estimators of conditional mean and conditional
variance

µ̂0
jt = x′0β̂j + α̂′

0(t−Xβ), j = 1, 2

σ̂2
0 = σ̂2/(1 + α̂h0).

Then replacing parameters with their estimators in (6) we form the plug-in BDF

Wt(Z0; Ψ̂) =
(
Z0 − α̂′

0(t−Xβ̂)− 1

2
x′0I

+β̂
)
(x′0I

−β̂)/σ̂2 + γ (8)

with I+ = (Iq, Iq) and I
− = (Iq,−Iq), where Iq denotes the identity matrix of order q.

Lemma 1. The actual error rate for Wt(Z0; Ψ̂) specified in (8) is

P (Ψ̂) =
2∑

j=1

(
πjΦ(Q̂j)

)
. (9)

Here
Q̂j = (−1)j

(
(aj − b̂)sgn(x′0I

−β̂)/σ0 + σ̂2
0γ/(σ0|x′0I−β̂|)

)
,

where for j = 1, 2

aj = x′0βj + α′
0(t−Xβ) and b̂ = α̂′

0(t−Xβ̂) + x′0I
+β̂/2.

Definition 1. The expectation of the actual risk with respect to the distribution of T

is called the expected error rate (EER) and is designated as ET

(
P (Ψ̂)

)
.

We will use the ML estimators of parameters based on training sample. The asymp-
totic properties of ML estimators established by Mardia and Marshall (1984) under
increasing domain asymptotic framework and subject to some regularity conditions
are essentially exploited. Hence, the ML estimator Ψ̂ is weakly consistent and asymp-
totically Gaussian, i.e.

Ψ̂ ∼ AN(Ψ, J−1),
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here the expected information matrix is given by J = Jβ ⊕ Jθ, where Jβ = X ′Σ−1X
and (i, j)− th element of Jθ is tr(Σ−1ΣiΣ

−1Σj)/2.
Henceforth, denote by (MM) conditions the regularity conditions of Theorem 1 from

Mardia and Marshall (1984) and make the following assumption:
(A1) training sample T and estimator θ̂ are statistically independent.

Theorem 1. Suppose that observation Z0 to be classified by plug-in PDF and let con-
ditions (MM) and assumption (A1) hold. Then the approximation of EER is

AER = R(Ψ) + π∗
1φ(−∆0/2− γ/∆0)∆0(Kβ +Kα + γ2Kθ/∆

2
0)/2. (10)

Here
Kβ = Λ′VβΛk,

Λ′ = αw′
0X/k − x′0(I

+/2 + γI−/∆2
0),

Vβ = (X ′(I + αH)X)−1,

Kα = w′
0(I + αH)−1w0J

−1
11 /k

3,

Kθ = ν ′J−1
θ ν/k2 where ν ′ = (h0,−1/σ2

0).

3 Numerical experiment

In order to demonstrate the results of Theorem 1 simulation experiment was carried
out. CAR observations were sampled on regular 2-dimensional lattice with respect
to the neighbourhood structure based on Euclidean distance between sites. AER and
P (Ψ̂) were calculated for different parametric structures. The results of the numerical
analysis show that proposed error rates and its approximation formulas could be used
as performance evaluation of classification procedures.
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Abstract

An approach to evaluation of linear random functionals of stochastic process
defined on the probability space generated by Poisson process is suggested.

1 Introduction

In [1] an approach to approximate evaluation of mathematical expectation of a class
of nonlinear random functionals based on using the chaos Wiener expansion was sug-
gested. In this report we expand the approach to functionals defined on the probability
space generated by Poisson process. Let P (t) = P (t, ω), t ∈ [0, T ] , where it is possible
T = ∞, be centered Poisson process defined by its characteristic functional

χP (ξ) = E[exp{i⟨ξ, P ⟩}] = exp
{
λ

T∫
0

Λ(iξ(t))dt
}
, Λ(x) ::= ex − x− 1,

where the integral ⟨ξ, P ⟩ =
T∫
0

ξ (t) dP (t) is defined for ξ (t) ∈ L2 [0, T ] ∩ L1 [0, T ] as

stochastic integral. Let us denote : e⟨η,P ⟩ := e⟨η,P ⟩χ−1(−iη), G (P ; η) =: e⟨ln(1+η),P ⟩ : .
The functional G (P ; η) is generating functional of Charlier polynomials [2]- [4]:

Cn(P ; η1, . . . , ηn) =
∂n

∂λ1 · · · ∂λn
G
(
P ;

n∑
j=1

λjηj

)∣∣∣
λ1=···=λn=0

;

E[Cn(P ; ς1, . . . , ςn)Cn(P ; ξ1, . . . , ξn)] =
∑

(k1,...,kn)

n∏
j=1

⟨ςj, ξkj⟩,

where (k1, . . . , kn) runs through the set of all permutations of {1, . . . , n}; the set
{Cα(Pα) ≡ (n1! · · ·nk!)

−1/2Cn1,...,nk
(P ; η1, . . . , ηk), n1 + · · ·+ nk = n, n, nj ∈ N} forms

full orthonormal system in L2(Ω, P ),

Cn1,...,nk
(P ; η1, . . . , ηk)} = Cn

(
P ; η1, . . . , η1︸ ︷︷ ︸

n1

, . . . , ηk, . . . , ηk︸ ︷︷ ︸
nk

)
;

η1, . . . , ηk are the elements of full orthonormal system in L2[0, T ]; α ∈ J , J is the set
of multi-index defined by right part of the identity (see [2, 3]).

1Supported by Belarusian Republican Foundation for Fundamental Research (project F14D-002).
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2 The results

Let us consider linear functionals with random coefficients defined on Poisson process:

F
(
ω,X(·)

)
=

T∫
0

a(s, P(·))Xs(P(·))ds, where the functionals a(s, P(·)) and Xs(P(·)) admit

chaotic developments with respect to Charlier polynomials:

a(s, P(·)) =
∑
α∈J

cα(s)Cα(P(·)), X(P(·)) =
∑
α∈J

Aα(s)Cα(P(·)),

cα(s) = E[a(s, P(·))Cα(P(·)], Aα(s) = E[Xs(P(·))Cα(P(·))].

In this case

E[F (ω,X(·))] =

T∫
0

E[a(s, P(·))Xs(P(·))]ds =
∑
α∈J

T∫
0

cα(s)Aα(s)ds,

and evaluation of mathematical expectation of given functional reduces to evaluation
of coefficients cα(s), Aα(s) and usual integrals. The approach was used in [1] for
the case of functionals defined on probability space generated by Wiener process. In
important case whenXs is the solution of stochastic differential equation the coefficients
Aα(s) can be evaluated by solution of deterministic equations which one gets after
applying the Galerkin method to stochastic differential equations using the Poisson
chaos development or can be evaluated exactly. In the last case one can use approximate
formulas for evaluation Aα(s) [5]. So it is important in some cases calculate cα(s)
exactly. In this report two cases are considered when a(s, P(·)) is Fourier transformation
of centered Poisson process and homogeneous polynomial of arbitrary degree from linear
functional. We will consider the case n1 = . . . = nk = 1 for the simplicity.

1. Let a(s, P(·)) be given by its Fourier transform a(s, Ps) =
∫
R

â(s, u) exp{iuPs},

then cη1,...,ηn(s) =
∫
R

â(s, u)E[exp{iuPs}Cn(P ; η1, . . . , ηn)]du. First let us evaluate

I(λ1, . . . , λn) ≡ E
[
exp{iuPs} : exp

{⟨
ln(1 +

n∑
j=1

λjηj), P ⟩
}
:
]
=

exp
{
λ

T∫
0

(
ln
(
1 +

n∑
j=1

λjηj(t)
)
−

n∑
j=1

λjηj(t)
)
dt
}
×

E
[
exp

{⟨
iu1[0,s) + ln

(
1 +

n∑
j=1

λjηj

)
, P
⟩}]

=

exp
{
λ

T∫
0

Λ(iu1[0,s](t))dt
}
exp

{
λ

T∫
0

(
eiu1[0,s](t) − 1

)( n∑
j=1

λjηj(t)
)
dt
}
.

Then using

E[exp{iuPs}Cn(P ; η1, . . . , ηn)] =
∂n

∂λ1 · · · ∂λn
I(λ1, . . . , λn)|λ1,...,λn=0,
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we get

cη1,...,ηn(s) = λn
∫
R

â(s, u) exp
{
λ

T∫
0

Λ(iu1[0,s](t))dt
}
×

n∏
j=1

exp
{
λ

T∫
0

(
eiu1[0,s](t) − 1

)
ηj(t)dt

}
du.

2. Now let a(t, P(·)) =
k∏

m=1

t∫
0

fm(s)dPs, fm(s) ∈ L2[0, T ]∩L1[0, T ], m = 1, . . . , k. As

in previous case we will use differentiation of generating functional:

E
[ k∏
m=1

( t∫
0

fm(τ)dPτ

)
Cn(P ; η1, . . . , ηn)

]
=

∂k+n

∂µ1 · · · ∂µk∂λ1 · · · ∂λn
E
[
exp

{⟨ k∑
m=1

µm1[0,t]fm, P
⟩}

×

: exp
{⟨

ln
(
1 +

n∑
j=1

λjηj

)}
:

] ∣∣∣
µm=0,λj=0,∀m,n

=

∂k+n

∂µ1 · · · ∂µk∂λ1 · · · ∂λn
exp

{
λ

T∫
0

Λ
( k∑

m=1

µm1[0,t](τ)fm(τ)
)
dτ
}
×

E
[
: exp

{⟨ k∑
m=1

µm1[0,t]fm, P
⟩}

:: exp
{⟨

ln
(
1 +

n∑
j=1

λjηj

)}
:
]∣∣∣

µm=0,λj=0,∀m,n
≡ (A).

Next using the obvious equality

⟨ k∑
m=1

µm1[0,t]fm, P
⟩
=
⟨
ln
([{ k∑

m=1

µm1[0,t]fm

}
− 1
]
+ 1
)
, P
⟩
,

we get

(A) =
∂k

∂µ1 · · · ∂µk

exp
{
λ

T∫
0

Λ
( k∑

m=1

µm1[0,t](τ)fm(τ)
)
dτ
}
×

n∏
j=1

λ

T∫
0

ηj(τ)
(
exp

{ k∑
m=1

µm1[0,t](τ)fm(τ)
}
− 1
)
dτ
∣∣∣
µm=0,m=1,k

≡ (B).
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Note that in the expression k ≥ n, because (A) = 0 in opposed case. Then,

(B) =
∂k

∂µ1 · · · ∂µk

(
χP

(
− i

k∑
m=1

µm1[0,t](·)fm(·)
)
F
( k∑

m=1

µm1[0,t](·)fm(·)
))∣∣∣

µm=0,m=1,k
=

k∑
m=0

∑
(i1,...,im)

∂m

∂µi1 · · · ∂µim

χP

(
− i

k∑
m=1

µm1[0,t](·)fm(·)
)
×

∂k−m

∂µim+1 · · · ∂µik

F
( k∑

m=1

µm1[0,t](·)fm(·)
)∣∣∣

µm=0,m=1,k
,

where F
( k∑

m=1

µm1[0,t](·)fm(·)
)
=

n∏
j=1

λ
T∫
0

ηj(τ)
(
exp

{ k∑
m=1

µm1[0,t](τ)fm(τ)
}
−1
)
dτ ; the

sum
∑

(i1,...,im)

is over all possible samples of m numbers from the set {1, 2, . . . , k},

and where we have used the differentiation formulae with respect to parameter:

∂
∂µj
F (xµj

(·)) =
T∫
0

δF (xµj (·))
δxµj (τ)

∂xµj (τ)

∂µj
dτ. Note that the only terms containing products of

derivatives from all n factors of F will be nonzero after we put µ1 = · · · = µm = 0.
This implies

E[a(t, P(·))Cn(P ; η1, . . . , ηn)] = (B) =

k∑
m=0

∑
(i1,...,im)

E
[ m∏

l=1

t∫
0

fil(τ)dPτ

] k−m∏
q=1

(
λ

t∫
0

ηim+q(τ)fim+q(τ)dτ
)
.

The expectations in right part of this expression are the moments of linear functionals
of Poisson process, so they can be evaluated explicitly.
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SIGNIFICANCE LEVEL ANALYSIS FOR
ADAPTIVE ALGORITHM OF STATIONARY

POISSON STREAM PROCESSING

V. I. Nikitsionak, A. M. Bachar
Belarusian State University

Minsk, BELARUS

Depending on the analyzed sample values the stationary Poisson stream (SPS) of
events has the Poisson or the exponential law of intervals between the adjacent events.
Here we consider the exponential law under the fixed number m of incoming events.
Decision-making time T is assumed to be random. Decision-making means testing
simple hypothesis H0: the distribution parameter (or SPS intensity) λ = λ0, against
alternative H1: λ = λ1 > 0. In adaptive algorithm for the aim of finding the optimum
decision threshold the intensity λ0 is estimated using the classified training SPS of
events (or the training set, TS), corresponding to SPS processing with λ = λ0.

The significance level of adaptive algorithm is obtained from the one for optimal
algorithm by averaging over all values of unknown parameter λ0. Using the known
approximation of probability integral, we get:

Fa(m,F ;m0) ∼= a
√
J(F/a)J , J =

(
1 + 2bm−1

0

(√
1/b ln(a/F )− d−

√
m
)2)−1

, (1)

where F is a significance level, m0 is the volume of TS, (a, b, d) = (0.65, 0.443, 0.75).
Note that the values

√
m to be used depend on the required quality parameters of

adaptive algorithm. Namely, they depend on power and significance level of decision
rule, as well as on the ratio Λ = λ1/λ0, characterizing the “distance” between hypothe-
ses. From the calculations based on (1) it follows: 1) at the small “distance” Λ = 1.1
the significance level F = 10−4 is reached at rather large TS of volume m0 = 21000,
about 40 times greater than the one m0 = 500, providing power parity of adaptive and
optimum algorithms. The significance levels 10−5 . . . 10−6 are reached at even larger
values of m0; 2) at the larger “distance” Λ = 2 the significance levels 10−4 . . . 10−6 are
reached at m0 = 500 with adaptive and optimum algorithms both of power equal 0.9.

Thus, the adaptive algorithm has satisfactory quality for Λ = 2, unlike the case
Λ = 1.1, when the required volume of TS grows dramatically.

Further analysis shows the following.
At a close hypothesis and alternative, when Λ = 1.1 is small enough, the distribu-

tions of the observations under hypothesis and alternative are rather close. So as the
significance level depends on the left quite a gentle “tail” of the hypothetical distribu-
tion, there is a need for highly accurate estimate of a decision threshold. This high
accuracy in its turn is achievable at a very large volumes of TS.

On the other hand, for the well separated hypothesis and alternative the accuracy
of a threshold estimate at m0 = 500 appears suitable for good quality of decision rule.
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Abstract

The paper deals with the problem of a statistical analysis of Markov chains
with the periodically changed transition probability matrices. Statistical estima-
tors for parameters of the model by observed time series are constructed.

1 Introduction

The knowledge of discrete time series is necessary for many applications. One usu-
ally needs to take into consideration dependence on the previous states of the process.
Markov chain is a well known mathematical model adequate for these purposes. For
instance, Markov chains are used in signal processing [1], genetics [2], economics [3],
information security [4] and many other areas. The problem of development and anal-
ysis of Markov chains with a small is rather important [5, 6]. A special case of Markov
chains – Markov chain with the periodically changed transition probability matrices –
is considered.

2 Mathematical model

Consider Markov chain ξt : N0 → A with a finite set A of |A| > 1 states, initial
distribution P{ξ0 = i ∈ A} = πi,

∑
i∈A πi = 1, and the matrices of transitions

probabilities, T -periodically changed after every M observations:

P{ξt+1 = j|ξt = i} = P
([t/M ] mod T )
i,j , i, j ∈ A.

Remark. Further consider N = LTM , L ∈ N.

Theorem 1. The probability of realization {d0, d1, . . . , dN} for the considered Markov
chain ξ is:

P{ξ0 = d0, ξ1 = d1, . . . , ξN = dN} = πd0

T−1∏
r=0

L−1∏
l=0

M−1∏
m=0

P
(r)
dlTM+(r−1)M+m,dlTM+(r−1)M+m+1

.
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Theorem 2. The state of the considered Markov chain ξ at the moment t = lTM +
(r − 1)M +m has the following probability distribution:

πt = (P{ξt = i})i∈A =
((
P (r−1)

)′)m ((
P (r−2)

)′)M
. . .
((
P (0)

)′)M
×
[((

P (T−1)
)′)M

. . .
((
P (0)

)′)M]l
π.

3 Statistical estimation of parameters

Construct now the maximum likelihood estimators of the matrices P (0), . . . , P (T−1)

using an observed realization X = {x0, x1, . . . , xN} of length N + 1 of Markov chain
ξ with the periodically changed transition probability matrices. All other parameters
are assumed to be known.

For i, j ∈ A and r = 0, . . . , T − 1, introduce the notations:

n
(r)
ij =

L−1∑
l=0

M−1∑
m=0

δxlTM+(r−1)M+m,iδxlTM+(r−1)M+m+1,j, n
(r)
i =

∑
j∈A

n
(r)
ij .

Theorem 3. If true values M , T and π are known, then the maximum likelihood
estimators for the one-step transition probabilities p

(r)
ij , i, j ∈ A, r = 0, . . . , T − 1, are:

p̂
(r)
ij =

n
(r)
ij

n
(r)
i

.
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Abstract

We study a problem of drift parameter estimation in a stochastic differential
equation driven by fractional Brownian motion. The form of the likelihood ratio
in this model is in general rather complicated. However, in the simplest case
it can be simplified and we can discretize it to establish the a. s. convergence
of the discretized version of maximum likelihood estimator to the true value of
parameter. We also investigate non-standard estimators of the drift parameter
showing further its strong consistency.

1 Introduction and model description

Stochastic differential equations driven by a fractional Brownian motion have been
a subject of an active research for the last two decades. Main reason is that such
equations seem to be one of the most suitable tools to model long-range dependence
in many applied areas, such as physics, finance, biology, network studies etc.

This paper deals with statistical estimation of drift parameter for a stochastic dif-
ferential equation with fBm by discrete observation of its solution. We propose three
new estimators and prove their strong consistency under the so-called “high-frequency
data” assumption that the horizon of observations tends to infinity, while the interval
between them goes to zero. Moreover, we obtain almost sure upper bounds for the
rate of convergence of the estimators. The estimators proposed go far away from be-
ing maximum likelihood estimators, and this is their crucial advantage, because they
keep strong consistency but are not complicated technically and are convenient for the
simulations.

Fractional Brownian motion (fBm) with Hurst parameter H ∈ (0, 1) is a centered
Gaussian process {BH

t , t ≥ 0} on a complete probability space (Ω,F ,P) with the
covariance

E
[
BH

t B
H
s

]
=

1

2
(s2H + t2H − |t− s|2H).

It is well known that BH has a modification with almost surely continuous paths
(even Hölder continuous of any order up to H), and further we will assume that it is
continuous itself.

In what follows we assume that the Hurst parameter H ∈ (1/2, 1) is fixed. In this
case, the integral with respect to the fBm BH will be understood in the generalized

138



Lebesgue–Stieltjes sense. Its construction uses the fractional derivatives, defined for
a < b and α ∈ (0, 1) as(

Dα
a+f
)
(x) =

1

Γ(1− α)

(
f(x)

(x− a)α
+ α

∫ x

a

f(x)− f(u)

(x− u)1+α
du

)
,

(
D1−α

b− g
)
(x) =

e−iπα

Γ(α)

(
g(x)

(b− x)1−α
+ (1− α)

∫ b

x

g(x)− g(u)

(u− x)2−α
du

)
.

It follows from Hölder continuity of BH that for α ∈ (1−H, 1) D1−α
b− BH

b− ∈ L∞[a, b]
a.s. Then for a function f with Dα

a+f ∈ L1[a, b] we can define integral with respect to
BH as the generalized Lebesgue-Stieltjes integral:∫ b

a

f(x) dBH(x) := eiπα
∫ b

a

(Dα
a+f)(x)(D

1−α
b− BH

b−)(x) dx. (1)

Consider a stochastic differential equation

Xt = X0 + θ

∫ t

0

a(Xs)ds+

∫ t

0

b(Xs)dB
H
s , (2)

where X0 is a non-random coefficient. In [2] it is shown that this equation has a unique
solution under the following assumptions: there exist constants δ ∈ (1/H−1, 1], K > 0,
L > 0 and for every N > 0 there exists RN > 0 such that

(A) |a(x)|+ |b(x)| ≤ K for all x, y ∈ R,

(B) |a(x)− a(y)|+ |b(x)− b(y)| ≤ L |x− y| for all x, y ∈ R,

(C) |b′(x)− b′(y)| ≤ RN |x− y|δ for all x ∈ [−N,N ], y ∈ [−N,N ].

Our main problem is to construct an estimator for θ based on discrete observations
of X. Specifically, we will assume that for some n ≥ 1 we observe values Xtkn

at the
following uniform partition of [0, 2n]: tnk = k2−n, k = 0, 1, . . . , 22n.

In order to construct consistent estimators for θ, we need another technical assump-
tion, in addition to conditions (A)–(C):

(D) a(x) and b(x) are separated from zero.

2 Maximum-likelihood estimator

In [3] the explicit form of the likelihood ratio was established. In the general case
that formula is not suitable for applications because it involves a lot of weakly singular
kernels and it is quite impossible to get its convergence to the true value of the param-
eter. But even if we get the convergence, the simulation error will be large enough to
annihilate our efforts in discretization.

In order to avoid this technical difficulties, we consider the simplest case. Consider
an equation

dXt = θb(Xt)dt+ b(Xt)dB
H
t .
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In this case the maximum-likelihood estimator can be written as follows [3]:

θ̂
(1)
t =

∫ t

0
s−α(t− s)−αb−1(Xs)dXs

B(1− α, 1− α)t1−2α
, (3)

where α = H − 1
2
, B(x, y) is the beta function. Now we consider an estimator

θ̂(2)n =

∑22n−1
k=1 (tnk)

−α(2n − tnk)
−αb−1

(
Xtnk−1

)(
Xtnk

−Xtnk−1

)
B(1− α, 1− α)2n(1−2α)

.

This estimator is a discretized version of the estimator (3).
Let us introduce the following conditions in addition to (A)–(D):

(a) |b(x)− b(y)| ≤ C1 |x− y|, for all x, y ∈ R,

(b) C4 ≤ |b(x)| ≤ C2(1 + |x|), for all x ∈ R,

(c) |b′(x)− b′(y)| ≤ C3 |x− y|ρ, for all x, y ∈ R,

where C1, . . . , C4 are positive constants and ρ ∈ (1/H − 1, 1].

Theorem 1. Under conditions (a)–(c), θ̂
(2)
n is strongly consistent. Moreover, for any

β ∈ (1/2, H) and γ > 1/2 there exists a random variable η = ηβ,γ with all finite

moments such that
∣∣∣θ̂(2)n − θ

∣∣∣ ≤ ηnκ+γ2−τn, where κ = γ/β, τ = (1−H) ∧ (2β − 1).

3 Consistent estimators for drift parameter

We now define an estimator, which is a discretized version of a maximum likelihood
estimator for F (X), where F (x) =

∫ x

0
b(y)−1dy:

θ̂(3)n =
2n
∑22n

k=1 (t
n
k)

−α (2n − tnk)
−α b−1

(
Xtnk−1

)(
Xtnk

−Xtnk−1

)
∑22n

k=1 (t
n
k)

−α (2n − tnk)
−α b−1

(
Xtnk−1

)
a
(
Xtnk−1

) .

Theorem 2. Under conditions (A)–(D), Theorem 1 holds for θ̂
(3)
n .

Consider a simpler estimator:

θ̂(4)n =
2n
∑22n

k=1 b
−1
(
Xtnk−1

)(
Xtnk

−Xtnk−1

)
∑22n

k=1 b
−1
(
Xtnk−1

)
a
(
Xtnk−1

) .

This is a discretized maximum likelihood estimator for θ in equation (2), where BH is
replaced by Wiener process. Nevertheless, this estimator is consistent as well. Namely,
we have the following result.

Theorem 3. Theorem 2 holds for θ̂
(4)
n .
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In the paper [1] the following non-standard estimator for θ was considered:

θ̂
(5)
t =

∫ t

0
a(Xs)b

−2(Xs)dXs∫ t

0
a2(Xs)b−2(Xs)ds

.

We define a discretized version of θ̂
(5)
t . Put

θ̂(6)n :=
2n
∑22n

k=1 a
(
Xtnk−1

)
b−2
(
Xtnk−1

)(
Xtnk

−Xtnk−1

)
∑22n

k=1 a
2
(
Xtnk−1

)
b−2
(
Xtnk−1

) .

Let φ(t) = a(Xt)
b(Xt)

,

φ̂n(t) :=
22n−1∑
k=0

φ(tnk)I[tnk ,tnk+1)
(t).

Theorem 4. Under conditions (a)–(c), assume that there exist constants β > 1 −H
and p > 1 such that

2n(H+β)np
∫ 2n

0

∣∣∣(Dβ
0+φ̂n

)
(s)
∣∣∣ ds∑22n

k=1 φ
2(tnk−1)

→ 0 a. s. at n→ ∞.

Then θ̂
(6)
n is strongly consistent.
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Let X (t) , t ∈ I, be a real-valued measurable strictly stationary zero-mean random
field, where I is Rd or Zd endowed with the measure ν(·) which is the Lebesgue measure
or the counting measure (ν({t}) = 1) respectively. Suppose that all order moments
exist and the field X (t) has spectral densities of all orders fk (λ1, ..., λk−1) ∈ L1(S

k−1),
k = 2, 3, ..., where S = Rd or (−π, π]d for the continuous-parameter or discrete-
parameter cases respectively.

Let the field X (t) be observed over the domain DT = [−T, T ]d ⊂ I. Consider the
problem of estimation of integrals of cumulant spectra of orders k = 2, 3, ...

Jk (φk) =

∫
Sk−1

φk (λ) fk (λ) dλ (1)

for appropriate functions φk (λ) with φk(λ)fk (λ) ∈ L1(S
k−1). The functionals (1) can

be used to represent some characteristics of stochastic processes and fields in nonpara-
metric setting and also appear in the parametric estimation in the spectral domain,
e.g., when the minimum contrast (or quasi-likelihood) estimators are studied.

We will base our analysis on tapered data {hT (t)X (t) , t ∈ DT}, where hT (t) =
h (t/T ) , t ∈ Rd, and the taper h (t) satisfies some conditions. The use of tapers leads
to the bias reduction of estimates, which is important when dealing with spatial data:
tapers can help to fight the so-called “edge effects”.

Denote Hk,T (λ) =
∫
hT (t)

ke−i(λ,t)ν (dt) and define the finite Fourier transform of
tapered data: dh

T
(λ) =

∫
hT (t)X(t)e−i(λ,t)ν(dt), λ ∈ S, the tapered periodograms of

the second and the third orders:

Ih2,T (λ) =
|dh

T
(λ)|2

(2π)dH2,T (0)
, Ih3,T (λ1, λ2) =

dh
T
(λ1)d

h
T
(λ2)d

h
T
(−λ1 − λ2)

(2π)2dH3,T (0)

(provided that H2,T (0) ̸= 0, H3,T (0) ̸= 0) and the tapered periodogram of k-th order:

Ihk,T (λ1, ..., λk−1) =
1

(2π)(k−1)dHk,T (0)

k∏
i=1

dh
T
(λi) , λi ∈ S,

(provided that Hk,T (0) ̸= 0), where
∑k

i=1 λi = 0, but no proper subset of λi has sum 0.
We consider the empirical spectral functional of k-th order

Jk,T (φk) =

∫
Sk−1

φk (λ) I
h
k,T (λ) dλ. (2)

as an estimate for the spectral functional (1). We discuss the questions: (i) evaluation
of bias and (ii) conditions for asymptotic normality of (2). We pay special attention to
the case k = 2 and present applications for parameter estimation of particular models
of random fields.
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Abstract

Algorithms for the classification of gene expression data require the contin-
uous improvement of their efficiency. This paper presents a modification of a
k-nearest neighbors algorithm which increases an efficiency of classification in-
cluding quality parameter of each microarray spot. The efficiency of classification
is achieved by recalculation of distances between classified and classifying objects.
We also introduce an enhanced microarray data simulation model that includes
spot quality parameters.

1 Introduction

Microarrays are one of the newest instruments of biology and medicine [1]. Their
advantage caused by possibility to conduct an enormous number of specific reactions
and interactions of biopolymer molecules simultaneously.

The first step in the entire microarray analysis is DNA microarray image processing,
using such tools as GenePix or MAIA (MicroArray Image Analysis) [3]. Every mistake
made on this step can further influence the final results significantly.

As a rule, after retrieving data, analysis of microarray gene expression includes step
that removes objects with low quality [3]. In this paper there is presented an improved
kNN algorithm, using quality parameter as a weight factor, which makes it possible to
increase efficiency of a microarray analysis taking into account spots with lower quality.
There is also presented algorithm for microarray simulation adapted for inclusion of
quality parameter. This microarray model was applied to evaluate efficiency of the
modified algorithm in comparison with original one.

2 DNA microarray model with a quality parameter

2.1 MAIA and a quality parameter

Microarray image analysis software like GenePix or MAIA provides an integrative
estimate of spot quality in range from 0 to 1 after image processing [3]. The quality
value can be used as a weight factor for classification analysis.
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2.2 DNA microarray simulation model with a quality param-
eter

Simulation model of microarray gene expression values must be as similar to real data as
possible. This is achieved by simulation of physical phenomena in the model. Dembele
[2] proposed the universal microarray simulation model that is most advanced up to
date. Thus we took this model for adding quality factor.

A distribution of the quality parameter was obtained resting on the microarray data
in a whole-genome microarray experiment assessing well-characterized transcriptional
modifications induced by the transcription regulator SNAI1 [3].

Histogram of the total spot quality parameters is shown in figure 1a. Such low-
quality spots appear mainly due to poor microarray experiment conduction. Filtering
objects with very low quality (from 0 to 0.1) resembles shape of beta-distribution with
mode about 0.25 (figure 1b). Data of better quality would have mode higher than
0.25. In this work we took mode for the distribution equal 0.375. Empirical choice of
the parameters for beta distribution equals to α1 = 2.5 and α2 = 3.5. Plot of density
function with these parameters is presented in the figure 1c.
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Figure 1: Histograms and Probability Density Function of the spot quality parameter:
a) histogram of microarray data taken from [3] b) histogram of microarray data after
filtering objects with qualities between 0 and 0.1 c) curve of beta-distribution with
fitted parameters; it approximately resembles the shape of the histogram with shifted
mode.

The next step is to bind the value of the quality parameter to value of gene ex-
pression that was implemented adding a Gaussian noise. Variance of the distribution
is the greater the worse object quality is. The variance for i -th spot was calculated
according to expression σi = 1− qi.

3 kNN modification using a quality parameter

The idea for the modification of the original k-nearest neighbors method involves ad-
justing distances between objects of training and test samples. Adjustments weight
the between-object distances so that if the lower quality of training object then it con-
tributes less to classifying test objects. The illustration of this approach is shown in
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figure 2.
Algorithm:

1. Initialize the number of nearest neighbors k, the volumes of training and test
samples.

2. Find distances dij between all objects of the training and test samples.

3. Modify distances with some function f which depends on quality parameter qi:
dwij = f(dij).

4. Identify k nearest neighbors for each test object.

5. Determine the class label for each test object.

A function f was chosen hyperbolic: dwij = f(dij) = dij/qi. This function is chosen
because when a quality of spot goes to 0 then dwij diverges to infinity. dij can be also
logarithmically transformed: dwij = f(dij) = dij · (− loga qi + 1).

4 Results and discussion

4.1 Description of numerical experiments

Numerical experiment included:

1. Generation of test sample consisted of 10000 spots, where 100 spots are up reg-
ulated and 100 spots are down regulated.

2. Generation of training sample consisted of 300 spots where 100 spots are up
regulated and 100 spots are down regulated. Expression values of neutral spots
were distributed between -.1 and .1.

3. Receiving the number of correctly classified spots with classic and modified kNN
methods considering the same test and training samples.

The described experiment was repeated 150 times under certain conditions. The
changing conditions involved variation of the lowest value of spot quality for both
training and test samples what reflected general microarray quality.

4.2 Results

The following formula was used to compare weighted and basic algorithms:

efficiency = 100% · T
weighted

T basic
,

where Tweighted and T basic are the numbers of correctly classified objects by improved
and basic algorithms respectively. Figure 3 represents heatmap, where the more green
color reflects the more efficient improved algorithm is. Each cell contains average value
of 150 efficiency values obtained for the certain lowest value of quality parameter.
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Figure 2: This picture il-
lustrates how the method
of distances modification
works. A triangle with
quality 0.5 is moved to
a certain distance from
the object for classifica-
tion. A square which has
lower quality 0.1 is moved
even further. Squares and
triangles that have quality
1 stay at the same place.
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Figure 3: Heatmap of percent of efficiency of im-
proved method in comparison with basic algorithm
of kNN

5 Conclusion

This work presents a modified kNN algorithm that takes into account a spot quality
parameter of a microarray. The algorithm works more efficiently than the classical one,
when quality of training and test samples is worse. The idea of using the spot quality
parameter can be embedded into more advanced algorithms of classification and cluster
analysis.
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Abstract

The problem of change point detection of autoregressive processes with un-
known parameters is considered. A sequential procedure with guaranteed quality
is proposed and both asymptotic and non-asymptotic properties of the algorithm
are studied.

1 Introduction and problem statement

The problem of sequential change point detection for autoregressive processes often
arises in different applications connected with time series analysis. The most difficult
case is the case when all the process parameters are unknown. Theoretical properties of
the procedures are commonly studied asymptotically when the number of observations
before a change point tends to infinity. For small samples as a rule simulation study is
conducted.

This paper develops an alternative approach in the frame of guaranteed sequential
methods. It is based on the method of change point detection for AR(p) process
proposed in [1]. In this study such an approach is applied to a general autoregressive
model with unknown parameters. Using a special stopping rule we construct statistics
which variances are bounded from above by a known constant. Hence, we can estimate
the probabilities of false alarm and delay non-asymptotically, but asymptotic properties
of the statistics are also investigated and more precise results are obtained.

We consider the scalar autoregressive process to be specified by the equation

xk+1 = Akλ+Bkξk+1, (1)

where {ξk}k≥0 is a sequence of independent identically distributed random variables
with zero mean and unit variance. The density distribution function fξ(x) of {ξk}k≥0

is strictly positive for any x. The value m > 1 defines the order of the process;
λ = [λ1, . . . , λm] is the parameter vector of dimension m × 1; Ak is the known 1 ×m
matrix, the unknown noise variance Bk is bounded from above, i.e., B2

k ≤ D2 < ∞,
Fk = σ{ξ1, ..., ξk} is the σ-algebra generated by variables {ξ1, ..., ξk}, Ak and Bk are
Fk-measurable. The value of the parameter vector λ changes at the change point θ:

λ = λ(k) =

{
µ0, if k < θ;
µ1, if k ≥ θ.

1This paper is supported by The National Research Tomsk State University Academic D.I.
Mendeleev Fund Program (NU 8.1.55.2015 L) in 2014–2015 and by Russian Foundation for Basic
Research Grant 16-01-00121 A.
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Values of the parameters before and after θ are supposed to be unknown. The difference
between µ0 and µ1, for some known ∆, satisfies the condition

(µ0 − µ1)
′(µ0 − µ1) ≥ ∆. (2)

The problem is to detect the change point θ from observations xk.

2 Guaranteed parameter estimator

Let N1 ≥ m be the instant of the estimating procedure start, n > 0 is the volume of
the initial sample used to estimate the noise variance. The estimator is constructed in
the form

λ̃∗(H) = C−1(N1 + n, τ)
τ∑

k=N1+n

vkA
′
kxk+1;

C(N1 + n, τ) =
τ∑

k=N1+n

vkA
′
kAk.

(3)

We choose the value Γ(N1, n) from the following condition:

E
(
D2/Γ(N1, n)

)
≤ 1. (4)

The weights on the interval [N1 + n,N1 + n+ σ] are taken in the form

vk =

{
(Γ(N1, n)AkA

′
k)

−1/2 , if AN1 , . . . , Ak are linearly independent;
0, otherwise.

(5)

The weights vk on the interval [N1 + n+ σ + 1, τ − 1] are found from the following
condition:

νmin(N1 + n, k)/Γ(N1, n) =
k∑

l=N1+n+σ

v2l AlA
′
l, (6)

where νmin(N1 + n, k) is the minimal eigenvalue of the matrix C(N1 + n, k).
Choosing a positive parameter H, we define the stopping time τ = τ(H) as

τ = inf (N > N1 + n : νmin(N1 + n,N) ≥ H) . (7)

At the instant τ , the weight is found from the condition:

νmin(N1, τ)/Γ(N1, n) ≥
τ∑

l=N1+n+σ

v2l AlA
′
l, νmin(N1, τ) = H. (8)

The parameter H defines the accuracy of the estimator. The choice of the weights
vk allows us to establish a non-asymptotic upper bound for the accuracy.

Theorem 1. Let the parameter λ in (1) be constant, the compensating factor Γ(N1, n)
satisfy condition (4) and the weights vk determined in (5–6) be such that

∞∑
k=0

v2kAkA
′
k = ∞ a.s. (9)

Then the stopping time τ (7) is finite with probability one and the mean square accuracy
of estimator (3) is bounded from above

E||λ∗(H)− λ||2 ≤ P (H)/H2, P (H) = H +m− 1. (10)
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Condition (9) hold true for the process AR(p).
Example. Let the observed process AR(p) be described by equation

xk+1 = λ1xk + . . .+ λmxk−m+1 +Bξk+1. (11)

Then the compensating factor can be chosen in the form proposed in [2]

Γ(N1, n) = D(N1, n)
N1+n−1∑
l=N1

x2l . (12)

If the noises {εk}k≥1 in (11) are normally distributed with zero mean and unit variance
then the multiplier D(N1, n) = (n− 2)−1.

3 Change point detection

Consider now the change point detection problem for process (1). We construct a set
of sequential estimation plans

(τi, λ
∗
i ) = (τi(H), λ∗i (H)), i ≥ 1,

where {τi}, i ≥ 0 is the increasing sequence of the stopping instances (τ0 = −1), and
λ∗i is the guaranteed parameter estimator on the interval [τi−1 + 1, τi]. The following
condition holds true for the estimator

E ||λ∗i (H)− λ||2 ≤ P (H)/H2. (13)

Then we choose an integer l > 1. We associate the statistic Ji with the i−th interval
[τi−1 + 1, τi] for all i > l

Ji =
(
λ∗i − λ∗i−l

)′ (
λ∗i − λ∗i−l

)
. (14)

This statistic is the squared deviation of the estimators with numbers i and i− l.

Theorem 2. The expectation of the statistics Ji (14) satisfies the following inequalities:

E [Ji| τi < θ] ≤ 4P (H)/H2, E [Ji| τi−l < θ ≤ τi−1] ≥ ∆− 4
√
∆P (H)/H2. (15)

Hence, the change of the expectation of the statistic Ji allows us to construct the
following change point detection algorithm. We choose the values of the parameter H
and of the parameter δ > 0 satisfying the following condition

4P (H)/H2 < δ < ∆− 4
√
∆P (H)/H2. (16)

The Ji values are compared with the threshold δ. The change point is considered to
be detected when the statistic exceeds δ. Due to the application of the guaranteed
parameter estimators in the statistics, we can bound the probabilities of false alarm
and delay from above.

Theorem 3. The probability of false alarm P i
0 and the probability of delay P i

1 in any
observation cycle [τi−1 + 1, τi] are bounded from above

P i
0 ≤ 4P (H)/δH2, P i

1 ≤ 4P (H)/
(
(
√
∆−

√
δ)2H2

)
. (17)

149



4 Asymptotic properties of the statistics

In the following theorem an asymptotic upper bound for the probability of large values
of the standard deviation for the estimator (3) is obtained.

Theorem 4. If for process (1) B2
k ≤ D2 <∞, and

max
1≤k≤τ(H)

v2kD
2||Ak||2

Γ(N1, N)H
→P 0, as H → ∞;

and the compensating factor Γ(N1, N) satisfies the following conditions

N → ∞, N/H → 0 as H → ∞, Γ(N1, N) →P const as N → ∞

then for sufficiently large H in the conditions of Theorem 1

P
{
||λ∗ − λ||2 > x

}
≤ 2

(
1− Φ

(√
xH2

H+m−1

))
, (18)

where Φ(·) is the standard normal distribution function.

The following theorem provides the asymptotic inequalities for the probabilities of
false alarm and delay for the change point detection procedure.

Theorem 5. For process (1) in the conditions of Theorem 4 for sufficiently large H
the probabilities of false alarm P i

0 and delay P i
1 in any observation cycle [τi−1 + 1, τi]

are bounded from above

P i
0 = P {||ζi − ζi−l||2 > δ} ≤ 4

(
1− Φ

(√
δH2

4(H+m−1)

))
;

P i
1 ≤ P

{
||ζi − ζi−l||2 >

(√
∆−

√
δ
)2}

≤ 4

(
1− Φ

(√
(
√
∆−

√
δ)H2

4(H+m−1)

))
,

(19)

where Φ(·) is the standard normal distribution function.

The conditions of the theorems hold true for the stable AR(p) process.
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Abstract

Configuration graphs where vertex degrees are independent identically dis-
tributed random variables are often used for modeling complex networks, such
as the Internet, social media and others. We consider a random graph consist-
ing of N vertices. The random variables η1, . . . , ηN are equal to the degrees of
vertices with the numbers 1, . . . , N. The probability P{ηi = k}, i = 1, . . . , N,
is equivalent to h(k)/kτ as k → ∞, where h(x) is a slowly varying function in-
tegrable in any finite interval, τ > 1. We obtain the limit distribution of the
maximum vertex degree under the condition that the sum of degrees is equal to
n and N,n → ∞.

1 Introduction

Much attention has been paid to studying the asymptotic behaviour and the structure
of random graphs which simulate various complex networks, such as the Internet or
telecommunication networks (see e.g. [4], [5]). One of the most commonly used random
graphs is the configuration model with the degree of vertices distributed identically
and independently. The notion of the configuration graph was introduced in [1] for
the first time. The process of graph construction consists of two stages. First, each
numbered vertex of such a graph is assigned a certain degree in accordance with a
given distribution. The vertex degree is the number of stubs that are numbered in an
arbitrary order. Stubs are vertex edges for which adjacent nodes are not yet determined
(semiedges). The graph is constructed at the second stage by joining each stub to
another equiprobably to form edges. It is clear that we need to use the auxiliary vertex
for the sum of degrees to be even. This vertex has the degree 0 if the sum of all other
vertices is even, else the degree is 1.

A fundamental trait of many real networks is that the number of nodes with the
degree k is near proportional to k−τ , k → ∞, τ > 1. There are many papers where the
results describing the limit behaviour of different random graph characteristics were
obtained. In [10] the configuration graph was considered where vertex degrees η have
the distribution

P{η ≥ k} = h(k)k−τ+1, k = 1, 2, . . . , (1)

where h(k) is a slowly varying function. The authors of this paper are convinced (with-
out proof) that the function h(k) does not influence limit results and that to study the
configuration graph one can replace h(k) with the constant 1. Various characteristics
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of such graphs were studied, for example in [7] the limit theorem for the sum of vertex
degrees was obtained. In our work we will show that the role of the slowly varying
function h(k) is more complicated.

We consider a random graph where random variables η1, . . . , ηN equal to the degrees
of vertices with the numbers 1, . . . , N have the distributions

pk = P{η1 = k} =
h(k)

kτΣ(1, τ)
, (2)

where k = 1, 2, . . . , τ > 1, h(x) is a slowly varying function integrable in any finite
interval and

Σ(x, y) =
∞∑
k=1

xk
h(k)

ky
. (3)

Further we consider the subset of random graphs under the condition that η1 +
. . . + ηN = n. Analysis of conditional random graphs was first carried out in [9].
It is not difficult to see that the addition of function h(x) to the distribution (2)
allows to consider this model as a generalization of the random graphs considered
in [7]- [9]. For such random graphs, in [2], [3] the limit distributions of the maximum
vertex degree were obtained as n,N → ∞ and 1 < n/N ≤ C < Σ(1, τ − 1)/Σ(1, τ),
where C is a positive constant and Σ(x, y) is determined by the relation (3). Now
we obtain the limit distributions of the maximum vertex degree as n,N → ∞ and
n/N ↗ Σ(1, τ − 1)/Σ(1, τ). Note that if τ < 2, then n/N → ∞.

2 The main result

We denote by ξ1, . . . , ξN auxiliary independent identically distributed random variables
such that

pk(λ) = P{ξi = k} =
λkpkΣ(1, τ))

Σ(λ, τ)
, i = 1, 2, . . . , N, k = 1, 2, . . . , 0 < λ < 1.

From this we obtain

m = Eξ1 =
Σ(λ, τ − 1)

Σ(λ, τ)
.

Let λ = λ(N,n) be determined by the relation

Σ(λ, τ − 1)

Σ(λ, τ)
=

n

N
.

We introduce the conditions:

(A1) τ > 4;

(A2) 3 < τ ≤ 4, (1− λ)τ−4−ϵ/
√
N → 0;

(A3) 5/2 < τ ≤ 3, N(1− λ)11−3τ+ϵ ≥ C3 > 0;
(A4) τ = 5/2, N(− ln(1− λ))2(1− λ)7/2+ϵ ≥ C4 > 0;
(A5) 1 < τ < 5/2, N(1− λ)6−τ+ϵ ≥ C5 > 0,

where ϵ is some sufficiently small positive constant.
We denote by η(N) the maximum vertex degree.
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Theorem. Let N, n → ∞, n/N ↗ Σ(1, τ − 1)/Σ(1, τ), parameters τ,N, n are deter-
mined by one of the conditions (A1)–(A5), and r = r(N, n) satisfies

Nλr+1h(r + 1)

(r + 1)τΣ(λ, τ)(1− λ)
→ γ,

where γ is a positive constant. Then for any fixed k = 0,±1, . . .

P{η(N) ≤ r} = e−γ(1 + o(1)).

3 Proof of the theorem

The technique for obtaining these theorems is based on the generalized allocation
scheme suggested by V.F.Kolchin [6]. It is readily seen that for our subset of graphs

P{η1 = k1, . . . , ηN = kN} = P{ξ1 = k1, . . . , ξN = kN |ξ1 + . . .+ ξN = n}.

Therefore the conditions of the generalized allocation scheme are valid.
Let ξ

(r)
1 , . . . , ξ

(r)
N and ξ̃

(r)
1 , . . . , ξ̃

(r)
N be two sets of independent identically distributed

random variables such that

P{ξ(r)1 = k} = P{ξ1 = k|ξ1 ≤ r}.

We also put ζN = ξ1 + . . .+ ξN , ζ
(r)
N = ξ

(r)
1 + . . .+ ξ

(r)
N , Pr = P{ξ1 > r}. It is

shown in [6] that

P{η(N) ≤ r} = (1− Pr)
N P{ζ(r)N = n}
P{ζN = n}

. (4)

From (4) we see that to obtain the limit distributions of η(N) it suffies to consider
the asymptotic behaviour of the sums of auxiliary independent identically distributed
random variables ζN , ζ

(r)
N . To solve these problems one has to find both integral and

local convergence of the distributions of these sums to limit laws under the conditions
of array schemes, which is the main difficulty.

The study was supported by the Russian Foundation for Basic Research, grant
16-01-00005.
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Abstract

By means of numerical algorithms we investigate the exact distributions of
the Pearson statistics under alternatives and possibility to use the noncentral
chi-square or normal distributions as approximations.

1 Introduction

Let ν1, . . . , νN be frequencies of N outcomes of a multinomial scheme in a sample of
size T . A most popular goodness-of-fit test for the hypothesis Hp: “probabilities of
outcomes are positive and equal to p1, . . . , pN” is based on the Pearson statistics

X2
N,T =

N∑
i=1

(νi − Tpi)
2

Tpi
. (1)

If the hypothesis Hp is valid, then the distribution of X2
N,T converges (as T → ∞)

to the chi-square distribution with N − 1 degrees of freedom having mean N − 1
and variance 2(N − 1). It is well-known that if the hypothesis is not valid, then in
the triangular scheme with T → ∞ and true probabilities of outcomes having the
form π1 = p1 +

a1√
T
, . . . , πN = pn + aN√

T
(a1, . . . , aN are fixed and a1 + . . . + aN = 0)

the distribution of the Pearson statistics X2
N,T converges to the noncentral chi-square

distribution with noncentrality parameter λ =
∑N

i=1

a2k
pk

= EX2
N,T − (N − 1). If T → ∞

and true probabilities of outcomes π1, . . . , πN are fixed,
∑N

i=1(πi − pi)
2 > 0, then the

Pearson statis1tics X2
N,T is asymptotically normal (see [1]) with mean

EX2
N,T = N − 1 + (T − 1)

N∑
i=1

(πi − pi)
2

pi
+

N∑
i=1

πi − pi
pi

and variance ( [2, 3])

DX2
N,T =

1

T

(
(T − 1)(6− 4T )

[∑N

i=1

π2
i

pi

]2
+ 4(T − 1)(T − 2)

∑N

i=1

π3
i

p2i
− (2)

−4(T − 1)
∑N

i=1

π2
i

pi

∑N

i=1

πi
pi

+ 6(T − 1)
∑N

i=1

π2
i

p2i
−
[∑N

i=1

πi
pi

]2
+
∑N

i=1

πi
p2i

)
;
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in this case the “noncentrality parameter” EX2
N,T −(N−1) tends to infinity as a linear

function of T . So, there are a vast space between the conditions of these two theorems.
Moreover, in the case of convergence to the non-central chi-square distribution the
latter depends on the noncentrality parameter and on N only, whereas in the case
of asymptotic normality the asymptotic variance of X2

N,T depends essentially on all
probabilities π1, . . . , πN (and usually in practice these probabilities are unknown).

2 Results

Using the algorithms of exact computation of Pearson statistics distributions (see [4, 5])
we investigate the accuracy of approximations of these distributions by noncentral chi-
square and normal distributions.

The character of the dependence of the variance on π1, . . . , πN may be illustrated
by the case p1 = . . . = pN = 1

N
: here

EX2
N,T = N − 1 + (T − 1)N

∑N

i=1

(
πi − 1

N

)2
,

DX2
N,T =

N2

T

(T − 1)(6− 4T )

[
N∑
i=1

π2
i

]2
+ 4(T − 1)(T − 2)

N∑
i=1

π3
i + 2(T − 1)

N∑
i=1

π2
i

.
For fixed values of N, T and of the noncentrality parameter (T − 1)N

∑N
i=1

(
πi − 1

N

)2
(i. e. fixed value of

∑N
i=1 π

2
i ) the extremal values of

∑N
i=1 π

3
i (and, consequently, DX

2
N,T )

are realized on the sets of probabilities of the form (u1, . . . , u1, u2, . . . , u2, 0, . . . , 0).

Figure 1: Distribution functions of X2
10,100 with extremal values of DX2

10,100 and log-
arithms of their tails for λ = 23.56, and of noncentral chi-square with 9 degrees of
freedom and noncentrality parameter λ = 23.56.

On the left part of Fig.1 for the case N = 10, T = 100, λ = 23.56 the graph of non-
central chi-square distribution with 9 degrees of freedom and noncentrality parameter
λ (dotted line) and the graphs of exact distributions of X2

10,100 for sets of probabilities
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realizing the minimal and maximal variances are presented; squares and circles corre-
spond to minimal and maximal values of distribution function ofX2

10,100 observed for the
random sample of sets of probabilities π1, . . . , πN giving λ = 23.56. On the right part
of Fig.1 for the same distribution functions F (x) the graphs of lnmin{F (x), 1−F (x)}
are presented.

For the same parameters N = 10, T = 100 the differences between distribution
functions of X2

10,100 with maximal (minimal) variance and of non-central chi-square
distribution with 9 degrees of freedom for three values of λ (1.14, 7.40, 23.56) are shown
in the upper part of Fig.2. In the lower part of Fig.2 the corresponding differences
between logarithms of tails are shown.

Figure 2: Differences between distribution functions and logarithms of tails for
N = 10,T = 100.

If outcome probabilities p1, . . . , pN are not equal, then the differences between distri-
butions of the Pearson statistics (1) computed for samples with outcome probabilities
π1, . . . , πN with fixed value of the noncentrality parameter (i. e. the mean) appears to
be larger and the sets of such N -dimensional vectors π1, . . . , πN are asymmetrical. So,
the investigation of forms and sizes of accurate confidence sets of probabilities based on
the values of Pearson statistics as well as the power of tests appears to be a nontrivial
problems.
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Abstract

Statistical strategies to make decisions via formal rules play important roles
in statistical and engineering practice. When the forms of data distributions
are specified, the likelihood ratio principle is a central doctrine for developing
statistical decision-making mechanisms in various experiments. However, it is
well known that when key assumptions are not met, parametric likelihood proce-
dures may be suboptimal or biased. One very important issue in statistical and
engineering research is to preserve efficiency of the statistical inference through
the use of robust likelihood-type techniques. Towards this end, the modern sta-
tistical literature has shifted focus towards robust and efficient nonparametric
likelihood methods. In this note we present and shortly outline recently devel-
oped empirical likelihood (EL) techniques. In particular, we show that since
EL techniques and parametric likelihood methods are closely related concepts,
one may apply corresponding EL functions to replace their parametric likelihood
counterparts in known and well developed parametric procedures, constructing
novel nonparametric methods.

1 Introduction

The likelihood principle is one of the most important concepts for inference in para-
metric models. Neyman and Pearson [4] provided strong arguments that show the
likelihood ratio approach can lead to most powerful statistical decision-making rules ac-
cording to the Neyman-Pearson (NP) lemma. The recently proposed EL methodology
employs the likelihood concept in a distribution-free fashion, approximating optimal
parametric likelihood-based procedures (e.g., Qin and Lawless [6], Lazar and Myk-
land [2], Owen [5], Lazar [3], Vexler and Gurevich [7, 8], Vexler et al. [9, 10]). Similarly
to the parametric likelihood concept, the EL methodology provides relatively simple
strategies to construct powerful statistical tests that can be applied in various complex
statistical and engineering studies. In this note we outline the EL methodology and
its applications.

2 The EL methodology

The classical EL methodology, which is a distribution function-based approach, has
been shown to have attractive properties for testing hypotheses regarding parameters
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(e.g. moments) of distributions (e.g., Vexler et al. [11]). Let X1, ..., Xk denote indepen-
dent and identically distributed (iid) data points from a distribution function F that
corresponds to a density function f . The EL function has the form Lp =

∏k
i=1 pi, where

the estimated probability weights pi, i = 1, ..., k, maximize Lp and satisfy empirical con-
straints corresponding to hypotheses of interest. For example, if the null hypothesis is
H0 : E(X1) = 0, then the values of pi’s in the H0-EL Lp should be chosen to maximize

Lp given
∑k

i=1 pi = 1 and
∑k

i=1 piXi = 0, where the constraint
∑k

i=1 piXi = 0 is an
empirical version of E(X1) = 0. Computation of pi, i = 1, ..., k, is based on a simple
exercise in Lagrange multipliers. This nonparametric approach is a result of consider-
ation of the ‘distribution functions’-based likelihood

∏k
i=1(F (Xi) − F (Xi−)) over all

distribution functions F (see [5] for details).
According to the NP lemma, the most powerful test statistics have structures that

are related to density-based (DB) likelihood ratios. Motivated by this fact, alterna-
tively to the ‘distribution functions’-based EL methodology, Vexler and Gurevich [7, 8]
proposed to use the central idea of the EL technique to develop DB empirical approx-
imations to the likelihood Lf =

∏k
i=1 f(Xi). To outline this technique, we represent

the likelihood function Lf in the form

Lf =
k∏

i=1

f(Xi) =
k∏

i=1

f(X(i)) =
k∏

i=1

fi, (1)

where fi = f(X(i)), andX(1) ≤ X(2) ≤ ... ≤ X(k) are order statistics based onX1, ..., Xk.
Following the EL method, one can obtain estimated values of fi, i = 1, ..., k, that
maximize Lf and satisfy an empirical version of the constraint

∫
f(u)du = 1. To

formalize this constraint, Vexler and Gurevich proposed the following result [7].

Proposition 1. Assume X(j) = X(1), if j ≤ 1, and X(j) = X(k), if j ≥ k. Then for
f(u)du and all integer m, we have:

k∑
j=1

∫ X(j+m)

X(j−m)

= 2m

∫ X(k)

X(1)

−
m−1∑
l=1

(m− l)

∫ X(k−l+1)

X(k−l)

−
m−1∑
l=1

(m− l)

∫ X(l+1)

X(l)

.

Denote Hm = 1
2m

∑k
j=1

∫ X(j+m)

X(j−m)
f(x)dx. Since

∫ X(k)

X(1)
f(x)dx ≤

∫ +∞
−∞ f(x)dx = 1,

Proposition 1 shows that Hm ≤ 1, as well as, one can expect that Hm ≈ 1, when
m/k → 0 as m, k → ∞.

Taking into account definitions of hypotheses for which we need to test, one can
empirically approximate

∫ X(j+m)

X(j−m)
f(x)dx, e.g., via

∫ X(j+m)

X(j−m)
f(x)dx ∼= (X(j+m)−X(j−m))fi

and then represent the condition Hm ≤ 1 in an empirical form, for example

H̃m ≤ 1, H̃m =
1

2m

k∑
j=1

(X(j+m) −X(j−m))fj. (2)

This implies that we can obtain values of fi, i = 1, ..., k, that maximize Lf and satisfy
an empirical version of the constraint Hm ≤ 1. For example, when the constraint (2) is
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in effect, the Lagrange technique results in fi = 2m(k(X(i+m) −X(i−m)))
−1, i = 1, ..., k

(here X(j) = X(1), if j ≤ 1 and X(j) = X(k), if j ≥ k) that gives the DB EL in the
simple form

k∏
i=1

2m(k(X(i+m) −X(i−m)))
−1. (3)

3 Applications of the DB EL approach

The Goodness-of-Fit tests: Consider a statement, when using iid observations
X1, ..., Xk, we want to test the hypothesis

H0 : X1, ..., Xk ∼ F0 versus H1 : X1, ..., Xk ∼ F1, (4)

where F0 and F1 are some distributions with density functions f0(x) and f1(x), re-
spectively. The NP lemma stays that the most powerful test-statistic for (4) is the
likelihood ratio

k∏
i=1

f1(Xi)

[ k∏
i=1

f0(Xi)

]−1

. (5)

If the alternative distribution function F1 is unknown, the likelihood function at the
numerator of (5) can be approximated using the DB EL (3). This provides the test-
statistic

Tmk =
k∏

i=1

2m

k(X(i+m) −X(i−m))

[ k∏
i=1

f0(Xi)

]−1

. (6)

The power of the tests based on the statistic Tmk strongly depends on values of m.
Using maximum likelihood type considerations, Vexler and Gurevich proposed the test
statistic [7]:

T ∗
k = min

1≤m<k1−δ

( k∏
i=1

2m

k
(
X(i+m) −X(i−m)

)/ k∏
i=1

f0(Xi)

)
, 0 < δ < 1,

as an improvement of the test statistic Tmk. The authors also constructed DB EL
goodness of fit tests for several scenarios when the function f0(x) is known up to
parameters.
The two-sample tests: Let X1, ..., Xn and Y1, ..., Yn be independent samples that
consist of iid observations from distribution functions FX and FY with density functions
fX(x) and fY (y) , respectively. The problem is to test for

H0 : FY = FX = FZ versus H1 : FY ̸= FX (7)

where distributions FZ , FX and FY are unknown. In this case, the likelihood ratio
statistic is

n∏
i=1

fX(Xi)
k∏

j=1

fY (Yj)

[ n∏
i=1

fZ(Xi)
k∏

j=1

fZ(Yj)

]−1

=
n∏

i=1

fX,i

k∏
j=1

fY,j

[ n∏
i=1

fZX,i

k∏
j=1

fZY,j

]−1

,

(8)
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where a density function fZ corresponds to FZ , fX,i = fX(X(i)), fY,j = fY (Y(j)), and
fZX,i = fZ(X(i)), fZY,j = fZ(Y(j)), i = 1, ..., n, j = 1, ..., k; X(1) ≤ X(2) ≤ ... ≤ X(n),
Y(1) ≤ Y(2) ≤ ... ≤ Y(k) are the order statistics based on the observations X1, ..., Xn

and Y1, ..., Yk, respectively. Gurevich and Vexler [1] applied the method of the DB EL
to approximate the ratio (8). For example, the ”Hm ≤ 1”-type constraint mentioned
above, with respect to fX,i = fX(X(i)), i = 1, ..., n can be rewritten using the hypothesis
context as

Hm ≤ 1, Hm =
1

2m

n∑
i=1

∫ X(i+m)

X(i−m)

fX(u)

fZ(u)
fZ(u)du.

In a similar manner to deriving the DB EL (3) with the constraint (2), by applying the
approximate analog to the mean-value integration theorem, Gurevich and Vexler [1]
defined the DB EL test-statistic for (7) in the form Vnk = ELRX,nELRY,k, where

ELRX,n = min
an≤m≤bn

n∏
i=1

2m

[
n

(
(FZ(n+k)

(
X(i+m)

)
− FZ(n+k)

(
X(i−m)

))]−1

, X(j) = X(1),

if j ≤ 1, X(j) = X(n), if j ≥ n;ELRY,k = min
ak≤r≤bk

k∏
i=1

2r

[
k

(
FZ(n+k)

(
Y(i+r)

)
−

FZ(n+k)

(
Y(i−r)

))]−1

, Y(j) = Y(1), if j ≤ 1;Y(j) = Y(k), if j ≥ k;FZ(n+k)(u) =

1
n+k

(∑n
i=1 I(Xi ≤ u) +

∑k
j=1 I(Yj ≤ u)

)
; al = l0.5+δ, bl = min

(
l1−δ, l

2

)
, δ ∈

(0, 0.25), l = n, k. This EL ratio test-statistic Vnk approximates the optimal likelihood
ratio (8).

4 Conclusions

Similarly to the parametric likelihood concept, the EL methodology provides relatively
simple strategies to construct powerful statistical tests that can be applied in various
studies. The extreme generality of EL methods and their wide range of usefulness
partly result from the simple derivation of the EL statistics as components of composite
parametric likelihood based systems, efficiently attending to any observed data and
relevant information. Note that EL based methods are employed in much of modern
statistical practice, and we cannot describe all relevant theory and examples. The
reader interested in the EL methods will find more details and many pertinent articles
in recent statistical journals publications.
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Abstract

In a multivariate discrete probability model of distribution of sum discrete
random variables is proposed and studied. The concept of the most appropri-
ate of the set of unbiased estimators, which has good asymptotic properties, is
introduced.

1 Introduction

Multivariate probabilistic models, as a reflection of the current reality, are absolutely
necessary for describe events and situations encountered in daily life. In recent years,
a considerable amount of probabilistic models have been developed. However, there
are many unsolved problems, for example, in the implementation of monitoring the
it is clear only the sum of components, which as a result of observations can not be
detected. So far, probabilistic models describing similar situations were not considered.

An exceptional example of the actual use of such a model is the advertising industry,
where it is necessary to link the distribution of consumer interests with appropriate
advertising in various sources. Similar problems are very common in meteorology and
other fields. In this paper we present statistical evaluation of the distribution of sums
of unobservable random matrices L1, . . . ,Ld by their amount. Thus, the results of the
proposed work can solve many of these problems.

2 Multivariate discrete probability distribution of

sum of discrete random variables

Assume that the true image can be represented as a matrix l0 = ∥l0i,j∥m×q, which
imposed distortion, consisting of four factors (matrices) of losses u = ∥ui,j∥m×q, taking
values from the set of l1, . . . , ld.

Obviously, the factors (the matrix), the loss l1, . . . , ld are realizations of random
matrices L1, . . . ,Ld, appearing with probabilities p = (p1, . . . , pd).

Assume that Vu is the number of possible combinations r1vuL1, . . . , rdvuLd, which
together form a matrix of u, where r1vu , . . . , rdvu determine the possible number of balls
taken out, which marked the relevant matrices L1, . . . ,Ld. In other words, from [2] it
follows that Vu is the number of partitions on the part of the matrix u on L1, . . . ,Ld.
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Theorem 1. The distortion is distributed as follows:

P (U = u) =
Vu∑

vu=1

n!
d∏

α=1

p
rαvu
α

rαvu
!
. (1)

3 Unbiased estimation of the probability distribu-

tion of the proposed model

In practice, as a rule, elements of the vector p = (p1, . . . , pd) are not known. It is
also not known matrix L1, . . . ,Ld. Consequently, formula (1) does not find the actual
application.

Assume that there are photos in the number of k particular locality with the dis-
tortions x = {x1, ...,xk}. In other words, a number of evidence-x can be interpreted
as a realization of a sample of k, whose elements are subject to distribution (1). We
denote rvβ vector (r1vβ , . . . , rdvβ ), which defines vβ-th solution of equation

d∑
α=1

Lαrαvβ
= u,

d∑
α=1

rαvβ
= n,

(2)

where vβ = 1, . . . , Vβ, Vβ is the number of partitions of the matrix xβ on the matrices
L1, . . . ,Ld. Using the system of equations (2), the matrices L1, . . . ,Ld, and the actual
data x, we define for each β = 1, . . . , k the number of partitions Vβ matrix xβ at
L1, . . . ,Ld, and vectors r1β , . . . , rVβ

.

Suppose that for each j = 1, . . . , µ, where µ =
k∏

β=1

Vβ, there is a vector zj =

(z1j , . . . , zdj), defined as zj =
k∑

β=1

rvβ , and the indices on the right and left side are

linked one-to-one correspondence, which is not unique.
Thus, from the above lemma that if some element of the implementation of the

sample x = (x1, . . . ,xk) of the distribution (1) has more than one partition on the sub-
mitted part, it is impossible, using the theorem Rao-Blackwell-Kolmogorov construct
an unbiased estimate with minimum variance for the probability distribution (1).

Theorem 2. The following statistics form an unbiased estimate for the probability
distribution (1):

W (u, zj) =

Vu∑
vu=1

d∏
α=1

(
zαj
rαvu

)
(
nk
n

) , j = 1, . . . , µ, (3)

where Vu is the number of partitions on the part of the matrix u, L1, . . . ,Ld; for each
partition r1vu , . . . , rdvu determine the possible number of matrices L1, . . . ,Ld; k ≥ 1
and zαj

≥ rαvu
, when α = 1, . . . , d, vu = 1, . . . , Vu.
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4 The most suitable unbiased estimates for the

probability distribution of the proposed model

and their properties

Thus, we have a lot of unbiased estimates of the probability of distortion.

Definition 1. Decision zg, based on observation, is the most appropriate set of z =
{z1, . . . , zm}, if

k∏
β=1

W (xβ, zg) = max
j=1,...,µ

k∏
β=1

W (xβ, zj), (4)

where for β = 1, . . . , k elements of W (xβ, z) = {W (xβ, z1), . . . ,W (xβ, zµ)} forms an
unbiased estimate for the probability distribution (1) defined in (5).

Definition 2. Unbiased estimate of W (xβ, zg) for the probability distribution (1)
is the most suitable from the entire set of unbiased estimates of W (xβ, z) =
{W (xβ, z1), . . . ,W (xβ, zµ)} defined in (5), if zg is the most appropriate solution, based
on observation.

Theorem 3. The most suitable unbiased estimate of W (xβ, zg) for the probability
distribution (1) is consistent, asymptotically normal and asymptotically efficient.

Let us summarize the results:

• proposed and studied a new probability distribution of discrete random variables;

• developed an algorithm for computing the probability and define the generating
function for the distribution of the proposed model;

• the set of unbiased estimates for the probability distribution of the proposed
model and the variance of these estimates;

• introduced a new concept of the most appropriate evaluation of the set of unbiased
estimates, with asymptotic properties.
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Abstract

The paper deals with homogenous s-order vector Markov chain with partial
connections. Conditional distribution for this model depends only on finite num-
ber of components of previous vector states. Statistical estimators for model
parameters are constructed.

1 Introduction

Markov chain is a broadly used mathematical model of discrete time series. It is
applied in economics [1], biology [2], sociology [3] and other fields. Markov chain of
the order s [4] is an adequate model for description of high-depth dependences in data.
Since data is often represented in blocks, it is reasonable to use vector Markov chains.
The state space for such models consists of fixed length vectors. Unfortunately, it is
difficult to use s-order Markov chain in practice, because the number of parameters D
for the model with N states increases exponentially when s growth: D = (N − 1)N s.
That is why small-parametric or parsimonious models are used in applications [5]. For
such models D depends polynomially on s. Markov chain of order s with r partial
connections (MC(s, r)) is an example of a parsimonious model. It was developed in
Belarusian state university [6]. Conditional distribution for this model does not depend
on all s previous states but only on r selected states. In this paper we propose a
generalization of the MC(s, r) for vector Markov chain.

2 Mathematical model

Introduce the notation: N is the set of positive integers; A = {0, 1, . . . , N − 1} is
the state space with N elements, 2 ≤ N < ∞; m ∈ N, N̄ = Nm, Ā = Am,
Ji = (ji1, . . . , jim) ∈ Ā, i = 1, 2, . . . is a m-dimensional vector; J b

a = (Ja, . . . , Jb),
a, b ∈ N, a ≤ b, is an ordered set of b− a+ 1 m-dimensional vectors; {xt ∈ Ā : t ∈ N}
is a homogeneous vector Markov chain of the order s (2 ≤ s < ∞) with the following
parameters:

π
(0)
J1,...,Js

= P{x1 = J1, . . . , xs = Js}

is an initial probability distribution;

P = (pJs
1 ,Js+1) (1)
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is a (s+ 1)-dimensional matrix of transition probabilities:

pJs
1 ,Js+1 = P{xt = Js+1|xt−1 = Js, . . . , xt−s = J1}, t = s+ 1, s+ 2, . . .

We will denote this Markov chain VMC(s) (Vector Markov Chain of the order s).
The number of independent parameters for the VMC(s) is determined by formula:

Ds = N̄ s(N̄ − 1).

In the Table 1 we present the number of parameters for the binary VMC(s) when
m = 8 for various values of s .

Table 1: The number of parameters for the binary VMC(s)

s 1 2 4 8 16
Ds 65280 16711680 ≈ 1, 095 · 1012 ≈ 4, 704 · 1021 ≈ 8, 677 · 1040

Table 1 illustrates the “curse of dimensionality” for s-order Markov chain. To
overcome this difficulty we construct modification of the VMC(s) by analogy with [6].
We will use the notation:

Mr = {(k1, l1), (k2, l2), . . . , (kr, lr)} ⊆M∗ = {(k, l) : 1 ≤ k ≤ s, 1 ≤ l ≤ m}

is an ordered set of 1 ≤ r ≤ sm pairs of indices, which we will call template-set,
there exists a pair (ki, li) such that ki = 1; Mr is a set of all possible template-sets;
SMr(Jt, . . . , Jt+s−1) = (jt+k1−1,l1 , . . . , jt+kr−1,lr), t = 1, 2, . . . is a selector function, that
associates s vectors with their r components: SMr : Ās → Ar; Q = (q(i1,...,ir),Ir+1) is a
stochastic N r ×Nm matrix, i1, . . . , ir ∈ A, Ir+1 ∈ Ā.

The Markov chain {xt ∈ Ā : t ∈ N} is called the vector Markov chain of the order
s with r partial connections, if its transition probabilities have the following form:

pJs
1 ,Js+1 = qSMr (J1,...,Js),Js+1 = q(jk1,l1 ,...,jkr,lr ),Js+1 , (2)

We will denote this model VMC(s, r).
The definition of the VMC(s, r) means that probability distribution of time series xt

at time t does not depend on allms components of s previous states, but it depends only
on r selected components determined by template-set Mr. If r = sm, then Mr = M∗
and we have fully-connected s-order Markov chain: VMC(s,ms) = VMC(s). If m = 1,
then the VMC(s,ms) transforms into the Markov chain with partial connections [6].

The number of parameters for the VMC(s, r) is determined by formula:

d = N r(Nm − 1) + 2r − 1. (3)

In the Table 2 we present the number of parameters for the binary VMC(s, r) when
m = 8 for various values of s and r .
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Table 2: The number of parameters for the binary VMC(s, r)

(s, r) (1, 2) (2, 4) (4, 6) (8, 8) (16, 10) (32, 16 )
d 1 023 4 087 16 331 65 295 261 139 16 711 711

3 Statistical Estimators for parameters

Let us construct now statistical estimators for VMC(s, r) parameters. Introduce the
notation: X(n) ∈ Ān is the observed time series of length n; I{C} is the indicator
function of event C;

νMr
s+1(i1, . . . , ir, Ir+1) =

n−s∑
t=1

I{SMr(Xt, . . . , Xt+s−1) = (i1, . . . , ir), Xt+s = Ir+1},

νMr
s (i1, . . . , ir) =

∑
Ir+1∈Ā

νMr
s+1(i1, . . . , ir, Ir+1), (i1, . . . , ir) ∈ Ar, Ir+1 ∈ Am,

are frequency statistics of VMC(s, r).
The loglikelihood function for the VMC(s, r) has the following form:

ln(X
(n), Q,Mr) = ln π

(0)
X1,...,Xs

+
∑

i1,...,ir∈A,
Ir+1∈Ā

νMr
s+1(i1, . . . , ir, Ir+1) ln q(i1,...,ir),Ir+1 .

If the true values s, r and Mr are known, then the maximum likelihood estimators
(MLE) for the one-step transition probabilities (2) are

q̂(i1,...,ir),Ir+1 =


νMr
s+1(i1, . . . , ir, Ir+1)

νMr
s (i1, . . . , ir)

, if νMr
s (i1, . . . , ir) > 0,

1/N̄, if νMr
s (i1, . . . , ir) = 0.

If s and r are known, then MLE for template set Mr is

M̂r = arg max
Mr∈Mr

∑
i1,...,ir∈A,
Ir+1∈Ā

νMr
s+1(i1, . . . , ir, Ir+1) ln

νMr
s+1(i1, . . . , ir, Ir+1)

νMr
s (i1, . . . , ir)

.

In order to estimate the order s and the number of connections r we use Bayesian
information criterion (BIC) [7]:

(ŝ, r̂) = arg min
2≤s′≤s+, 1≤r′≤r+

BIC(s′, r′),

BIC(s′, r′) = −ln(X(n), Q,Mr) + 2d ln(n− s′) =

= −
∑

i1,...,ir′∈A,
Ir′+1∈Ā

ν
Mr′
s′+1(i1, . . . , ir′ , Ir′+1) ln

ν
Mr′
s′+1(i1, . . . , ir′ , Ir′+1)

ν
Mr′
s′ (i1, . . . , ir′)

+ 2d ln(n− s′),

where s+ ≥ 1, 1 ≤ r+ ≤ ms+ are maximal admissible values of s and r respectively, d
is the number of independent parameters of the VMC(s, r), defined by formula (3).
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Abstract

We consider power-law configuration graphs with node degrees drawn from
the power-law distribution with the parameter following the uniform distribution
on a chosen interval. By computer simulation we study the robustness of these
graphs from a viewpoint of link saving in the two cases of destruction process:
the “random breakdown” and the “targeted attack”.

1 Introduction

The study of random graphs with node degrees following the power-law distribution
continues to attract special interest (see e.g. [3], [5]). The use of such models has been
widening with the changes in the structure of massive data networks and with the
appearance of new ones. Power-law random graphs used to be considered a good rep-
resentation of the AS-level topology (see e.g. [4], [7], [9]) and, moreover, variations of
these models could be used in other applications. Along with the studies of the struc-
ture of present-day complex networks, the problem of their robustness and vulnerability
to various types of breakdowns remains rather pressing (see e.g. [2], [3], [8]).

2 Power-law configuration random graph

We consider power-law random graphs with the number of nodes N . Random variables
ξ1, ξ2, . . . , ξN are independent identically distributed variables drawn from the power-
law distribution:

P{ξ ≥ k} = k−τ , τ > 1, k = 1, 2, . . . . (1)

We use the graph construction procedure introduced in [1], where such models were
first called configuration graphs. Starting with a predefined number of nodes we draw
node degrees from the distribution (1) with the parameter τ following the uniform
distribution on a predefined interval (a, b]. The node degree gives the number of stubs
for each node, numbered in an arbitrary order. Then all the stubs are joined one to
another equiprobably forming links. The sum of node degrees has to be even, otherwise
one stub is added to a randomly chosen node to form a lacking connection. The graph
construction allows loops and multiple links.
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3 Robustness in random environment: link saving

The distribution (1) with the parameter τ ∈ (1, 2) has finite expectation and infinite
variance. As the value of τ exceeds 2 the variance of the distribution (1) becomes finite.
The power-law configuration graphs with τ ∈ (1, 2) are known to contain a so-called
giant component ( [1], [3], [9] etc.) – a connected set of nodes, the number of nodes in
which has the expectation proportional to the number of graph nodes N , as N → ∞.

In [6] we considered power-law graphs with the values of the parameter τ ∈ (1, 2)
fixed for each node. With the evolution of networks the value of τ is regarded to change
not only within the stated interval (1, 2). It may also happen to be a random variable.
Therefore here we consider the parameter τ being drawn from the uniform distribution
on the interval (a, b]. As it was mentioned above the interval (1, 2) is interesting due
to its application to the Internet graphs and the existence of the giant component.
Power-law graphs with the parameter τ ∈ (2, 3) do not contain the giant component,
but are useful for the studies of forest fire models [6]. The interval (1, 3) was chosen
as a generalization. As in the previous work [6], here we also consider the two types
of breakdowns: a “targeted attack” on the nodes with the highest degrees and the
“random breakdown” meaning the removal of equiprobably chosen nodes.

To conduct simulations we modeled graphs of the sizes N ∈ [1000, 10000] with the
three ranges of the parameter τ : (1, 2], (1, 3] and (2, 3]. The purpose was to look at how
the graph structure changes with the destruction of its nodes. Let random variables
η1, η2, . . . , ηs be equal to the sizes of graph components in decreasing order, thus η1
is the percentage of nodes in the largest component, η2 – the percentage of nodes in
the second-sized component, etc. Let s be the number of graph components. Let us
consider a graph being destroyed if {η1 ≤ 2η2}, which means that the size of the second
largest component becomes greater or equal to half the size of the largest component.
Thus we derived the regression relations between the size of the largest component η1
and the percentage of nodes removed from the graph r. In the case of a “targeted
attack” relations were as follows:

η1 = 53.2− 8.9r − 6.2 ln r, τ ∈ (1, 2],

η1 = 31.9− 7.0r − 9.1 ln r, τ ∈ (1, 3],

η1 = −1.3 + 2.5r − 3.9 ln r, τ ∈ (2, 3].

The determination coefficients (R2) of these regression models are equal to 0.99, 0.98
and 0.96, respectively. For the process of “random breakdowns” we derived the follow-
ing relations:

η1 = 88.1− 1.5r, τ ∈ (1, 2],

η1 = 73.3− 1.3r, τ ∈ (1, 3],

η1 = 20.2− 2.7
√
r, τ ∈ (2, 3].

with determination coefficients 0.97, 0.95 and 0.99, respectively. The results showed
that in all cases the graph size N does not affect the size of the largest component. As
for the sizes of second-sized components they will diminish slightly with the removal
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of graph nodes and will not exceed 20% when τ ∈ (1, 2], 15% when τ ∈ (1, 3], and
6% when τ ∈ (2, 3] of graph nodes. The number of graph components in the case of a
“targeted attack” slightly increases with the removal of nodes, although in the case of
a “random breakdown” this number decreases.

In Figures 1 and 2 we plot the results of the estimation of the regression relations
between the probabilities P{A} (where A is the following event: {η1 ≤ 2η2}) of graph
destruction, the percentage of nodes removed from the graph r and the graph size N .

0 1 2 3 4 5
r

0.2

0.4

0.6

0.8

1.0

p
Τ Î H1,2D

0 1 2 3 4
r

0.2

0.4

0.6

0.8

1.0

p
Τ Î H1,3D

0.0 0.2 0.4 0.6 0.8 1.0
r

0.2

0.4

0.6

0.8

1.0

p
Τ Î H2,3D

Figure 1: The probabilities of graph destruction in the case of a “targeted attack”
(left-hand curve stands for N = 10000, right-hand curve – N = 1000).
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Figure 2: The probabilities of graph destruction in the case of a “random breakdown”
(left-hand curve stands for N = 1000, right-hand curve – N = 10000).

Simulation results showed that power-law configuration graphs are much more ro-
bust to “random breakdowns” than to “targeted attacks” on the nodes with the highest
degrees. To destroy such a graph by removing nodes with high degrees it is enough
to take away 1 − 5% of them. However, in the case of random nodes removal, the
graph will be ruined by the destruction of 55− 75% of its nodes. The obtained results
support previous conclusions [6] that the robustness of these graphs strongly depends
on the value of the parameter τ . Thus, in the case when τ ∈ (2, 3] graphs are more
vulnerable to both targeted and random breakdowns than in the cases when τ ∈ (1, 2]
and τ ∈ (1, 3].
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Abstract

In this paper we investigate the properties of binary sequences consisting of
non-identically distributed dependent elements obtained by the Neumann trans-
form. Some results for the asymptotic behaviour of joint distribution of such
sequences are obtained.

1 Introduction

In the beginning of 1950s John von Neumann proposed a simple method to transform
the sequence of independent identically distributed binary random variables into the
sequence of independent random binary variables taking values 1 and 0 with proba-
bilities 1

2
. This method was used to improve the quality of physical random number

generators.
Let ξ1, ξ2, . . . be a sequence of binary random variables and

τ1 = min{k ≥ 1 : ξ2k−1 ̸= ξ2k}, τn+1 = min{k > τn : ξ2k−1 ̸= ξ2k}, n = 1, 2 . . . (1)

The Neumann transform {ηt}∞t=1 of the binary sequence {ξt}∞t=1 is defined by the fol-
lowing rule:

ηt = ξ2τt−1, t = 1, 2 . . . (2)

In what follows we suppose that ξ1, ξ2, . . . are independent and P{ξi = 1} = p >
0, P{ξi = 0} = q > 0, p+ q = 1, then

P{ξ2k−1 = 0 | ξ2k−1 ̸= ξ2k} = P{ξ2k−1 = 1 | ξ2k−1 ̸= ξ2k} =
1

2
,

and therefore η1, η2, . . . are independent and P{ηt = 0} = P{ηt = 1} = 1
2
.

Let us consider the Neumann transform {η′t}∞t=1 of the shifted binary sequence {ξt}∞t=2

defined as follows:
η′t = ξ2τ ′t , t = 1, 2 . . . , where (3)

τ ′1 = min{k ≥ 1 : ξ2k ̸= ξ2k+1}, τ ′n+1 = min{k > τ ′n : ξ2k ̸= ξ2k+1}, n = 1, 2 . . . (4)

It is clear that the elements of the sequences {ηt}∞t=1 and {η′t}∞t=1 are dependent
and joint distribution of the elements of the sequences is not trivial. In this paper we
investigate the asymptotic behaviour of distributions of a pair (ηt, η

′
t) and of vectors

(ηt+1, . . . , ηt+l; η
′
r+1, . . . , η

′
r+s), as t, r → ∞, where l, s are any finite numbers.
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2 Results

Let us consider the first elements of the sequences {ηt}∞t=1 and {η′t}∞t=1.

Lemma 1. If Pβ
α = P{η1 = α, η′1 = β}, α, β ∈ {0, 1}, then P0

0 = P1
1 = pq/2 and

P0
1 = P1

0 =
q+p2

2
.

The joint distribution of (η1, η
′
1, η2, η

′
2) is more complicated. However the limit

distribution of a pair (ηt, η
′
t) as t→ ∞ is very simple.

Theorem 1. The elements ηt and η
′
t of the sequences {ηt}∞t=1 and {η′t}∞t=1 obtained by

the Neumann transform (2) and (3) are asymptotically independent as t→ ∞.

The proof of independency is based on the fact that the distribution of a pair (τt, τ
′
t)

is asymtotically Gaussian. Then the relations∣∣∣∣P{(ηt, η′t) = (α, α′)} − 1

4

∣∣∣∣ ≤ P{|τt − τ ′t | < 2} → 0, when t→ ∞, whereα, α′ ∈ {0, 1},

shows that the distribution of a pair (ηt, η
′
t) tends to the equiprobable one when t→ ∞.

The statement may be also applied to the sets of neighbouring elements of sequences
{ηt}∞t=1 and {η′t}∞t=1.

Theorem 2. The elements (ηt+1, . . . , ηt+l; η
′
r+1, . . . , η

′
r+s), l, s ∈ N, obtained from the

sequences {ηt}∞t=1 and {η′t}∞t=1 by Neumann transforms (2) and (3), are asymptotically
independent at t, r → ∞.
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Abstract

We consider a configuration graph with N vertices whose degrees are inde-
pendent identically distributed according to power-law distribution under the
condition that the sum of vertex degrees is equal to n. A random graph dy-
namics as N,n → ∞ to take place in a random environment when parameter
of vertex degree distribution following uniform distribution on the finite fixed
interval. The limit distributions of the maximum vertex degree and the number
of vertices with a given degree were obtained.

1 Introduction

The study of random graphs has been gaining interest in connection with the wide
use of these models for the description of different complex networks (see e. g. [3]).
One of the ways for constructed such models based on configuration graphs introduced
in [2]. Configuration random graphs are being a good implementation of the social,
telecommunication networks and Internet topology. While considering real networks it
has been noted that they could be adequate representing by random graphs with the
vertex degrees being independent identically distributed random variables following
the power-law distribution [4]. In [7] it was shown that the distribution of a random
variable ξ, being equal to an arbitrary vertex degree could be defined as follows:

P{ξ = k} = k−τ − (k + 1)−τ , (1)

where k = 1, 2, . . . ; τ > 0. Moreover in [4] it was found that for present-day complex
telecommunication networks the typical values of the distribution (1) parameter τ
belongs to the interval (1, 2). Research in the last years showed that configuration
power-law random graphs could be used also for modeling forest fires as well as banking
system defaults, but in these cases usually τ > 2 [6]. Let N be a number of vertices
in the graph and random variables ξ1, . . . , ξN are equal to the degrees of vertices with
the numbers 1, . . . , N . These variables are independent and following the distribution
(1). The vertex degree is the number of its semiedges, i. e. edges for which adjacent
vertices are not yet determined. All of semiedges are numbered in an arbitrary order.
The graph is constructed by joining all of the semiedges pairwise equiprobably to form
edges. Those models admit multiple edges and loops. The sum of vertex degrees in any
graph has to be even, so if the sum ξ1 + . . .+ ξN is odd we add one extra vertex with
degree one. In [7] it was note that addition of this vertex together with its semiedge
does not influence the graph behaviour as N → ∞. That is why further we will consider
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only vertex degrees ξ1, . . . , ξN . An interesting fact (see e. g. [1]) that parameter τ of
the distribution (1) can be depended on N and even can be random.

We consider the subset of random graphs under the condition that sum of vertex
degrees is equal to n. It means that ξ1+. . .+ξN = n and ξ1, . . . , ξN are not independent.
Such conditional graphs can be useful for modeling of networks for which we can
estimate the number of links. They are useful also for studying networks without
conditions on the number of edges by averaging the results of conditional graphs with
respect to the distribution of the sum of degrees. We assume that as N → ∞ a
dynamics of our graph to take place in a random environment when τ is a random
variable following uniform distribution on the interval [a, b], 0 < a < b < ∞. Then
from (1) we find

p1 = P{ξ = 1} = 1− 1

(b− a) ln 2

(
1

2a
− 1

2b

)
,

pk = P{ξ = k} =
1

(b− a) ln k

(
1

ka
− 1

kb

)
− 1

(b− a) ln (k + 1)

(
1

(k + 1)a
− 1

(k + 1)b

)
,

where k = 2, 3, . . .
Denote by ξ(N) and µr the maximum vertex degree and the number of vertices with

degree r respectively. We obtained the limit distributions of ξ(N) and µr as N, n→ ∞.
The technique of obtaining these results is based on so called generalized allocation
scheme supported by V. F. Kolchin [5].

2 Proof Strategy

Let η1, . . . , ηN be auxiliary independent identically distributed random variables such
that

pk(λ) = P{ηi = k} = λkpk/B(λ), (2)

where k = 1, 2, . . . ; i = 1, . . . , N ; 0 < λ < 1 and

B(λ) =
∞∑
k=1

λkpk.

It is readily seen that for our subset of graphs

P{ξ1 = k1, . . . , ξN = kN} = P{η1 = k1, . . . , ηN = kN |η1 + . . .+ ηN = n}. (3)

This equation means that for random variables ξ1, . . . , ξN and η1, . . . , ηN the generalized
allocation scheme is valid and we can apply the known properties of this scheme to the
study of conditional random graphs.

Let η
(r)
i , ν

(r)
i , i = 1, . . . , N , be two sets of random variables such that

P{η(r)i = k} = P{ηi = k|ηi ≤ r}, P{ν(r)i = k} = P{ηi = k|ηi ̸= r}.
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It is shown in [5] that from (3) it is not hard to get:

P{ξ(N) ≤ r} = (1−P{η1 > r})N P{η(r)1 + . . .+ η
(r)
N = n}

P{η1 + . . .+ ηN = n}
(4)

and

P{µr = k} =

(
N

k

)
pkr(λ)(1− pr(λ))

N−kP{ν(r)1 + . . .+ ν
(r)
N−k = n− kr}

P{η1 + . . .+ ηN = n}
. (5)

From (4) and (5) we see that to obtain the limit distributions of ξ(N) and µr it suffices
to consider the asymptotic behaviour of the sums of independent random variables,
binomial (1 − P{η1 > r})N and binomial probabilities. By this way we proved the
main results of this paper (see the next section).

3 Results

Let parameter λ = λ(N, n) of the distribution (2) be determined by the relation

m = Eη1 = n/N

and let also σ2 = Dη1. We have the following results.

Theorem 1. Let N,n → ∞ in such a way that n/N → 1, (n − N)3/N2 → ∞ and
sequence r = r(N,n) are minimal natural numbers such that Nλrpr+1/p1 → γ, where
γ is a non-negative constant. Then P{ξ(N) = r} → e−γ, P{ξ(N) = r + 1} → 1− e−γ.

Theorem 2. Let N, n → ∞ in such a way that 1 < C1 ≤ n/N ≤ C2 < ∞ and
r = r(N,n) are chosen such that

aNλr+1

(b− a)B(λ)ra+1 ln r
→ γ,

where γ is a positive constant. Then for any fixed k = 0,±1,±2, . . .

P{ξ(N) ≤ r + k} = exp{−γλk(1− λ)−1}(1 + o(1)).

Theorem 3. Let N, n→ ∞ in such a way that n/N → ∞, a ≤ 1 and N(1−λ)2+δ → ∞
for some δ > 0. Then

P{| lnλ|ξ(N) − u ≤ z} → e−e−z

,

where −∞ < z <∞ and u = u(N, n) are chosen so that

N | lnλ|a

euua+1 ln (u/| lnλ|)
→ b− a

a
.
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Theorem 4. Let N,n→ ∞ in such a way that n/N → 1, n−N → ∞. Then for r > 2

P{µr = k} =
(Npr(λ))

k

k!
e−Npr(λ)(1 + o(1))

uniformly in the integer k such that (k − Npr(λ))/
√
Npr(λ) lies in any fixed finite

interval.

Theorem 5. Let N, n→ ∞ and one of the following conditions hold:

1. 1 < C1 ≤ n/N ≤ C2 <∞;

2. a ≤ 1, n/N → ∞, N(1− λ)2+δ → ∞,

where δ is a some positive constant. Then for any fixed natural r

P{µr = k} = (σrr
√
2πN))−1e−u2

r/2(1 + o(1))

uniformly in the integer k such that ur = (k−Npr(λ))/(σrr
√
N) lies in any fixed finite

interval, where

σ2
rr = pr(λ)

(
1− pr(λ)−

(m− r)2

σ2
pr(λ)

)
.
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Institute of Mathematics and Informatics, Vilnius University

Vilnius, LITHUANIA
e-mail: marijus.radavicius@vu.mii.lt

Abstract
For Bernoulli trials, simple upper and lower bounds for tail probabilities of

logarithmic likelihood ratio statistic are given. The bounds are exact up to
a factor of 2. A problem of generalization of the results to the multinomial
distribution is briefly discussed.

1 Introduction

Let y = (y1, . . . , yn) be a random vector having the multinomial distribution

y ∼ Multinomialn(N,p), p = (p1, . . . , pn).

For n = 2, y1 ∼ Binomial(N, p1). The maximum likelihood estimator of the unknown
probabilities p is given by

p̂ = p̂N := N−1y.

Define scaled (logarithmic) likelihood ratio statistic

ℓn(p̂,p) :=
n∑

i=1

p̂i log

(
p̂i
pi

)
.

Note that for n = 2,

ℓ(p̂1, p1) := p̂1 log

(
p̂1
p1

)
+ (1− p̂1) log

(
1− p̂1
1− p1

)
= ℓ2(p̂,p). (1)

Hoeffding (1965) proved the following inequality (see also Kallenberg, 1985): for
n = 2,

P{ℓn(p̂N ,p) ≥ x} ≤ 2e−Nx, x > 0. (2)

It is important to stress that (2) is universal: it holds for all x > 0, all p1 ∈ [0, 1]
and all N = 1, 2, . . .. It is also tight, i.e. it cannot be improved without imposing some
additional conditions.

The problem is to generalize this inequality to the case n > 2.

Generalizations of (2) to the case n > 2 have been obtained by Hoeffding himself
(1965) and W.C.M. Kallenberg (1985). The inequality established by W.C.M. Kallen-
berg is tight up to a constant. However it holds only for x ≤ 0.15 and impose some
boundedness from below restriction on probabilities p. Known universal bounds (i.e.
bounds that are independent of p) are loose and impractical for large n (W.C.M. Kallen-
berg, 1985, inequality (2.6)). The upper bound typically exceeds the corresponding
lower bound by a factor of order

√
xN (see W.C.M. Kallenberg, 1985, Theorem 2.1 on

p. 1557). This applies to 2) as well.
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2 Notation

Define the signed logarithmic likelihood ratio statistic for the binomial distribution

sq(u) := sign(u− q) ℓ(u, q), (u, q) ∈ (0, 1)× (0, 1).

The logarithmic likelihood ratio statistic for the binomial distribution is defined in (1).
The function sq(u) is strictly increasing and continuous with respect to u ∈ (0, 1). Let
s̄q denote the inverse function of sq: s̄q(sq(u)) ≡ u. In what follows, we reserve notation
χ2
m for a random variable which has χ2 distribution with m degrees of freedom.
Let

b(t) = b(t;N, q) :=
Γ(N + 1)

Γ(t+ 1)Γ(N − t+ 1)
qt(1− q)N−t, t ∈ [0, N ].

Note that
b(k;N, q) = Ck

Nq
k(1− q)N−k, k = 0, 1, . . . , N,

is the binomial probability density (mass) function.

3 Results

The proposition below gives upper and lower bounds (exact up to a factor of 2) for the
tail probabilities of the logarithmic likelihood ratio statistic. In contrast to (2), they
depend on the success probability of the binomial distribution.

Proposition 1. Let p̂N := N−1y, y ∼ Binomial(N, p). Then

P{ℓ(p̂N , p) ≥ x} ≤ P{χ2
1 ≥ 2xN}

+ b(Ns̄p(−x);N, p) + b(Ns̄p(x);N, p) (3)

≤ 2 P{ℓ(p̂N , p) ≥ x}.

The inequalities for the upper tail probability presented below are more apprehen-
sible than (3). Let xk := sp(k/N) with k/N > p. Then

max(2−1P{χ2
1 ≥ 2xkN}, b(k;N, p)) ≤ P{sp(p̂N) ≥ xk}

≤ 2−1P{χ2
1 ≥ 2xkN}+ b(k;N, p). (4)

Note that the first term in the right-hand side of (4) is just the tail probability of the
asymptotic distribution of the logarithmic likelihood ratio statistic.

The inequalities (4) as well as the Proposition 1 are simple corollaries of results by
Zubkov and Serov [4].

Remark. We expect that, for arbitrary n > 2, exact (up to a constant factor) upper
bounds for tail probabilities of logarithmic likelihood ratio statistic can be obtained by
making use of the Proposition 1 and induction with respect to n.
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Abstract

Proposed a new correction algorithm for the standard steganographic model
of binary message embedding into binary cover. Embedding is known to be influ-
ential on cover’s statistical characteristics and, thus, to be statistically detectable.
The proposed correction algorithm does not affects the embedded message and
under certain model assumptions restores the cover’s histogram of n-subwords
frequencies. The key condition for the n-subwords histogram restorability limits
the ratio of message to cover: it should not exceed some value called n-capacity
of cover. Some capacities found theoretically for locally uniform Markov covers.
Keywords: steganographic capacity, histogram correction, embedding

1 Introduction

Such tools for multimedia copyright protection, as digital watermarking or digital sig-
nature, use steganographic methods of covert embedding. The standard embedding
model is very simple [1, 2]. We have three binary sequences of {0, 1} values: cover
c = (ci)

N
i=1, selector s = (si)

N
i=1 and message m = (mi)

N1
i=1, where N1 is the number of

ones in selector s. Cover values ci corresponding to N1-subset of indices {i : si = 1} are
then being replaced with N1 message values. Cover sequence c with embedded message
m we call stego and denote c∗ = (c∗i )

N
i=1. After message embedding we may want to

correct stego c∗ for some goal. Of course, correction should not affect the embedded
message values {c∗i : si = 1}. Corrected stego sequence we denote c∗∗ = (c∗∗i )Ni=1.

The goal of correction is usually to somehow restore certain features of cover c,
distorted by message embedding. Obviously, we are not talking about restoration of
the cover c itself, because stego c∗ can not even be moved closer to it in Hamming
metric d by correction:

d(c, c∗) ≤ d(c, c∗∗).

Nevertheless, the cover’s statistical characteristics turn quite repairable. Here we aim
to approximately restore the histogram of frequencies of cover’s n-subwords:

∥Hn(c)−Hn(c
∗∗)∥ → min, (1)

where

Hn(x) ::=

(
#{0 ≤ i ≤ N − n : (xi+1, . . . , xi+n) = q}

N + 1− n

)
q∈{0,1}n

, x ∈ {0, 1}N . (2)
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In its formulation the problem (1) looks rather combinatorial, but it appears to be
effectively treatable by probabilistic and statistical methods based on few model as-
sumptions. The following probabilistic model assumptions are used to be standard in
literature [1, 2]:

A1: cover c, selector s and message m are mutually independent random
binary sequences;

A2: selector s is a Bernoulli process with success probability 0 < ε < 1;

A3: message m is a uniformly distributed sequence (Bernoulli process with
parity of successes and failures);

A4: cover c is a Markov chain.

Based on [1], we use extended versions of A2 and A4:

XA2: selector s is a stationary n-ergodic process;

XA4: cover c is a stationary n-ergodic process.

Remark. Compared to XA4, extension XA2 is more exotic and analytically harder to
work with, but it may sufficiently increase the capacity of stegosystem [1].

Remark. Under ergodicity we mean almost sure convergence of frequencies to proba-
bilities. Namely, let x : Z → {0, 1} be a stationary random binary process. Then we
call it n-ergodic, if in (2):

Hn(x)
a.s.−→

N→+∞
[x]n =

(
[x]nq
)
q∈{0,1}n , [x]

n
q ::= P{(x1, . . . , xn) = q}. (3)

Remark. We call [x]n in (3) an n-projection of x’s probability measure [x] ::= [x]∞.

Thus the distance (1) between histograms almost surely vanishes at N → +∞, if the
following two conditions hold for cover c and corrected stego c∗∗:

• they are both n-ergodic;

• they have the same n-projections of probability measures: [c]n = [c∗∗]n.

The correction algorithm proposed in [1] provide these conditions.

Remark. Under n-ergodicity the restoration of n-projection [c]n of cover’s measure guar-
antees the asymptotic restoration of cover’s n-subwords histogram Hn(c). So further
under histogram restoration we understand the asymptotic one.

2 Correction algorithm

Thus the embedding leads to deformation of the cover’s probability measure [c], and
we want to restore it (at least up to probabilities of n-subwords) by correction. It is
shown in [1] that under assumptions A1, XA2, A3 and XA4 the considered defor-
mation of [c] turns out to be a convolution with the specially transformed selector’s
measure. Namely, with the measure [su] of selector s multiplied by independent from
it uniformly distributed random binary sequence u (in the standard A2 case [su] is
Bernoulli measure with success probability ε/2). So the idea of correction algorithm is
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clear now: we just have to replace cover c with another stationary n-ergodic random
binary sequence k (let us call it corrector), whose measure (n-projection, to be precise)
[k]n convoluted with [su]n gives n-projection [c]n of the cover’s measure.

From the computational point of view, we need an inverse convolution. To obtain it,
one may use Fourier transform F, which provides correspondence between convolution
and multiplication. Without going into technical details, the object of our interest,
n-projection [k]n of the corrector’s measure, has the form [1]:

[k]n = 2−nF

(
F[c]n

F[su]n

)
, (Ff)q =

∑
q′∈{0,1}n

fq′(−1)|qq
′|, q ∈ {0, 1}n, (4)

reducing in the standard A2 case to:

[k]nq =

(
1− ε/2

1− ε

)n ∑
q′∈{0,1}n

[c]nq⊕q′

(
ε

ε− 2

)|q′|

, q ∈ {0, 1}n, (5)

where |q′|means Hamming weight of q′ and ⊕means elementwise XOR. The uniqueness
of [k]n is guaranteed by strict positiveness of [s]n (every binary n-word q ∈ {0, 1}n has
nonzero probability to appear as a subword in selector s, holds for A2). The existence
of n-ergodic corrector itself is guaranteed by strict positiveness of [k]n in (4) (or (5)
for A2). The last thing we should say about the algorithm is that we have to use
histogram Hn(c) instead of n-projection [c]n, which is unknown on practice.

Thus the correction algorithm is of the form:

step 1: compute cover’s histogram of n-subwords frequencies Hn(c);

step 2: usingHn(c) instead of [c]n in (4) (or (5) forA2), compute n-projection
[k]n of the corrector’s measure;

step 3: generate the corrector k by pseudorandom stationary Markov chain
of order n− 1 with transfer probabilities, providing computed [k]n, or
state the fail of correction, if [k]n is not strictly positive;

step 4: correct the values of stego c∗: replace c∗i with ki at the positions i,
not occupied by message (si = 0).

3 Capacity of cover

The assumption XA2 means, in particular, that the portion of ones N1/N in selector
s almost surely tends to [s]1 = P{si = 1} when the cover’s volume N grows. For this
reason under XA2 the value [s]1 can be thought of as a data transfer rate (DTR for
brevity) of stegosystem. Maximization of DTR seems rather natural objective, next
after cover’s histogram restoration. Hence the idea of capacity [1, 3] as a stegano-
graphic characteristic of cover. Informally, capacity is a maximum achievable DTR
among stegosystems providing histogram restorability for some particular cover. More
precisely, in considered model capacity characterizes cover’s distribution [c].

Following [1], consider two cases. If selector s is an arbitrary one (XA2 case),
providing restoration of cover’s n-subwords histogram, then maximum DTR is called
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absolute n-capacity of cover’s measure [c] and denoted by ε∗n[c]. And it is called plain
n-capacity and denoted by εn[c], if selector is chosen among Bernoulli processes (A2
case). Obviously, both absolute and plain capacities of a fixed cover’s probability
measure [c] do not increase in n and εn[c] ≤ ε∗n[c].

Figure 1: Capacities of MC1
U(p) against p: plain ε2 > ε3 > ε4 > ε∞ (solid lines) and

absolute ε∗2 > ε∗3 (dashed lines).

Figure 2: Contour maps for plain capacities of MC2
U(p, s) on the (p, s) plane: ε3 on the

left and ε∞ (only for p+ s > 1) on the right. Lines correspond to multiples of 0.05.

Consider now two Markov models of locally uniform covers: the first order Markov
chain with uniformly distributed 1-subwords and the second order one with uniformly

188



distributed 2-subwords. We call them MC1
U and MC2

U respectively. The first one
appears one-parametric with parameter:

p = P{0 → 1} = P{1 → 0}.

The second one is two-parametric with parameters:

p = P{00 → 1} = P{10 → 0},
s = P{11 → 0} = P{01 → 1}.

The arrows mean transfers within the cover’s sequence ci.

Theorem 1. [1] Absolute and plain capacities of MC1
U(p)-distributed cover are:

ε∗2 = 2~, ε∗3 = 4~2,

ε2 = 1−
√
1− 2~, ε3 = 1−

√
1− 4~2, ε4 = 1−

√
κ+ κ2 − κ3, ε∞ = 1−

√
1− 2~
1− ~

,

where ~ = min{p, 1− p}, κ = ~+
√
1 + ~2.

Theorem 2. Third and limiting (for p+s > 1) plain capacities of MC2
U(p, s)-distributed

cover are:

ε3 =

1−
∑

±
3

√
~− ±

√
~2− − ~3+, ~2− ≥ ~3+,

1− 2
√
~+T 1

3
(~−~

− 3
2

+ ), ~2− < ~3+,
, ε∞ = 1− sinh3Φ− tanh3 Ψ

sinh2Φ− tanh2 Ψ
· 1

coshΦ
,

where ~+ = 1
3
|1− p− s|, ~− = 1

2
|p− s|, Tν(x) = cos(ν arccosx) is a fractional analogue

of Chebyshev polynomial,

Ψ = arcsinh 3

√
|p− s|

p+ s− 2ps
, Φ = arccosh

(
p+ s− 2ps

(1− p)(1− s)
· 7 + cosh(4Ψ)

16 coshΨ

)
.

Remark. Both limiting plain capacities ε∞ for the considered cover models were ob-
tained based on some unproven hypotheses, confirmed by numerical experiments.

Remark. Comparison of absolute and plain capacities (Figure 1) shows that more so-
phisticated choice of positions for embedding may sufficiently increase the data transfer
rate of stegosystem.
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Abstract

Let all vertices of a complete binary tree of finite height be independently
and equiprobably labeled by the elements of some finite alphabet. We consider
the numbers of pairs of identical tuples of labels on chains of subsequent vertices
in the tree. Exact formulae for the expectations of these numbers are obtained.
Convergence to the compound Poisson distribution is proved.
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Let T n
2 be a complete binary tree of height n with root ∗ and n layers of vertices;

we enumerate 2k elements of the set I(k) of the k-th layer vertices (k = 1, 2, . . . , n)
by binary strings i = (i1, i2, . . . , ik) ∈ {0, 1}k. So the unique vertex ∗ of layer I(0)

is connected by two outcoming edges with vertices of layer I(1) and any vertex i =
(i1, i2, . . . , ik) ∈ I(k), 1 ≤ k ≤ n− 1, is connected by two outcoming edges with vertices
i′ = (i1, i2, . . . , ik, 0) and i

′′ = (i1, i2, . . . , ik, 1) of layer I
(k+1). Vertex i = (i1, i2, . . . , ik)

has incoming edge from vertice i− = (i1, i2, . . . , ik−1) for k > 1 and from root ∗ =
(0)− = (1)− for k = 1. Each vertex i of the tree T n

2 defines subtree consisting of this
vertex and all vertices of next layers that are connected to i with edges.

We can define natural lexicographical order on the set of vertices of T n
2 : i =

(i1, . . . , ik) ≺ j = (j1, . . . , jh) if either i = ∗, j ̸= ∗, or 1 ≤ k < h, or 1 ≤ k = h and∑k
m=1 im2

k−m <
∑k

m=1 jm2
k−m. For vertex i = (i1, i2, . . . , ik) ∈ I(k), k ≥ 0, the chain

Ci of length l is a sequence of l vertices

(i1, i2, . . . , ik), (i1, i2, . . . , ik, ik+1), . . . , (i1, i2, . . . , ik, ik+1, . . . , ik+l−1)

connected by edges. Denote these vertices of the chain Ci by Ci[0], Ci[1], . . . , Ci[l − 1].
We will refer to the vertex i as the initial vertex of chain Ci and to the vertex
(i1, i2, . . . , ik, ik+1, . . . , ik+l−1) as its final vertex. It’s easy to see that the final ver-
tex and length l explicitly define the chain, so we can introduce order on the set of
chains of the fixed length l: Ci ≺ Cj if and only if Ci[l − 1] ≺ Cj[l − 1]. Denote by P
the set of ordered pairs of nonintersecting chains (Ci, Cj), i ≺ j.

It is easy to check that chains Ci and Cj intersect if and only if either Ci[0] ∈ Cj or
Cj[0] ∈ Ci. The total number of vertices in the tree T n

2 is equal to 1 + 2 + . . . + 2n =
2n+1 − 1, and the total number of chains of the length l in the tree T n

2 is equal to the
number of their final vertices | ∪n

j=l−1 I
(j)| = 2l−1 + . . .+ 2n = 2n+1 − 2l−1.

Let any vertex i in tree T n
2 be assigned with a random label m(i) from the set

{1, . . . , d} so that variables m(i), i ∈ T n
2 , are independent and P{m(i) = j} = 1

d
, j ∈
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{1, . . . , d}, for all i ∈ T n
2 . So, for any chain Ci of length l we have a random tuple of

labels
M(Ci) = (m(Ci[0]),m(Ci[1]), . . . ,m(Ci[l − 1])).

Obviously, if all chains Ci1 , . . . , Cis are nonintersecting, then the corresponding tuples
of labels M(Ci1), . . . ,M(Cis) are independent and equiprobably distributed on the set
{1, . . . , d}l.

We consider the distribution of the number of pairs (Ci, Cj), i ≺ j, of chains of
length l in the tree T n

2 with identical tuples of labels (i.e. M(Ci) = M(Cj)). Total
number of such pairs is equal to

Vn,l =
∑

(Ci,Cj)∈P

I{M(Ci) =M(Cj)};

the alphabet size d is supposed to be fixed.
Probability of the event {M(Ci) =M(Cj)} depends on the character of intersection

of chains Ci and Cj, so we divide the sum Vn,l into several parts: sum V
(0)
n,l over the

nonintersecting chains, sum V ′
n,l over intersecting chains with different initial vertices,

sum V ′′
n,l,k over chains with common initial vertices:

Vn,l = V
(0)
n,l + V ′

n,l +
l−1∑
k=1

V ′′
n,l,k,

V
(0)
n,l =

∑
(Ci,Cj)∈P:Ci∩Cj=∅

I{M(Ci) =M(Cj)},

V ′
n,l =

∑
(Ci,Cj)∈P:Ci∩Cj ̸=∅,Ci[0]̸=Cj [0]

I{M(Ci) =M(Cj)},

V ′′
n,l,k =

∑
(Ci,C′

i)∈P: |Ci∩C′
i|=k,Ci[0]=C′

i[0]

I{M(Ci) =M(C ′
i)}, 1 ≤ k < l.

Theorem 1. The following equalities are valid

EV
(0)
n,l =

{
1
d l

(
22n+1 − 5 · 2n−1+l + 2n+1 + 22l−2l

)
, if 2l − 1 ≤ n,

1
d l

(
22n+1 − 5 · 2n−1+l + 22l−2(n− l + 4)

)
, if 2l − 1 > n,

EV ′
n,l =

{
1
d l

(
(2l−1 − 1)2n+1 − 22l−2(l − 1)

)
, if 2l − 1 ≤ n,

1
d l

(
2l−1(2n+1 − 2l)− 22l−2(n− l + 1)

)
, if 2l − 1 > n,

EV ′′
n,l,k =

1
d l−k (2

n−l+2 − 1)22l−k−3, 1 ≤ k < l,∑l−1

k=1
EV ′′

n,l,k =
2n − 2l−2

d

1− (2
d
)l−1

1− 2
d

.
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If M(Ci) = M(Cj) and i
− ̸= j−, then M(Ci−) = M(Cj−) with probability 1/d =

P{m(i−) = m(j−)}, and P{M(C ′
i) = M(C ′

j)} = 1/d if C ′
i[0] = C ′

j[0], C
′
i[l − 2] =

C ′
j[l − 2], C ′

i[l − 1] ̸= C ′
j[l − 1]. In theorem 2 we propose sufficient conditions and

estimate the weak convergence rate of the number of pairs of nonintersecting chains
Ci, Cj with M(Ci) = M(Cj),m(i−) ̸= m(j−) to the compound Poisson distribution.
Such pairs of tuples may be interpreted as coincidences which cannot be shifted to the
root.

Let
XCiCj

= I{M(Ci) =M(Cj),m(i−) ̸= m(j−)}, (Ci, Cj) ∈ P ;

if i = ∗, then the condition m(i−) ̸= m(j−) is supposed to be satisfied. Labels of
vertices are independent and equiprobable, so for (Ci, Cj) ∈ P we have

EXCiCj
= EI{M(Ci) =M(Cj)}I{m(i−) ̸= m(j−)} =

{
d−1
d l+1 , if i− ̸= j−,

0, if i− = j−.

Let P̃ ⊂ P be the set of pairs (Ci, Cj), i ∈ I(vi), j ∈ I(vj), of nonintersecting chains such
that if the vertex j belongs to a subtree with root i, then vj ≥ vi + 2l − 1. Define

V
(0)−
n,l =

∑
(Ci,Cj)∈P:Ci∩Cj=∅

XCiCj
, Ṽn,l =

∑
(Ci,Cj)∈P̃

XCiCj
.

Lemma 1. The following equalities are valid

EV
(0)−
n,l =

{
d−1
d l+1

(
22n+1 − 6 · 2n+l−1 + 2n+1 + 22l−2(l + 1)

)
, if 2l − 1 ≤ n,

d−1
d l+1

(
22n+1 − 6 · 2n+l−1 + 22l−2(n− l + 5)

)
, if 2l − 1 > n.

EV
(0)−
n,l − l

d l 2
n−l+2 < EṼn,l < EV

(0)−
n,l .

Corollary 1. If n, l → ∞ in such a way that EV
(0)−
n,l is bounded,

then P{Ṽn,l = V
(0)−
n,l } → 1.

Comparing formulae forEV
(0)
n,l and EV

(0)−
n,l we can mention that under the conditions

of corollary 1 for any coincidence which cannot be shifted to the root there exist in
average 1

d−1
additional coincidences that may be shifted to root.

Definition 1. Consider a pair of chains (Ci, Cj) ∈ P such that subtrees of height l− 1
with roots in vertices i an j do not intersect. Define

πk =
1

k
P

{∑
(C′

i,C
′
j)∈P

XC′
iC

′
j
= k

∣∣∣∣ XCiCj
= 1

}
, k = 1, 2, . . .

Definition 2. The compound Poisson distribution CP (π) is the distribution of random
variable

Ξπ =
∑∞

k=1
kξk,

where ξ1, ξ2, . . . are independent and for any k ≥ 1 random variable ξk has Poisson
distribution with parameter πk.
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Theorem 2. If n, l → ∞ in such a way that 22l = o(2n) and

EṼn,l =
d− 1

d
· 2

2n+1

d l
(1 + o(1)) → λ ∈ (0,∞),

then there exists ε(l, n) such that ε(l, n) = o(1) and

dtv(L(Ṽn,l), CP (π)) =
1

2

∞∑
k=0

|P{Ṽn,l = k} −P{Ξπ = k}| ≤

≤ 2H1(π)
(
EṼn,l

)2 22l
2n

(1 + ε(l, n)) → 0,

where H1(π) ≤ min

(
1,

1

π1

)
· exp

(
∞∑
k=1

πk

)
.
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EXACT D-OPTIMAL DESIGNS EXPERIMENTS
FOR LINEAR MODEL WITH

HETEROSCEDASTIC OBSERVATIONS

V. P. Kirlitsa
Belarusian State University

Minsk, BELARUS
e-mail: Kirlitsa@bsu.by

Abstract

The problem of construction exact D-optimal designs of experiments for linear
model with heteroscedastic observations is investigated

Consider the linear model of heteroscedastic observations

yi = θ0 + θ1xi + εi(xi), i = 1, ..., n, n ≥ 2, (1)

where yi are observed variables; θ0.θ1 are unknown parameters; xi are controllable
variables from the interval [−1, 1], εi(xi) are uncorrelated random errors of observations
with mean zero and limited variances D{εi(xi)} = di(xi) > 0 for each realization xi.
Functions di(xi) satisfy to inequality:

di(xi) ≥
1

4

(
[di1 + di2]x

2
i + 2[di2 − di1]xi + di1 + di2

)
, di1 = di(−1), di2 = di(1). (2)

It is easy to check up that to these inequalities (2) satisfy constant functions
(di(xi) = d = const), with linear change (di(xi) = ai + bixi, |bi| < ai, ai > 0) and
also all concave functions positive on [-1,1].

In [1] designs of experiments (1) are constructed in a case when variances di(xi) are
defined by the same function d(xi). In this article result obtained in [1] is generalized
on a case when the variance of each observation can be defined by own function.

Theorem 1. For model of observations (1) at which variances of observations di(xi)
satisfy to inequalities (2) there is an D-optimal exact design of experiment at which all
spectrum points lay on interval ends of [−1.1].

Theorem 1 helps to obtain the following.

Theorem 2. Spectrum points of exact D-optimal design of experiments for model of
observations (1),(2) are co-ordinates of one of tops of n-dimensional cube xi = ±1, i =
1, n and these co-ordinates maximize function

f(x1, ..., xn) =

(
n∑

i=1

1− xi
di(xi)

)(
n∑

i=1

1 + xi
di(xi)

)
,

provided that this maximum is calculated on all tops of this cube.
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Proof. From Theorem 1 follows that it is necessary to search exact D-optimal design
ε0n among designs εn at which spectrum points lay in cube tops. Determinants of
information matrix such designs are equal:

|M(εn)| = f(x1, ..., xn).

Exact D-optimal design is that design which maximizes functionf(x1, ..., xn).

It is possible to receive a number of corollaries from the Theorem 2 in which the
problem of construction D-optimal designs becomes simpler.

Corollary 1. For model of observation (1). (2) with variances di(xi) = di, i = 1, n
not dependent on xi spectrum points xi of D-optimal design lay on the ends of interval
[−1, 1] and these are such combinations of points for which the absolute value∣∣∣∣∣

n∑
i=1

x0i
di

∣∣∣∣∣
take the minimum value.

From Corollary 1 follows that if design ε0n is D-optimal design then the symmetric
to him design ε1 = −ε0n is also the D-optimal design.

Let‘s consider now a case when a series from n independent observations breaks on
two series of observations: y1, ..., yn1 ; y1, ..., yn2

, n = n1 + n2. Observations y1, ..., yn1

are realized in points x1, ..., xn1 with equal variance d1 > 0 and other observations
y1, ..., yn2

are realized in points x1, ..., xn2 with equal variance d2 > 0. In this case the
problem of construction D-optimal designs is reduced minimizing expression∣∣∣∣∣

n1∑
i=1

xi
d1

+

n2∑
i=1

xi
d2

∣∣∣∣∣ = 1

d2

∣∣∣∣∣d
n1∑
i=1

xi +

n2∑
i=1

xi

∣∣∣∣∣
on variables xi = ±1, i = 1, n1; xi, i = 1, n2 , where d = d2

d1
. Let is k number of xi

accepting value −1 and m is number of xi accepting value −1. Then

min

∣∣∣∣∣d
n1∑
i=1

xi +

n2∑
i=1

xi

∣∣∣∣∣ = min |d(n1 − 2k) + n2 − 2m|, (3)

where minimum on variables k,m is calculated on set: 0 ≤ k ≤ n1, 0 ≤ m ≤ n2. Solu-
tion of optimizing problem (3) defines structure of D-optimal design for heteroscedastic
observations which are broken on two groups of homoscedastic observations. Construc-
tion of D-optimal designs can be generalized on a case when n heteroscedastic obser-
vations are broken into some series of homoscedastic observations but with different
variances in each of series.

In that specific case when all functions di(x) coincide, di(x) = d(x) and function
d(x) satisfies to inequality

d(x) ≥ 1

4
([d1 + d2]x

2 + 2[d2 − d1]x+ d1 + d2), x ∈ [−1, 1] d1 = d(−1), d2 = d(1), (4)

then process of construction D-optimal designs becomes easier and Theorem 3 takes
place.
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Theorem 3. For model of heteroscedastic observations (1), (2) with variance d(x)
satisfying to inequality (4) exact D-optimal design ϵ0n as well as for homoscedastic
observations and has structure

ε0n =

(
−1, 1
m, n−m

)
,

where m is number of observations in point -1. If n = 2s is even number then m = s.
If n = 2s+ 1 is odd number then m = 2s.

Let‘s now consider a special case of Theorem 3. LetK is a set of points from interval
[-1.1] in which inequality (4) turns to equality. If the set K contains other points from
interval [-1,1] except points −1, 1 then in this case D-optimal design for odd number
of observations can contain not only two but also three points.

Theorem 4. If set K\{−1, 1} is not empty then for odd number n = 2s+ 1 of obser-
vations D-optimal design has structure:

ε02s+1 =

(
−1, 1, x
s, s, 1

)
, x ∈ K.

Proof of this theorem you can find in article [1]. Consider now situation when in
the condition of Theorem 3 function d(x) is equal to zero on one of the interval ends
of [-1.1]. Let‘s consider for definiteness that this function is equal to zero on the left
end of interval [-1,1] and d1 = 0, d2 > 0. In this case the set of functions d(x) defining
change of variance of observations satisfies to inequality:

d(x) ≥ d2
4
(x+ 1)2, x ∈ [−1, 1]. (5)

Let K1 there is a set of points from interval (−1, 1] in which inequality (5) turns to
equality.

Theorem 5. With probability 1 for model of heteroscedastic observation (1) which has
variance d(x) satisfying to inequality (5) exact D-optimal design of observations look
like

ε0n =

(
−1, xi,
1, 1,

, i = 2, n

)
, xi ∈ K1. (6)

The estimations of unknown parameters constructed under design (6) are following:

θ1 =

(
n∑

i=2

(1 + xi)
2

d(xi)

)−1 n∑
i=2

yi
d(xi)

, θ0 = θ1 + y(−1), (7)

where yi = yi − y(−1); yi are observations in the points xi and y(−1) is observation in
point −1. Variances of estimations (7) are equal to

D(θ1) = D(θ0) =
d2

4(n− 1)
, d2 = d(1).
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Special case of Theorem 5 is the following.

Corollary 2. If the set K1\{1} is empty then in conditions of Theorem 5 D-optimal
design looks like

ε0n =

(
−1, 1,
1, n− 1

)
. (8)

The estimations of unknown parameters constructed under design (8)not dependent
from variances and are equal to

θ1 =
1

2

(
1

n− 1

n∑
i=2

yi − y(−1)

)
, θ0 = θ1 + y(−1)

where yi are observations in point 1.

There are full proof of Theorem 5 and corollary of this theorem in article [1].
Let‘s consider an example. We will construct designs of experiments for model (1),

(2) for various cases of change of variances for n = 4, 5.
a) If the variances are

d1(x) =
3

2
+

1

2
x, d2(x) =

3

2
− 1

2
x, d3(x) =

7

2
+

1

2
x, d4(x) = 5, x ∈ [−1, 1],

then spectrum points of the unique D-optimal design are the following: x01 = −1, x02 =
1, x03 = −1, x04 = 1.

b) If the variances are di =
3
2
+ 1

2
x, i = 1, 4, x ∈ [−1, 1] then in D-optimal design of

experiments two spectrum points should lay on the left end of interval [-1,1] and other
points to lay on the right end of this interval.

c) If the variances are di(x) =
3
4
x2 + 1

2
x + 3

4
, x ∈ [−1, 1], i = 1, 5, then D-optimal

designs should be built according to Theorem 4 in which s = 2, K = [−1, 1]. Such
designs there are an infinite, incalculable set of power a continuum.
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SOME APPROACHES TO CLASSIFICATION OF
SUBJECTS OF FOREIGN ECONOMIC

ACTIVITY BY RISK LEVEL
P. M. Lappo1, T. A. Yakushava2

1Belarusian State University
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Abstract

Analyzed two approaches to classification of foreign economic activity sub-
jects by the level of risk. Approaches using as risk measures the probability of
customs legislation violation and the expected financial loss are considered.
Keywords: classification, customs risk, k nearest neighbors

1 Introduction

Currently the system of customs risk management in the Republic of Belarus is under
development and improvement. As part of the work to a unified identification and
analysis, providing for a minimum participation of the subjective human factor to be
used probabilistic and statistical methods. One possible approach to risk management
at the customs is a division of subjects of foreign economic activity (FEA) into three
categories with high, medium and low risk. Appropriate type of customs control can
be applied to each of these categories.

Different authors use various measures of customs risks. For example, in the paper
[2] as a measure of risk the probability of violation of the customs legislation is used.
The probability of violation is estimated using principal component method, cluster
and regression analysis. Some authors use expert estimation for risk [3].

On the basis of data on subjects of foreign economic activity of Republic of Belarus
who were exposed to check on customs legislation violation we have considered two
approaches to classification of subjects by risk level. At the first approach as a measure
of risk the probability of violation of the customs legislation was used, at the second
— the expected losses for the budget.

2 Legislation violation probability approach

In this approach all subjects of foreign economic activity divided into classes depending
on an estimator of probability of a violation of the legislation. For classification on three
classes (low, medium and high risk levels) with use of a method of k nearest neighbors
[1]. For the training sample the results are given in Table 1. Initially the subjects
were distributed by classes with levels depending on the estimators of probability of
violation: low for [0, 1

3
), medium for [1

3
, 2
3
) and high for [2

3
, 1].

Note that only subjects with low risk level are classified more or less well. For the
subjects with medium and high risk levels classification is rather unsatisfactory.
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Predicted

Training

low medium high Correct, %
low 150 26 31 72.5
medium 75 45 19 32.4
high 63 23 51 37.2
General, % 59.6 19.5 20.9 50.9

Table 1: Risk measure: probability of a violation of the legislation.

3 Expected losses approach

In this approach the risk is measured by means of the expected losses which the customs
can incur. Mathematically we can represent the expected loss Li from subject i in the
form Li = Si · X · pi, where Si is the cost of the volume of goods moved by subject
i, X is the average income from the detection of violation on a unit of value of the
moved goods, in the presence of violation, pi is the probability of violation for subject
i. Having ordered all subjects who had checks (the training sample) by values of the
expected losses, we can receive their classification. Initially every class contained equal
number of subjects.

For classification of other subjects it is possible to use method of k nearest neighbors.
Results of classification for the training sample by this method are given in Table 2.
We find them more or less satisfactory.

Predicted

Training

low medium high Correct, %
low 125 68 44 52.7
medium 26 168 44 70.6
high 0 14 225 94.1
General, % 21.1 35.0 43.8 72.5

Table 2: Risk measure: expected losses.
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MODELING THE REGIONS OF BELARUS
COMPETITIVENESS BASED ON PANEL DATA
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Abstract

Comparative analysis of the regions of Belarus competitiveness based on panel
data for 2011–2014 years was conducted. A system of indicators that reflect the
competitiveness in the regions under study was built. It consists of five units:
quality of the population, living standards, quality of social services, quality
of the ecological niche, cultural condition of society, investment attractiveness.
Integral indicator of the competitiveness for regions was built using the factor
analysis. All baseline indicators were sorted according to their impact on the
rating.

1 Introduction

Countries competitiveness is estimated annually by international non-governmental
organization, the World Economic Forum (WEF). The Republic of Belarus has not
taken part in the WEF ratings. Improving the Republic of Belarus competitiveness
and the participation in the WEF ratings is scheduled for 2016–2020 by the Government
program.

The competitive advantages of the country directly depend on the competitiveness
of its regions. In this regard, forming of region competitiveness is the main goal in the
task of improving the competitiveness of the country.

The region’s competitiveness will mean the ability of the regional economy to stably
produce and consume goods and services in competition with the goods and services
produced in other regions, while ensuring the continued growth of quality of life [1].

This definition highlights two fundamental directions for providing the growth of
the region competitiveness: achieving the high quality of life and improving the re-
gion investment attractiveness. Accordingly, the region competitiveness estimate is
suggested to be performed based on these two groups of indicators.

2 The system of indicators

The system of indicators composed in this work consists of five units: quality of pop-
ulation (8 indicators), standard of living (4 indicators), quality of social sphere (4 in-
dicators), quality of the environment (3 indicators), investment attractiveness (7 indi-
cators).
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Table 1: Factor loadings of indicators related to the first principal factor

Indicator Factor 1

Percentage of employees with higher education organizations 0.98

Paid services for population, per capita 0.91

Age dependency rate −0.90

Population provision with housing −0.89

Ratio of per capita income to the minimum subsistence budget 0.89

Rate of migration increase 0.85

Retail turnover of trade 0.84

Provision with doctors 0.82

Registered unemployment rate −0.76

Rate of natural increase 0.69

Share of innovation-active organizations in companies 0.68

Life expectancy 0.65

Official statistics, published in the collections of National Statistical Committee of
the Republic of Belarus [2], are used for selected indicators.

The integral indicator of the Grodno region districts competitiveness was built based
on panel data in [3] according to the 2008–2010 period.

Such an important factor in investment attractiveness, as the innovative activity of
industrial organizations, has been being recorded in the official statistics since 2011.
The regions of Belarus competitiveness estimation is built here taking into account this
factor according to 2011 data. Competitiveness rating of regions is obtained base on
panel data for 2011–2014 years.

A technique based on the methods of applied statistics was used for the construction
of integral indicator [3].

Comparability of data was carried out by matching to the minimum consumer
budget by the end of the year.

3 Competitiveness in the regions of Belarus

Original 26 indicators were scaled on the interval [0, 1] for comparability of indicators,
measured in different units. The indicators were then transformed according to the
principal components method of factor analysis into the 4 principal factors. Thus all
the indicators were associated with one of the 4 main factors. The total percentage of
variance, saved by them, is 73.4% (the first factor saves 35.9% of the variance). The
factor loadings values of the first principal factor are listed in table 1.

Integral indicator of the quality of life was obtained using the equation

R = 35.9F1 + 15.7F2 + 12.1F3 + 9.7F4,

where R is the competitiveness integral indicator, F1, F2, F3, F4 — values of the first
principal factors. The percentage of the dispersion, saved by them, is taken as weight.
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Table 2: The regions of Belarus competitiveness rating for 2011–2014 years

Region 2011 Region 2012 Region 2013 Region 2014

Minsk city 71.0 Minsk city 85.0 Minsk city 105.1 Minsk city 101.1

Brest −16.0 Grodno −3.2 Brest 18.6 Grodno 17.5

Grodno −19.0 Mogilev −8.9 Grodno 4.3 Brest 10.4

Mogilev −31.7 Brest −10.5 Mogilev −3.9 Mogilev 3.3

Vitebsk −43.1 Minsk −30.7 Gomel −5.0 Gomel −5.2

Gomel −48.2 Gomel −33.1 Minsk −14.2 Vitebsk −13.1

Minsk −55.2 Vitebsk −35.3 Vitebsk −22.8 Minsk −17.2

Table 3: The regions of Belarus competitiveness dynamics for 2011–2014

Region Year R Region Year R

Minsk city 2013 105.1 Minsk 2012 −30.7

Minsk city 2014 101.1 Minsk 2011 −55.2

Minsk city 2012 85.0 Vitebsk 2014 −13.1

Minsk city 2011 71.0 Vitebsk 2013 −22.8

Brest 2013 18.6 Vitebsk 2012 −35.3

Brest 2014 10.4 Vitebsk 2011 −43.1

Brest 2012 −10.5 Grodno 2014 17.5

Brest 2011 −16.0 Grodno 2013 4.3

Gomel 2013 −5.0 Grodno 2012 −3.2

Gomel 2014 −5.2 Grodno 2011 −19.0

Gomel 2012 −33.1 Mogilev 2014 3.3

Gomel 2011 −48.2 Mogilev 2013 −3.9

Minsk 2013 −14.2 Mogilev 2012 −8.9

Minsk 2014 −17.2 Mogilev 2011 −31.7

4 Comparative analysis of the competitiveness in

the regions of Belarus

Comparative analysis on the basis of panel data allows you to not only build a rating
of regions, but also to analyze the dynamics of the competitiveness of each region for
the period of study. As a result regions can be sorted by years (table 2) and by their
dynamics (table 3).

Minsk city is the permanent leader. Grodno and Brest regions are highly competi-
tive due to the standard of living (table 2).

The lowest values of the integral indicators for the regions of the Republic of Belarus
are observed in 2011. For Brest, Gomel, Minsk regions and Minsk city integral indi-
cator of competitiveness decreased in 2014 comparing to 2013 year. Positive dynamics
remained in Grodno, Vitebsk and Mogilev regions in 2014 (table 3).
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5 Conclusion

The most important competitiveness growth factors of Grodno region districts for the
period under review were revealed.

The quality of population: the proportion of employees with higher education in
organizations, age dependency rate, rate of natural increase, rate of migration
increase, life expectancy.

The investment attractiveness: share of the shipped innovative products.

The standard of living: population provision with housing, the ratio of per capita
income to the minimum subsistence budget, retail turnover of trade, paid services
for population.

Quality of social services: provision with doctors.

The same results were obtained by the study of the competitiveness in Grodno
region [4].

In order to solve the identified problems it is, first of all, necessary to create new
jobs and thus attract young working population to districts, as well as to implement a
package of measures stimulating the development of small and medium businesses in
the fields of material production, innovation and provision of public services.
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Abstract

For vector autoregressive models with Markov switching states (MS-VARX)
we propose the algorithms of classification of states based on classified and non-
classified learning samples. We also suggest the procedure to exclude short-term
(acyclic) fluctuations in system states. It is based on successive application of al-
gorithms implementing the Bayesian plug-in decision rule of point-wise classifica-
tion and a statistical test for expected probability of misclassification. Accuracy
of the algorithms is examined by means of computer simulation experiments.

1 Models and tasks of the research

Regime-switching models (RS-Models) are convenient for analyzing complex systems
with cyclic changes of state [1]. Most studies are devoted to Markov-switching vector
autoregressive model (MS-VAR) [2]. In the case of independent states independent
regime-switching autoregressive and regressive models (IS-Models) should be used.
These models are also preferable under the Markov dependence condition when there
are high uncertainty about the future state of a system. The models of this type were
thoroughly studied in [3, 4]. In this paper, the object of study is the vector autoregres-
sive model with Markov-switching states including exogenous variables (MS-VARX),
thus allowing a multivariate linear regressive model (MS-MLR) as its special case.

Let a complex system at time t is characterized by a random observation vector
defined on the probability space (Ω,F,P), where Ω — space of elementary objects
ω ∈ Ω; P — probability measure: P(A) = P{ω ∈ A}, A ∈ F. Let {Ω0, . . . ,ΩL−1}
– decomposition of Ω into a finite number of non-empty disjoint subsets, such that
Ωl ∈ F, P{Ωl} = P({ω ∈ Ωl}) > 0,

∪
l∈S(L) Ωl = Ω, S(L) = {0, . . . , L − 1}. These

subsets are the classes of states of a complex system, the number of which is L.
A random vector of observation yt = (x′t, z

′
t)

′ ∈ ℜn can be partitioned into sub-
sectors of endogenous variables xt = (xtj) ∈ ℜN and exogenous variables zt = (ztk) ∈
X ⊂ ℜM . It is assumed that, in general, the time series is described by a model
RS-VARX(p)(p ≥ 1):

xt =

p∑
i=1

Ad(t),ixt−i +Bd(t)zt + ηd(t)t, t = 1, . . . , T, (1)

where x1−p, . . . , x0 ∈ ℜN — the set of the given initial values; ηd(t),t ∈ ℜN — random
disturbances or innovation process; d(t) ∈ S(L) = {0, . . . , L− 1} — the class of state
number.
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Model (1) should satisfy with the following conditions:
M.1. Segmented-stationary condition: matrices Al,i(i = 1, . . . , p) satisfy with the

stationarity condition of VAR(p) model for each class of states l ∈ S(L).
M.2. Disturbance assumptions: Eηl,r = 0N ∈ ℜN ,E{ηl,rη′l,s} = δr,sΣl (r, s =

1, ..., T, l ∈ S(L)), where δr,s — the Kronecker delta.
M.3. Exogenous variables zt = (zt1, ..., ztM)′ ∈ X ⊆ ℜM are deterministic or sta-

tionary time series.
M.4. Structural heterogeneity conditions: Al ̸= Ak and (or) Bl ̸= Bk ∀k ̸= l, k, l ∈

S(L).
We consider a model with L (2 ≤ L < s + 1) classes of states, where s ≥ 1 —

number of state switching points 1 < τ1 < . . . < τs < T . Concerning the sequence of
states d(t) ≡ dt ∈ S(L) (t = 1, ..., T ) there are two types of assumptions:

d.1. dt (t = 1, ..., T ) — independent identically distributed random variables with
probability distribution P {dt = l} = πl > 0 (l ∈ S(L)) ,

∑
l∈S(L) πl = 1; P {dt = l} =

πl > 0 (l ∈ S(L)) ,
∑

l∈S(L) πl = 1;

d.2. dt (t = 1, ..., T ) — homogeneous ergodic Markov chain (GCM) with the dis-
tribution, which is determined by the vector of probability of the initial state π and a
matrix of one-step transition probabilities P :

π = (πl), πl = P {d1 = l} > 0 (l ∈ S(L)) ,
∑

l∈S(L)
πl = 1;

P = (pkl) , pkl = P {dt+1 = l| dt = k} ≥ 0,
∑

l∈S(L)
pkl = 1, k ∈ S(L).

Under the conditions of d.1 and d.2, we get the models IS-VARX and MS-VARX,
respectively. Model (1) allows for a number of special cases: a model of multivariate
linear regression RS-MLR, if p = 0, M ≥ 1 [4]; a model RS-VAR without exogenous
variables, if p > 0, M = 0 [2].

The true values of a model parameters {Al, Bl, Σl}(l ∈ S(L)), π, P and the mo-
ments of switching state {τi}(i = 1, ..., s) are unknown. There are a classified or a non-
classified sample of observations (X̄, Z̄) (X̄ = (xt) ∈ ℜNT , Z̄ = (zt) ∈ XT ⊆ ℜMT )
when a vector of states d̄ = (dt) ∈ ST (L) is known and unknown, respectively. We
presented two statistical classification algorithms for MS-VARX model in these cases:
an EM-algorithm for joint estimation of the parameters and the vector of states for a
non-classified sample and a discriminant analysis algorithm in the case of a classified
sample for classification of out-of-sample observations. To eliminate short-term fluctu-
ations of states arising from misclassification, we propose a statistical test based on a
pointwise classification decision rule. For IS-MLR and IS-VARX models the problems
mentioned are solved in [3, 4].
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2 Representations for the model parameter esti-

mates

Model (1) under the assumptions M.1–M.4, d.1 or d.2 can be represented in the re-
gression form

xt = Πd(t)ut + ηd(t),t, (2)

where Πd(t) = (Ad(t),1, . . . , Ad(t),p, Bd(t)) is the blockN×(pN+M)-matrix of parameters;
ut = (x′t−1, . . . , x

′
t−p, z

′
t)

′ ∈ ℜNp+M — the stacked vector of predetermined variables
formed from lagged endogenous and exogenous variables whose values are known at
time t.

In this case we use a sample of observations (X̄, Ū), where X̄ = (x′1, . . . , x
′
T )

′ ∈
ℜNT — the values of the endogenous variables, which correspond to the values Ū =

(u′1, . . . , u
′
T )

′ ∈ ℜNpT × XT ⊆ ℜ(Np+M)T of predefined exogenous variables. For the
model (2) we will also denote:

θl ∈ ℜm (m = N × (pN +M) +N (N + 1)/2 ) — stacked vector of the parameters
for the class l ∈ S(L) formed of independent elements of matrices {Πl, Σl} (l ∈ S(L));

ϕ ∈ ℜq (q = Lm+ (L− 1) (L+ 1)) — parameters of a mixture of distributions
including {θl} and π, P, ϕ̂ ∈ ℜq — statistical estimate of ϕ ∈ ℜq;

D = (d1, . . . , dT )
′ ∈ ST (L) — state vector for the period under observation;

γ̃l,t = P{dt = l|X̄, Ū ; ϕ̃} — posteriori probability of the class l ∈ S(L) at the
moment t;

ξ̃kl,t = P{dt+1 = l| dt = k; X̄, Ū ; ϕ̃} — posteriori probability of a transition from
class k ∈ S(L) to class l ∈ S(L) at the moment t (t = 1, . . . , T − 1).

For a joint estimation of all the parameters and the state vector an EM-algorithm
(Expectation-Maximization algorithm) is proposed. This algorithm belongs to the fam-
ily of Baum–Welch algorithms for splitting a mixture of multivariate distributions, con-
trolled by a hidden Markov chain [5]. In accordance with the general approach [4, 5],
we obtain an analytical representation for the estimated characteristics.

The representation for an estimate ϕ̂ ∈ ℜq is obtained by maximization of the
conditional expectation of the log-likelihood function for some given initial value ϕ̃ ∈
ℜq:

ϕ̂ = argmax
ϕ∈ℜq

Λ(ϕ, ϕ̃) = argmax
ϕ∈ℜq

Eϕ̃{l(ϕ; X̄, Ū ,D)|X̄, Ū ; ϕ̃}, (3)

l(ϕ; X̄, Ū ,D) = ln(πd1pX(x1;u1, θd1)) +
T∑
t=2

ln(pdt−1,dtpX(xt;ut, θdt)). (4)

Theorem 1. If the model (1), (2) satisfy the assumptions of M.1–M.4, d.2, then the
estimates {Π̂l, Σ̂l} (l ∈ S(L)), π̂, P̂ on a sample (X̄, Ū) are the solution of the problem
(3), (4) for the given vector of parameters ϕ̃ ∈ ℜq:

π̂l = γ̃l,1, p̂kl =
T∑
t=2

ξ̃kl,t

(
T∑
t=2

γ̃k,t−1

)−1

, Π̂l =
T∑
t=1

γ̃l,txtu
′
t

(
T∑
t=1

γ̃l,tutu
′
t

)−1

, (5)
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Σ̂l =
T∑
t=1

γ̃l,t(xt − Π̂lzt)(xt − Π̂lzt)
′

(
T∑
t=1

γ̃l,t

)−1

, (6)

where analytical representations for the posterior probabilities {γ̃l,t}, {ξ̃kl,t} are obtained
as specified above.

Corollary 1. Using the known block structure for the matrices Π̂l, we can get the
estimates {Âl,1, . . . , Âl,p, B̂l} (l ∈ S(L)).

3 Classification and testing procedure

Bayesian decision rules (BDR) of pointwise and groupwise classification of multivariate
observations described by IS-VARX model, have been proposed in [4]. In the case of
a Markov-switching model we propose a decision rule of groupwise classification based
on the dynamic programming approach described in [6].

Lemma 1. If the model (1), (2) satisfy the assumptions of M.1–M.3, d.2, and param-
eters ϕ ∈ ℜq are known, then a BDR of groupwise classification is determined by the
condition

D̂ ≡ D̂(X̄T
1 , Ū

T
1 ) = argmax

D∈ST (L)

l(ϕ; X̄T
1 , Ū

T
1 , D), (7)

where (X̄T
1 , Ū

T
1 ) (X̄

T
1 = (x′1, ..., x

′
T )

′ ∈ ℜNT , ŪT
1 = (u′1, ..., u

′
T )

′ ∈ ℜNpT × XMT ⊆
ℜ(Np+M)T ) is a sample of observations to be classified.

To solve the problem (7) with a help of a dynamic programming approach, we use a
special representation of the log-likelihood function l(ϕ; X̄, Ū ,D) through the Bellman
function [7].

Theorem 2. Under the conditions of Lemma 1, a BDR of groupwise classification of
sample (X̄T

1 , Ū
T
1 ) is implemented using dynamic programming method in accordance

with the following relationships:

d̂T = arg max
k∈S(L)

FT (k), d̂t = arg max
k∈S(L)

(
ft(k, d̂t+1) + Ft(k)

)
, t = T−1, T−2, ..., 1, (8)

F1(l) ≡ 0, Ft+1(l) = max
k∈S(L)

(ft(k, l) + Ft(k)) , l ∈ S(L), t = 1, ..., T − 1, (9)

where {Ft(k)} are Bellmans functions and {ft(k, l)} are determined by formula

ft(k, l) = δt,1 (ln πk + ln pX (x1; u1, θk)) + ln pkl + ln (xt+1; ut+1, θl) , (10)

δt1 — Kronecker symbol, t = 1, . . . , T − 1.

If {θ̂l} (l ∈ S(L)), π̂, P̂ are estimates of a model parameters, then using them in (9)
we obtain a consistent ”plug-in” decision rule. To find these estimates, it is advisable
to apply the EM-algorithm proposed here. The ”plug-in” BDR of group classification
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can be used to classify out-of-sample observations (xτ , uτ ) (τ = T +1, . . . , T +h), that
is, to forecast future states of a system.

We also suggest a procedure that allows to eliminate short-term (acyclic) fluctua-
tions in system states, which caused by errors of classification of the proposed decision
rules. It is based on application of algorithms implementing the Bayesian plug-in deci-
sion rule of pointwise classification and subsequent use of a statistical test for expected
probability of misclassification [8].
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Abstract

Presents the probability density and their properties for some stochastic mod-
els of short-term interest rates of yield, the authors previously proposed construc-
tively without probabilistic analysis of their properties.

1 Introduction

There are many different models of short-term interest rates of the class of diffusion
processes. Most of them are well documented by the authors, which offered them, or
those who use them for their studies. However, there is a set of models tend to be fairly
complex, probabilistic description of the properties which are absent in the literature.
It is they who are the subject of our consideration. The main problem that we are
interested is getting analytical expressions for the stationary probability densities and
its main moments. Some models, such as models Vasiek (1977), Cox - Ingersoll - Ross
(CIR) (1985), Duffie - Kan (1996), Ahn - Gao (1999), are well documented in the
literature, therefore are not described here and not mentioned in the list of references.
All considered models belong to the class of diffusion models, that generate processes
X(t), described by the equation

dX(t) = µ(X(t))dt+ σ(X(t))dW (t), t > t0, X(t0) = X0,

where a specific determination of drift µ(x) and volatility σ(x) defines one or another
particular model.

2 The Ait-Sahalia model [1]

Ait-Sahalia has tested the based models of short interest rates (including described
here) by fitting them to the actually time series of rates. It was found that an acceptable
level of goodness-of-fit all these rates were rejected because the drift and volatility
properties. As a result he proposed the following functions drift and diffusion

µ(r) = α0 + α1r + α2r
2 + α−1

1

r
, σ2(r) = β0 + β1r + β2r

2.

In this model, the non-linear functions of drift and diffusion allow a wide variety of
forms. To σ2(r) > 0 for any r, it is necessary that the diffusion function parameters
ensure the fulfilment of inequalities

β0 > 0, β2 > 0, γ2 ≡ 4β0β2 − β2
1 ≥ 0.
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Relevant in this function a probability density is given by expression

f(x) = NxB(β0 + β1x+ β2x
2)C−1eAx+Garctg(E+Fx), x > 0,

where N is normalization constant,

A =
2α2

β2
< 0, B =

2α−1

β0
> 0, C =

α1

β2
− α2β1

β2
2

− α−1

β0
,

G = 2

(
2α0 +

α2β
2
1

β2
2

− α1β1
β2

− 2α2β0
β2

− α−1β1
β0

)/
γ,

E = β1/γ, F = β2/γ.

Since the density f(x) at x → 0 has order O(xB), B > 0, and at x → ∞ its
order is O(xB+CeAx), A < 0, then for every finite m the moments E[Xm] are exist,
but their analytical expressions can not be obtained, and they can be calculated only
numerically.

3 The CKLS model [2]

In Chan - Karolyi - Longstaff - Sanders (CKLS) model it is assumed that µ(x) =
k(θ−x), σ2(x) = σ2x3. It turns out that a random process corresponding to this model
has a stationary density

f(x) =
n

x3
e−c(( θ

x
)2−2 theta

x
), x > 0,

where c = k
θσ2 , n is normalization constant. Note that such random process has only

the first stationary moment E[X] = θ.

4 The unrestricted model I [3]

In “unrestricted model I”

dr = (α1 + α2r + α3r
2)dt+

√
α4 + α5r + α6r3dW

are embedded some known models, that is, at a certain setting parameters {α} can get
any of these known models. Table of according in this case has the form

Stationary probability density “unrestricted I” process has the form

f(x) =
c(w)

σ2(x)
e
∫ x
w

2µ(u)

σ2(u)
du

=
c(w)

α4 + α5x+ α6x3
e

∫ x

w

2(α1 + α2u+ α3u
2)

α4 + α5u+ α6u3
du,

where c(w) is normalization constant, w is a fixed number from the set of possible
values of a random process, the specific value of which does not play some role.

To get the explicit form of expression for f(x) is possible, but it will be in general
case quite cumbersome, and we restrict ourselves to the case when the values of the
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Restrictions of parameters Model Equation of processes
α3 = α5 = α6 = 0 Vasicek dr = k(θ − r)dt+ σdW
α3 = α4 = α6 = 0 CIR dr = k(θ − r)dt+ σ

√
rdW

α3 = α6 = 0 Duffie - Kan dr = k(θ − r)dt+
√
α + βrdW

α1 = α4 = α5 = 0 Ahn - Gao dr = k(θ − r)rdt+ σr1.5dW
α3 = α4 = α5 = 0 CKLS dr = k(θ − r)dt+ σr1.5dW

parameters {α} provide performance properties of the probability density f(x). First,
we note that the volatility of the real process needs to be a real function, so σ2(r) =
α4+α5r+α6r

3 ≥ 0 for all values of r. At the same analytic properties of the probability
density depends on the type of the roots of equation α4 + α5r + α6r

3 = 0,α6 > 0. The
sign of the discriminant ∆ = ( α5

3α6
)3 + ( α4

2α6
)2 specifies the number of real and complex

roots of the equation. When ∆ > 0, there is one real and two complex conjugate roots.
When ∆ < 0, there are three different real roots. When ∆ = 0, real roots are multiples.

Let ∆ > 0 and the real root is r = r0, then we can write

α4 + α5r + α6r
3 = α6(r − r0)(r

2 + pr + q),

where r0, p and q are relatively sophisticated analytical expression and because of that
are not listed here. However, if α4 = 0, then r0 = 0, p = 0, q = α5

α6
. In this case, the

probability density is given by

f(x) =
c(w

α6x(x2 +
α5

α6
)
e

∫ x
w

2(α1+α2u+α3u
2)

α6u(u
2+

α5
α6

)
du

=

nx
2α1
α5

−1
(α6x

2 + α5)
α3
α6

−α1
α5

−1
e

2α2√
α5α6

arctg[x
√

α6
α5

]
,

where n is the normalization constant. For the existence of the probability density
its parameters must satisfy the inequalities: α1

α5
> 1, α3

α6
< 1. In order to at the same

time there exist stationary moments it is necessary for the expectation α3

α6
< 0, 5, for

variance α3

α6
< 0, for the third moment α3

α6
< −0, 5 and for the fourth moment α3

α6
< −1.

If ∆ < 0, denote the roots of the equation r0 > r1 > r2 so

α4 + α5r + α6r
3 = α6(r − r0)(r − r1)(r − r2).

Then the probability density is expressed in the form

f(x) = n
2∏

i=0

(x− ri)
−1+2(α1+α2ri+α3r2i )/α6

∏
j ̸=i(ri−rj). (9)

In this case must be performed the inequalities

2(α1 + α2r0 + α3r
2
0) > α6(r0 − r1)(r0 − r2), α3/α6 < 1.

For the existence of the m-th moment other than that necessary to perform the condi-
tions m

2
+ α3

α6
< 1. Unfortunately, the analytical expression of the normalization constant

n and moments E[rm] very cumbersome, they include hypergeometric functions. Under
these assumptions the process with such density has a bottom line equal to the largest
root, i.e. r(t) ≥ r0.
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Model γ E[X] V ar[X] Skewness Kurtosis

Vasicek 0 θ σ2

2k
0 3

CIR 0.5 q
c
= θ q

c2
= σ2θ

2k
2
√
q 3 + 6

q

Brennan - Schwartz 1.0 q
c
= θ θ2

c−1
4
√
c−1

c−2
3(c−1)(c+6)
(c−2)(c−3)

CKLS 1.5 q
c
= θ not exist not exist not exist

5 The unrestricted model II [2]

In the “unrestricted model II” process of short rate follows the equation

dr = k(θ − r)dt+ σrγdW, γ > 0. (1)

Therefore µ(x) = k(θ− x), σ2(x) = σ2x2γ and the stationary density f(x) has form

f(x) =
n

x2γ
e

1
x2γ

( qx
1−2γ

− cx2

2−2γ
), x > 0, (2)

where q = 2kθ
σ2 , c =

2k
σ2 , n is the normalization constant. Values of parameter γ, allow-

ing the convergence of the integral of f(x) on the interval (0,∞), determined by the
inequality γ > 0.5. At the same time, there are two critical points: γ = 0.5 (in this
case, the model is transformed into a short-term rate model CIR) and γ = 1, when
the probability density is reduced to form that corresponds to process of the Brennan
- Schwartz model [4]

f(x) =
q1+c

x2+cΓ(1 + c)
e−

q
x , x > 0.

When γ = 1.5, model “unrestrictions II” is known as the model CKLS. Vasicek model
is also a model embedded in the model “unrestrictions II” at γ = 0. For existence
of moments of order m, it is necessary the fulfilment of inequality 2γ > m + 1. Un-
fortunately, the expression for the probability density in general case does not allow
to calculate moments in analytical form, although for referred particular cases they
simply calculated. For the model CIR

E[Xm] = Γ(m+ q)/cmΓ(q);

for Brennan - Schwartz model

E[Xm] = qmΓ(1 + c−m)/Γ(1 + c),

the moments of order m exist if the inequality m < 1 + c is fulfilled. So that
Even before the appearance of the model “unrestrictions II” there were used models,

which then turned out to be special cases of this model. This is the model of the CIR
(1980) [5], which is obtained from the equation (1), if we assume that γ = 1.5 and
k = 0. Another particular version is the CEV model, i.e. model of constant elasticity
of variance that was proposed J. Cox and S. Ross (1976) [6], as in equation (1) made
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θ = 0. Properties of the processes generated by these models can be understood by
considering the limiting transition k → 0 in the first model or θ → 0 in the second.
When k and θ still finite the stationary regimes in the models exist and the probability
density of processes for these models is expressed in the form (2). However, in the
limiting case k = 0 or θ = 0 stationary regimes of processes no longer exist, and
the probability density can not be expressed in the form (2), and can be obtained as
solutions of partial differential equations

∂f(x, t|y, s)
∂t

− 1

2

∂2[σ2x3f(x, t|y, s)]
∂x2

= 0

for model CIR (1980) and

∂f(x, t|y, s)
∂t

+ β
∂[xf(x, t|y, s)]

∂x
− σ2

2

∂2[x2γf(x, t|y, s)]
∂x2

= 0

for model CEV at the boundary condition for both equations

lim
t→s

f(x, t|y, s) = δ(x− y).

Unfortunately, these equations can not be solved analytically, but we can say that for
k = 0 or θ = 0 the process generated by the equation (1) becomes unsteady for the
CIR model (1980) with the constant expectation and increasing with time variance,
and for model CEV changing with time both the expectation and the variance.

References

[1] Ahn D.-H., Gao B. (1999). A parametric nonlinear model of term structure dy-
namics. The Review of Financial Studies. Vol. 12(4), pp. 721–762.

[2] At-Sahalia Y. (1996). Testing continuous-time models of the spot interest rate.
Review of Financial Studies. Vol. 9(2), pp. 385–426.

[3] Brennan M.J., Schwartz E.S. (1979). A continuous time approach to the pricing
of bond. Journal of Banking and Finance. Vol. 3, pp. 135–155.

[4] Chan K.C., Karolyi G.A., Longstaff F.A., Sanders A.S. (1992). An empirical com-
parison of alternative models of the short-term interest rate. J. Finance. Vol. 47,
pp. 1209–1227.

[5] Cox J.C., Ingersoll J.E., Ross S.A. (1980). An analysis of variable rate loan con-
tracts.J. Finance. Vol. 35, pp. 389–403.

[6] Cox J.C., Ross S.A. (1976). The valuation of options for alternative stochastic
processes. J. Financial Economics. Vol. 3, pp. 145–166.

214



MINIMUM DISTANCE FROM POINT TO
LINEAR VARIETY IN EUCLIDEAN SPACE OF

THE TWO-DIMENSIONAL MATRICES

V. S. Mukha
Belarusian State University of Informatics and Radioelectronics

Minsk, BELARUS
e-mail: mukha@bsuir.by

Abstract

This work relates to the problem of linear approximation of multidimensional
statistical data. Instead of the approach of regression analysis, we want to use
another approach which is to minimize of the sum of the squares of the per-
pendicular distances from the system of points to the approximating plane. We
receive the formula of minimum distance from point to linear variety in Euclidean
space of the two-dimensional matrices as a first step in solving the problem.

1 Introduction

The approximation of statistical data by linear regression function minimizes the sum
of the squares of deviations between observations of endogenous variables and vari-
ables predicted by regression function [1, 3, 7]. The another approach is to minimize
of the sum of the squares of the perpendicular distances from the system of points
to the approximating plane. This approach was considered in works [2, 5], however
hasn’t got the wide illumination in statistical literature. We want to apply this ap-
proach to matrix statistical data. We solve the first part of this problem. We give
the formula of minimum distance from point to linear variety in Euclidean space of
the two-dimensional matrices. Unlike the works [2, 5] we receive a new independent
multidimensional-matrix solution of the problem.

2 Linear varieties in matrix arithmetical space

Let us denote R[n1n2] the linear space of (n1 × n2) -matrices with real elements and
operations of addition and multiplication on the real numbers and let us call it arith-
metical matrix linear space. Any element X ∈ R[n1n2] let us call a vector or point
in R[n1n2]. The system of vectors {X1, X2, ..., Xm} we will call linear dependent if
there are the real numbers α1, α2, ..., αm such that at least one of them not equal
zero and α1X1 + α2X2 + ... + αmXm = 0. If this equation is possible only when
α1 = 0, α2 = 0, ..., αm = 0, then system of vectors is called linear independent.

We define also the linear varieties in parametric form in R[n1n2]:

X = C0 + t1C1 + t2C2 + ...+ tn1n2−r1r2Cn1n2−r1r2 , (1)

where C0 = (ci1,i2,0) , C1 = (ci1,i2,1) , C2 = (ci1,i2,2) , , Cn1n2−r1r2 = (ci1,i2,n1n2−r1r2) , i1 =
1, n1 , i2 = 1, n2 , – linear independent (n1×n2) -matrices in R[n1n2], t1, t2, ..., tn1n2−r1r2
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– scalar real parameters. By analogy with vector space Rm we will call the variety
(1) (n1n2 − r1r2)-dimensional plane in R[n1n2], and matrices C1 , C2 , , Cn1n2−r1r2 –
direction matrices of this plane [6].

Relationship between r1 and r2 can by any in the framework of inequality 1 ≤
r1r2 ≤ n1n2, but more easy to interpretation is case when r1 = n1, 1 ≤ r2 ≤ n2.

For the case r1 = n1, 1 ≤ r2 ≤ n2 we receive a new form of linear variety (1). We
rewrite (1) in form

X = C0 +
0,2 (CT ), (2)

where

C = (ci1,i2,i′1,i′2) = ((ci1,i2)i′1,i′2) = (C̃i′1,i
′
2
), i1, i

′
1 = 1, n1, i2, i

′
2 = 1, n2 − r2, (3)

is four-dimensional matrix with sections C1 = C̃1,1 , C2 = C̃1,2, , Cn1n2−r1r2 =
C̃n1,(n2−r2), and T = (ti′1,i′2), i

′
1 = 1, n1, i

′
2 = 1, n2 − r2, – (n1 × (n2 − r2))-matrix, that

contains the parameters t1, t2, , tn1n2−n1r2 as its elements, 0,2(CT ) is (0, 2)-convolute
product of matrices C and T [4]. We present the matrices X , C0 in (2) in form of the
block matrices: X = [Xn2−r2 , Xr2 ] , C0 = [Cn2−r2,0, Cr2,0], where

Xn2−r2 = (xi1,i2), Cn2−r2,0 = (ci1,i2,0), i1 = 1, n1, i2 = 1, n2 − r2,

Xr2 = (xi1,i2), Cr2,0 = (ci1,i2,0), i1 = 1, n1, i2 = n2 − r2 + 1, n2.

The block Xn2−r2 is matrix, that contains the first n2 − r2 columns of matrix X, and
block Xr2 is matrix, that contains the last Xr2 columns of X. We present also the
matrix C in form of the block matrix C = {Cn2−r2 , Cr2}, and its blocks we define as
follows:

Cn2−r2 = (ci1,i2,i′1,i′2), i1, i
′
1 = 1, n1, i2, i

′
2 = 1, n2 − r2,

Cr2 = (ci1,i2,i′1,i′2), i1, i
′
1 = 1, n1, i2, i

′
2 = n2 − r2 + 1, n2.

Now we can write two equations instead of equation (2):{ Xn2−r2 = Cn2−r2,0 +
0,2 (Cn2−r2T ),

Xr2 = Cr2,0 +
0,2 (Cr2T ).

(4)

Because the matrices C1 , C2, , Cn1n2−r1r2 are linear independent, the matrix Cn2−r2 is
not singular, and we can get the matrix T from first equation of system (4):

T =0,2 (C
−1

n2−r2
(Xn2−r2 − Cn2−r2,0)),

where C
−1

n2−r2
is the (0, 2)-inverse matrix to the matrix Cn2−r2 . Substitution this solu-

tion to the second equation of system (4) gives

Xr2 = Cr2,0 +
0,2 (Cr2

0,2(C
−1

n2−r2
(Xn2−r2 − Cn2−r2,0))). (5)

The last expression shows that in the case of (n1n2−n1r2)-dimensional plane in R[n1n2]

the block Xr2 of the matrix X is linear expressed via its block Xn2−r2 . The expression
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(5) gives this dependence in explicit form for the second block Xr2 of matrix X. By
analogy with a vector space Rm we can call the variety (1) when n1n2 − n1r2 = 0
(r2 = n2 ) as point in R[n1n2]. When n1n2 − n1r2 = n1 (r2 = n2 − 1 ) the linear variety
(1) means that n2− 1 sections of matrix X (last its columns) linear depends on one its
section (first column). When n1n2 − n1r2 = n1(n2 − 1) (r2 = 1) the linear variety (1)
means that one its column (last column) linear depends on all previous its columns.

3 Distance from point to linear variety in Euclidean

space of the two-dimensional matrices

We denote E[n1n2] Euclidean space of the two-dimensional (n1 × n2)-matrices with the
scalar product

(X,Y ) =

n1∑
i1=1

n2∑
i2=1

xi1,i2yi1,i2 =
0,2 (XY ), X, Y ∈ E[n1n2]. (6)

We call orthogonal a vectors X and Y from E[n1n2], if (X, Y ) =0,2 (XY ) = 0, and we
call normalized a vector X ∈ E[n1n2], if (X,X) =0,2 (XX) = 1. We call orthonormal
the system of vectors X1, X2, ..., Xm ∈ E[n1n2], if this vectors are pairwise orthogonal
and each of them has single length, i.e. if

(Xi, Xj) =
0,2 (XiXj) = δi,j,

δi,j – the Kronecker symbol.
Let ξ = (ξi1,i2), i1 = 1, n1, i2 = 1, n2, – matrix from E[n1n2]. We formulate the

task of finding the minimum distance from point ξ ∈ E[n1n2] to linear variety (1). In
accordance with the scalar product (6) the square of distance is determined by formula

ρ2(ξ,X) =

n1∑
i1=1

n2∑
i2=1

(ξi1,i2 − xi1,i2)
2 =0,2 (ξ −X)2.

If we use in this formula the expression (2) for X, then we receive the optimization
task:

ρ2(ξ,X) =0,2 (ξ −X)2 =0,2 (ξ − C0 −0,2 (CT ))2 → min
T
. (7)

Now we go to the solving the task (7). We note, that we can write the variety (1)
in form

X = C0 +
0,2 (TCT1),

where CT1 is transposed matrix C in accordance with substitution T1 =

(
i, j, k, l
k, l, i, j

)
[4].

Then the task (7) get form

ρ2(ξ,X) =0,2 (ξ −X)2 =0,2 ((
o

ξ −0,2(TCT1))(
o

ξ −0,2(CT ))) → min
T
, (8)

217



where
o

ξ= ξ − C0. Because in (8)

ρ2(ξ,X) =0,2 (
o

ξ
o

ξ)− 20,2(0,2(
o

ξ C)T ) +0,2 (T 0,2(0,2(CT1C)T )), (9)

then necessary conditions for a minimum are next equation

d

dT
ρ2(ξ,X) = −20,2(

o

ξ C) + 20,2(0,2(CT1C)T ) = 0.

From this equation we get

T =0,2 (0,2(CT1C)−1 0,2(
o

ξ C)),

where 0,2(CT1C)−1 is matrix (0, 2)-inverse to the matrix 0,2(CT1C). If we substitute
this solution to the expression (9), then we get the square of minimum distance:

ρ2min(ξ,X) =0,2 (
o

ξ
o

ξ)−0,2 (
o
η 0,2(

o
η 0,2(CT1C)−1)), (10)

where
o
η=0,2 (CT1

o

ξ).

We have proved the following theorem.

Theorem 1. Let E[n1n2] is Euclidean space of the two-dimensional (n1 × n2)-matrices
with the scalar product (6) and ξ is point in E[n1n2]. The square of distance from point
ξ to the linear variety (2) in E[n1n2] is defined by expression (10).
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Abstract

This article presents the results of the analysis of regional socio-economic
development of Belarus based on calculated integral criterion. The membership
functions of fuzzy clusters of Belarus regions by this criterion were developed
and compared. The Cobb-Douglas production functions of Belarus region were
constructed and analyzed. The results of research can be used for regional socio-
economic prediction.

1 Introduction

The problems of evaluation and analysis of regional development are actual both in
Belarus and abroad. A lot of different valuation techniques of estimation were devel-
oped and proposed considering the complexity and diversity of the object. Among the
topic of research should be noted methodology of international assessment agencies in
Europe (for example, Eurostat [1]), Russian scholars O. Kuznetsova, A. Bakhtizin, do-
mestic rating agency under the supervision of prof. M. Kovalev, regional assessments
of V. Lyalikova and others. In this paper the evaluation and modeling is not made by
time series because their stationary is subject of doubt. Thats why its made by vari-
ation. The purpose of this paper is modeling of regional socio-economic development
of Belarus based on calculated integral criterion and fuzzy clusters of level of regional
development.

2 The fuzzy clusters of regional development

The theoretical basis of the modeling and analysis is the author’s technique of multi-
agent situation analysis. It allows to determine main factors of regional socio-economic
development and to develop a methodology for calculating the index, which charac-
terizes the impact of the local area at the result of socio-economic development of the
high region. Previous testing of this technique was carried out on the areas of Grodno
Region for the years 2008-2014 [4]. In this study calculations of this indicator of all
areas (118 cases) and the cities of regional subordination (10 cases) of the Republic
of Belarus in 2014 were carried out. The necessity of integral criterions calculating by
the author’s methodology is defined by the absence of a formal comprehensive index

1This work is supported by the TEMPUS project Fostering the Knowledge Triangle in Belarus,
Ukraine and Moldova (FKTBUM 543853-TEMPUS-1-2013-1-DE-TEMPUS-SMHES).
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of regional socio-economic development at local level. At the high level of regions this
indicator is gross regional product. The presence of an integrated indicator allowing to
assess the impact of various factors on the level of social and economic development [2].
The value of budget of the administrative-territorial unit, investments in fixed capital,
retail turnover of trade and net exports of goods and services in current prices were
summed for calculating the value of the integral criterion.

A lot of attention in regional economys research is given to inter-regional compar-
isons. In this regard, all local areas and cities of regional subordination of each region
were divided into 4 fuzzy clusters: very high, high, medium and low level of develop-
ment. Graphical representation of membership functions built on the example of Brest
region are given on the figure.

Figure 1: Graphical representation of the membership functions of local regions (of
Brest region) of fuzzy clusters of socio-economic development

The Construction of membership functions provides its mathematical representation
in the form of a piecewise-linear functions. For example, Brest regions membership
functions get following formula:

F1(x) =


1, x ∈ (0; 2200)

−0, 0006x+ 2, 213, x ∈ (2200; 3500)

0, x ∈ (3500;∞)

F2(x) =



0, x ∈ (0; 2200)

0, 0007x− 1, 396, x ∈ (2200; 3200)

1, x ∈ (3200; 4400)

−0, 0002x+ 2, 001, x ∈ (4400; 8500)

0, x ∈ (8500;∞)

F3(x) =



0, x ∈ (0; 4700)

0, 0003x− 1, 157, x ∈ (4700; 8550)

1, x ∈ (8550; 9450)

−0, 00008x+ 1, 719, x ∈ (9450; 22550)

0, x ∈ (22550;∞)

F4(x) =


0, x ∈ (0; 10000)

0, 00008x− 0, 833, x ∈ (10000; 22550)

0, x ∈ (22550;∞)

where Fi(x) - the value of membership functions of cluster i, x - calculated value of
gross regional product of local area.
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Assuming stability of the economy it will be possible to determine the membership
of the administrative-territorial unit to the particular cluster depending on the value
of the estimated gross regional product in the future.

3 The production functions of regional develop-

ment

The factor analysis revealed that the main factors affected to the level of socio-economic
development are population (or the number of employed in the economy, among which
the correlation coefficient is 0.99) and the value of investments. These factors may be
taken as the base of economic developments modeling with the Cobb-Douglas produc-
tion function. In general it can be represented by the formula:

Q = a0L
αKβ

where Q - gross regional product; a0 - factor which declare the level of technology
development; L and K - numerical expression of labor and capital resources; α and β
- characteristics of efficiency of resources using.

The model was linearized by taking the logarithm for assess the value of the regres-
sion coefficients. The method of least squares was used for models constructing. As a
result, we obtained the production functions for each area. The table below shows the
production functions coefficients.

Table 1: Coefficients of production functions of regions of Belarus.

Region a0 α β
Brest region 23,4022 0,7158 0,3754
Vitebsk region 39,9304 0,7377 0,2954
Gomel region 42,8437 0,8984 0,2329
Grodno region 31,0446 0,8724 0,2736
Minsk region 45,0027 0,9978 0,1625
Mogilev region 30,3998 0,5682 0,4237
Source: author’s own development.

The determination coefficient for all constructed models is above 0.9, and p-value
less than 0.001, the model is adequate. The free factor in all areas is quite close. In this
article the simplest model of the Cobb-Douglas was used. The free factor of the model
in the developed economic theory includes the level of technological development. Thus,
theres no significant difference in the level of technological development in regions of
the Republic of Belarus.

However the use of labor and capital factors in the production of gross regional
product has noticeable difference. The analysis showed that Minsk regions capital
flexibility is the lowest in the country, its much lower than the rate of labor flexibility.
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This means that most of the cash resources of the region is spent on salaries, rather than
to finance investment. This conclusion partly correspondes to the findings obtained by
K. Rudyj [3].

Theoretically the values of the coefficients are stable over time if there is not major
changes in the economy. In this case the models can be used for predicting social and
economic development of regions.

4 Conclusion

In the research the integral criterion that takes into account the costs of households and
the state, the value of businesss investments and net exports was proposed based on
the technique of multi-agent situational analysis of regional development. The values
of this criterion of all local areas and cities of regional subordination of the Republic
of Belarus in 2014 were calculated.

All areas of each region were divided into 4 fuzzy cluster: very high, high, medium
and low levels of development. In all regions, except Minsk, a cluster of very high
development represented by only one object - the regional center. Comparing of mem-
bership functions of low development cluster in all regions allowed determining that
Minsk and Brest regions are characterized by the development of higher and Vitebsk
and Mogilev significantly lower than republican level.

Identification of key factors of socio-economic development was taken into account
in the model of production functions of the gross regional product. We got that func-
tioning of the economy in the regions of Belarus is mostly laboriousness. This is
expressed by the fact that more than half of financial funds spent on salaries, rather
than on investments. Thus the higher level of the regional development leads to the
greater flexibleness of labor factor. This can be explained that the less developed
areas have lower level of innovation and investments can significantly increase the im-
pact of production and productivity. Highly developed areas need for this purpose the
breakthrough technologies, which have higher cost and complexity of implementation.
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Abstract

Multivariate econometric models with heterogeneous structure arise in eco-
nomic and financial processes influenced by exogenous shocks. If structural het-
erogeneity is driven by presence of several classes of states in modeled complex
systems, multivariate regime-switching econometric models is a choice. An as-
sumption of normally distributed errors, which is traditionally held for such mod-
els, is often violated on real data. Therefore it is actual to develop multivariate
regime-switching econometric models in presence of non-gaussian errors. In this
paper, a multivariate regression model with switching regimes and asymmetri-
cally distributed errors is proposed. A maximum likelihood approach is used to
estimate the parameters of the model.

1 The model

Let us introduce an independent-switching multivariate linear regression model with
errors distributed according to a class SNI [1] of asymmetric distributions, hereafter
the IS-MLR-SNI model. The relation between endogenous and exogenous variables in
the IS-MLR-SNI is expressed as follows:

xt = Bd(t)zt + ηd(t),t, t = 1, . . . , T, (1)

where for a period of time t: xt = (xt1, ..., xtN)
′ ∈ X, X ⊂ ℜN (N ≥ 1) — vector

of endogenous variables, zt = (zt1, ..., ztM)′ ∈ Z, Z ⊂ ℜM (M ≥ 1) — vector of
exogenous variables, d(t) ∈ S(L) = {1, ..., L} — a state of a system modeled, Bd(t) —
regression coefficients matrix with a dimension N×M , ηd(t),t ∈ ℜN — a random vector
of heterogeneous errors.

For the model (1) the following assumptions are used.
1. Assumptions about observation errors:
a) observation errors have zero means and are mutually uncorrelated:

E{ηd(t),t} = 0N , E{ηd(t),t(ηd(τ),τ )′} = 0M×N , t ̸= τ, (t, τ = 1, . . . , T ); (2)

b) observation errors have asymmetric distribution from a class SNI:

ηd(t),t ∼ SNIN(b∆d(t),Σd(t), λd(t), ν), t = 1, . . . , T, (3)

where SNIN(µ,Σ, λ, ν) — a class of multivariate asymmetric distributions [1] including
skewed normal distribution and skewed t-distribution. The distributions from the
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SNI class have the following parameters: µ ∈ ℜN – location parameter; Σ – scale
parameter, a covariance matrix with a dimension of N × N ; λ ∈ ℜN – skewness
parameter; H(u| ν) – mixing distribution with a parameter ν ∈ ℜmν (mν ≥ 1); Σd(t)

λd(t) – covariance matrix and skewness parameter for a state d(t) ∈ S(L); b∆d(t) –

parameter ensuring the condition E{ηd(t),t} = 0N , b = −K1

√
2/π , K1 = E{U−1/2|ν} –

expectation of U−1/2 , where the random variable U is distributed according to H(u|ν),
∆l = Σ

1/2
l δl, δl = λl/

√
1 + λ′lλl , l ∈ S(L).

2. Assumptions about the regime-switching model: the sequence of states following
discrete time and space process with the distribution

P {dt = l} = πl > 0 (l ∈ S(L)) ,
∑L

l=1
πl = 1, (4)

where parameters {πl} (l ∈ S(L)) correspond to prior probabilities of states.
3. Condition of structural parametric heterogeneity:

Bk ̸= Bl, k ̸= l, k, l ∈ S(L). (5)

4. Assumption about exogenous variables.
A vector of exogenous variables zt is fixed for all realizations {zt}, t = 1, . . . , T .
With assumption (3), the model IS-MLR-SNI may be represented in the form of

the mixture of distributions with the following density function:

p(xt|Θ; zt) =
∑L

l=1
πlsniN (xt|Blzt + b∆l,Σl, λl, ν), t = 1, . . . , T, (6)

where sniN (xt|Blzt + b∆l,Σl, λl, ν) — distribution density function for a random vec-
tor xt ∈ ℜN against parameters Θ and fixed vector zt ∈ ℜM .

For model (1) in assumptions (2)–(5), let Θ = (π1, . . . , πL−1, θ
′
1, . . . , θ

′
L)

′ ∈ ℜm

be the stacked vector of all independent parameters, where θl = (b′l, S
′
l, λ

′
l)
′ ∈ ℜK ,

bl = vec(Bl) denotes the vector of all elements of matrix Bl, Sl denotes the vector with
the elements of upper triangular matrix of Σl, ν ∈ ℜmν . Then the overall number of
parameters equals m = L− 1 + LK +mν , where K = NM +N(N + 1)/2 +N .

2 Parameter estimation

To estimate the parameters of the model, we use an approach based on maximizing
the likelihood function for the parameters Θ given a sample of regression observa-
tions {xt, zt}, t = 1, . . . , T . For derivation of the parameter estimates introduce the
parameterization:

∆l = Σ
1/2
l δl, Γl = Σ

1/2
l (IN − δlδ

′
l)Σ

1/2
l = Σl −∆l∆

′
l, l ∈ S(L) (7)

where δl = λl/
√
1 + λ′lλl , λl ∈ ℜN – skewness parameter for class l.

Let X = (x′1, . . . , x
′
T )

′ ∈ ℜTN – stacked vector of all endogenous variables’ real-
izations from the sample, Z = (z′1, . . . , z

′
T )

′ ∈ ℜTM – stacked vector of all exogenous
variables’ realizations; v = (v1, . . . , vT )

′, u = (u1, . . . , uT )
′ – vectors of all realizations of
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random variables Vt, Ut accordingly, where random variable Vt has the truncated uni-
variate normal distribution with mean b and variance u−1

t on the interval (0,∞) and
depends on realization ut of random variable Ut distributed according to the mixing
distribution H(u|ν), and αt = (αt1, . . . , αtL)

′ denotes the state indicator that has the
multinomial distribution M(1; π1, . . . , πL).

Define the following expectations:

ρtl = EΘ {αtl|xt, zt} , βtl = EΘ {αtlUt| xt, zt} ,
ξtl = EΘ {αtlUtVt| xt, zt} , ωtl = EΘ

{
αtlUtV

2
t | xt, zt

}
, t = 1, . . . , T, l ∈ S(L),

(8)

where αti, Vt, Ut – random variables, and the expectations (8) derived against fixed
vector of parameters Θ and regression observations xt, zt with the following formula [1]:

ρtl =
πlsniN (xt|Blzt + b∆l,Σl, λl, ν)∑L

j=1 πjsniN (xt|Bjzt + b∆j,Σj, λj, ν)
, t = 1, . . . , T, l ∈ S(L),

βtl = ρtlβ(xt, zt, θl), ξtl = ρtlξ(xt, zt, θl),

ωtl = ρtlω(xt, zt, θl), t = 1, . . . , T, l ∈ S(L),

(9)

where β(·), ξ(·), ω(·) are defined for basic distributions from SNI class as in [1].

Theorem 1. Let ρ̃tl, β̃tl, ξ̃tl, ω̃tl be conditional expectations (8) derived against fixed
vector of parameters Θ̃ and regression observations sample {xt, zt}, t = 1, . . . , T . Then
the maximum likelihood estimates of the parameters {πl, Bl,∆l,Γl}, l ∈ S(L) have the
following representation:

π̂l = 1/T
∑T

t
ρ̃tl, (10)

B̂l =
∑T

t=1

(
β̃tlxtz

′
t − ξ̃tl∆̃lz

′
t

)
/
(∑T

t=1
β̃tlztz

′
t

)−1

, (11)

∆̂l =
[∑T

t=1
ξ̃tl

(
xt − B̂lzt

)]
/
∑T

t=1
ω̃tl, (12)

Γ̂l =
(∑T

t=1
ρ̃tl

)−1∑T

t=1

{
β̃tl

(
xt − B̂lzt

)(
xt − B̂lzt

)′
+ ω̃tl∆̂l

(
∆̂l

)′
−

− ξ̃tl

[(
xt − B̂lzt

)(
∆̂l

)′
+ ∆̂l

(
xt − B̂lzt

)′]}
, l ∈ S(L).

(13)

To prove the theorem we follow the corresponding results from [1] considering den-
sity (6) from model (1) based on assumptions (2)–(5).

To recover the initial parameters λl, Σl the following formulae are used:

λl = (Γl +∆l∆
′
l)
−1/2

∆l/
[
1−∆′

l(Γl +∆l∆
′
l)
−1
∆l

]1/2
,

Σl = Γl +∆l∆
′
l, l ∈ S(L).

(14)
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3 Objectives of the study

Regime-switching models are widely used in such applications as macroeconomics (real
business cycles modeling), microeconomics (company credit risk modeling), financial
markets (modeling and analysis of cyclical changes on financial markets) [2]. The prob-
lem of cyclical changes analysis with a help of the models mentioned may be consid-
ered in a context of more general problem of structural breaks analysis [3]. Structural
breaks may be partial or full, that is parameters {Bl, Σl, λl, πl}, l ∈ S(L) of the
IS-MLR-SNI model may partially or fully distinguish across the states. The changes
in the parameters may take place in any period of time t = 1, . . . , T . A vector of states
d = (d1, . . . , dT )

′ is unobserved.
To estimate structural breaks, a classification based approach is proposed. There-

fore for the IS-MLR-SNI model (1) on the assumptions (2)–(5) we have the following
problems to solve: 1) estimation of the parameters Θ of the model and the vector of
states d = (d1, . . . , dT )

′ on unclassified sample of regression observations {xt, zt}, t =
1, . . . , T ; 2) classification of new observations {xτ , zτ}, τ = T+1, . . . , T+h (h ≥ 1) with
the model estimated on the train data sample of size T . Problems 1 and 2 are solved
with cluster and discriminant analysis algorithms respectively. For cluster analysis we
use Expectation-Maximization (EM) algorithm. Earlier these problems were solved
for multivariate regression models with switching regimes and normally distributed
errors [4]. In [5] algorithms for analysis of multivariate regression observations with
markov-switching regimes were presented.

In this study, for the solution of the problems an EM-type algorithm has been
developed for the model (1) on the assumptions (2)–(5). An experimental study of the
proposed algorithm is conducted on the simulated data.
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Abstract

The article is dedicated to the concepts and components of decision making
support system for the possibility of providing credit support to enterprise for
realization of investment project

1 Introduction

Currently in banks, consulting and financial companies are actual decision making sup-
port systems for the possibility of providing credit support to enterprises for realization
of investment projects. Analysis of the conclusions of solving this problem infer that
there is a possibility of building a computer system for automated building of conclu-
sions on the business plan of the investment project . It seems that such a system
should include the following components.

2 Information on the commercial organization

This section shall include: the abbreviated name of the organization (the project pro-
ponent); legal address; the current accounts and the name of the servicing bank; date of
the last registration of the organization; the amount of the statutory fund; ownership;
founder members; distribution of the statutory fund in shares; the average number of
persons; industry affiliation; main activities; primary suppliers, consumers, competi-
tors; position (market share) in the product market; special features of the technology
used; main types of products; Purpose and main characteristics of the product.

3 Key performance indicators of the company

Further table is formed on the main indicators of the company for the last two years,
with automatic calculation of the growth rate on the following parameters: the an-
nual production capacity by product type; average number of persons; proceeds from
realization of production; production and distribution costs; profit (loss) from sales
of the products; net profit (loss); profitability of products sold; the share of non-cash
payments in the revenue; the proportion of sales by markets: the domestic market,
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neighboring countries, the far abroad. According to the formed table the system pro-
duces analytical conclusions on prefabricated frames in variable parts which fit values
of the indicators and the conclusions: “more”, “above” or “less”, “better”, “worse”,
“growth”, “loss”, etc.

Filled frame system might look like this. In 2015 the company produced 7.1 thou-
sand tons of meat (including 3.7 thousand tons of beef and 3 thousand tons of pork),
which is 7.8% more than in the previous year; 4 tons of sausage products (101.2% in
2014); 1.7 thousand tons of meat products (40.6% more than in 2014). The Group’s
sales, excluding VAT was 8,474,600,000 rubles, the growth rate in 2014 — 114%. Net
working capital — 492.7 million rubles.

4 Balance sheet structure of the organization

There follows a balance sheet structure of the organization for the last two years with
also the indication of the proportion of this indicator in percentage to balance currency.
Based on these data, the system calculates growth (+) or reduction (−) in absolute
terms and growth rate in percent. The conclusions are based on these data and the
corresponding frames.

For example, in the structure of circulating assets the largest share (49% on 1.1.2014
and 54% on 1.1.2015 ) took the receivables. The amount of buyers and customers debts
to the company on 1.1.2015 is 3,212 million rubles, which 815 million rubles or 34%
more than at the beginning of 2014. The growth of receivables is connected with an
increase in the economic turnover of the enterprise: the turnover of receivables for the
period from 1.1.2014 to 1.1.2015 decreased from 30 days to 24 days.

During the period under consideration the amount of inventories and costs de-
creased: from 5 010 million rubles to 4 631 million rubles. The reduction took place
due to the reduction on 28% of the residues of production at the enterprise warehouses.
The turnover of finished products decreased from 17 to 9 days.

It should be noted that the negative aspect in the analysis of calculation was the
increase of the amount of receivables over the accounts payables more than 1.6 times,
that indicates the use of bank loans as a source of free resources for the debtors.

5 Analysis of solvency ratios

Name of the ratio 01.01.14 01.01.15 Standard
Current ratio 0.82 0.75 ≥ 1.7
Ratio of own current assets -0.30 -0.36 ≥ 0.3
Production ratio of financial liabilities assets 0.58 0.55 < 0.85

Current ratio characterizes the security of the enterprise’s own funds for business
activities and timely repayment of urgent liabilities. During the analyzed period (as
well as on 1.1.2015), the value of the current liquidity ratio was significantly lower than
the standard.

Ratio of own working capital was also lower than the standard.
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The value of the ratio of sufficiency of financial liabilities shows the independence
of the enterprise from borrowed funds. Thus, the structure of the balance sheet “En-
terprise” can be considered satisfactory, while the company is bankrupt.

6 Debt situation on credits and loans

Since January 2015, the companys debts on loans increased on 7368,3 million rubles
or 45.3%, including credits on the current activity, the debt increased on 48.4%, while
the debt on investment loans increased by 33.0%.

7 Information about the investment project

In this section, the following characteristics of the investment project are indicated
in tabular form: project goals and objectives; horizon of business plans calculation;
discount rate; currency; specific measures for implementation of the project with an
indication of their value, the alleged suppliers, contractors; total investment costs in-
cluding investment in fixed assets; VAT (value-added tax) on the amount of investment
in fixed assets; net working capital growth; duration of the project; terms of develop-
ment of capital expenditures; a period of performance producing on the scope of its
planned production capacity; sources of financing of investment expenses.

According to the formed table the system produces analytical conclusions, for ex-
ample on the following criteria: the conformity of investment costs volume to sources of
funding (investment expenses coverage ratio), the conformity of investments volumes
to reminder of the specific activities, the degree of readiness of the project to the date.

When calculating the effectiveness of the investment project the following indicators
are analyzed: net present value; internal rate of return; profitability index; discounted
pay-back period.

For example. Net present value shows the absolute value of net income, given to
the beginning of the project. During the period of the project (2008-2015) the amount
of remaining at the enterprise’s disposal of the net present value will be 1716,8 million
rubles.

Internal rate of return will be 13.9% for the under planned discount rate at a rate
of 12.68%. Profitability index characterizes the impact of the project on the money
invested in it. Effective are considered projects whose profitability index is greater
than 1. For this project, the profitability index is 1.15.

Simple payback period is 4 years 11 months. Discounted pay-back Period is 6 years
3 months.

8 Planned indicators of financial-economic activity

The indicators are analyzed in two ways: without taking into account the implementa-
tion of the project and taking into account its implementation. It requires a comparison
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of the main indicators on the options and the conclusion on the feasibility of the in-
vestment.

Sales revenue; sales revenues growth in relation to the base period,%; production
and distribution costs, production and distribution costs in relation to the base pe-
riod,%; semi-variable costs; growth of semi-variable costs in relation to the base pe-
riod,%; fixed costs; the growth of fixed costs in relation to the base period,%; net profit;
net income; debt service on credits and loans; cumulative balance (deficit) in cash; debt
coverage ratio; break-even position; profitability of invested capital; profitability of pro-
duction; profitability of sales; current ratio; size of working capital; a ratio of its own
working capital; a ratio of financial obligations to assets; capital structure ratio; the
share of short-term and long-term liabilities in the revenue; capital turnover period;
current assets turnover term; finished goods turnover term; receivables turnover term;
payables turnover term.

9 Updating the knowledge base and training deci-

sion making support system

In the process of working with the proposed system, there is a need to improve it by
making changes and additions. This process involves the collection of requirements
from the system user with further programmers realization for software changes. The
form for submission of such a requirement is a production rule.
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Abstract

The problem of European options calculation is considered. The recurrent
equations for the major characteristics are obtained.
Keywords: European option, absolute criteria, starting capital

1 Introduction

The problem of European options calculation is an important problem not only from
the practical point, but also for the theory. In this paper we consider a (B, S)-market [1]
and construct a sequence of recurrent equations for calculation of major characteristics
of European type options for a self-financing portfolio.

2 Main Result

Let Sn be the cost of a risky active unit at the time moment n. Suppose it follows the
model:

Sn = S0(1 + ρ1) . . . (1 + ρn),

where ρk, k = 1, . . . , n, are the interest rates with stochastic changes. Let Bn be the
cost of a non-risky active unit at the time moment n that depends on the random
variables ρ1, . . . , ρn−1 only. Denote by πn = (βn, γn) the portfolio at the time moment
n, where βn is the number of non-risky active units at the time moment n, γn is the
number of risky active units at the time moment n, n = 1, . . . , N ; N is the terminal
moment, at this moment the option is executed. Denote by fN the payment function
that depends on random variables ρ1, . . . , ρN only. In case of a standard purchase of
the European option, fN = (SN − K)+ are the losses of the option seller for a risky
active unit. Let K be the contract price for the purchase of a risky active unit at
the time moment N . The variables βn, γn are under prediction, and are supposed to
depend on ρ1, . . . , ρn−1 only. Let Xn = βnBn + γnSn be the portfolio cost at the time
moment n.

The problem of calculation of a European option is concentrated on the choice of the
starting capital X0 > 0 (the option cost) and the portfolio πn = (βn, γn), n = 1, . . . , N ,
so that XN − fN = 0 would be minimal.

In [2] – [4] the formulae to calculate the options with quadratic criteria are obtained.
In this paper we give the formula for calculation of options while minimizing

E{|XN − fN |}, the minimum is 0.
Let us denote: X̃n = Xn/Bn, S̃n = Sn/Bn, f̃n = fn/Bn.
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Theorem 1. For the self-financing portfolio πn = (βn, γn), n = 1, . . . , N , the values
X0, βn, γn are calculated recursively from the following equations:

E
{
|f̃n−1 + γn∆(S̃n)− f̃n|/ρ̄n−1

}
= min, (1)

for n ≤ N ;
βn = βn−1 − S̃n−1(γn − γn−1), X̃0 = f̃0, (2)

f̃n−1 = E{f̃n | ρ̄n−1} − γnE{∆(S̃n) | ρ̄n−1}, n = 1, . . . , N.

In (1) the expectation is taken conditionally w.r.t. ρ̄n−1 = (ρ1, . . . , ρn−1).

Proof. In case of a self-financing portfolio the value of Xn follows the law: Xn =

βnBn + γnSn = βn+1Bn + γn+1Sn. From it we get Xn+1

Bn+1
− Xn

Bn
= γn+1

(
Sn+1

Bn+1
− Sn

Bn

)
, or

∆

(
Xn

Bn

)
= γn∆

(
Sn

Bn

)
.

From here we obtain:
XN

BN

=
X0

B0

+
N∑

n=1

γn∆

(
Sn

Bn

.

)
(3)

From (3) we get X̃N − f̃N = X̃0 − f̃0 +
∑N

n=1

(
f̃n−1 + γn∆(S̃n)− f̃n

)
, where the

functions f̃n, n = 1, . . . , N − 1 that depend on ρ̄n, are chosen below.

Choose the values f̃n−1 and γn from relations (1). From (1), (2) we find f̃n, γn, βn
for n ≤ N . The value of X̃0 is set to f̃0. The values βn are found from (2) and the
portfolio cost at the time moment n.

In case where the random variables ρn take only two values for all n, equation (1) for
arbitrary probabilities of these values turn into two linear equations f̃n−1 + γn∆(S̃n)−
f̃n = 0 with f̃n−1 and γn unknown.
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Abstract

The article deals with approach to the construction of the gender and age
scales of real consumer expenditure. We propose a regression model for calcu-
lating the numerical values of the equivalence scale and information base for the
calculation. The results of testing technique are given.
Keywords: equivalence scale, consumer expenditure, household sample surveys,
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1 Introduction

The evaluation and comparison of household expenditure is necessary to solve the
problems of social and economic policy. The comparison of expenditure of various
groups of households basis reflect the economic stratification of society, including its
aspects, as the distribution of the population in terms of income and consumption, and
the boundaries of poverty.

Vast scientific and practical experience in the measurement of expenditure of house-
holds of different sizes and composition have accumulated abroad. The founder of this
direction is the German statistician E. Engel, who proposed a method of estimating
the welfare of households using such a statistical tool as the equivalence scale (see [1]).
E. Rothbart (see [2]), M. Orsha (see [3]), J. Nicholson (see [4]), A Atkinson (see [5])
and others continued studies. At present, the equivalence scales are an integral part
of the official methodology for poverty calculations and instrument of social policy. In
the Republic of Belarus is used an expert scale which does not reflect real differences
in consumption depending on gender and age.

2 Approach to the construction of the gender and

age scales of real consumer expenditure

The author proposed a regression model for calculating the numerical values of the
scale, where the resultant variable accepted consumption expenditure of the household,
as well as signs of factors are used the number of household members in each age and
gender group.

CE =
100∑
i=0

2∑
j=1

αijxij + ε, (1)
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where CE is consumption expenditure of the household (the total cost of food, the cost
of food outside the home, pet food, drink, tobacco, clothing, footwear, textiles, goods
cultural and household goods, fuels for home heating, utility costs, education services,
early childhood education, health care, the costs of public transport services and as-
sociated with the operation of personal transport, expenditure on culture, recreation
and sports, services, personal care items and other goods and services); i is the age of
household member (0-4 years, 5-9 years, 10-14 years, 15-19 years, 20-24 years, 25-29
years, 30-34 years, 35-39 years, 40-44 years, 45-49 years, 50-54 years, 55-59 years, 60-64
years, 65-69 years, 70-74 years, 75-79 years, 80+years); j is the gender of the household
member (1 - male, 2 - female); xij is the number of representatives of different gender
and age groups in the household.

Regression estimates are used to determine individual consumption expenditure for
each member i of the household j:

IEij =
αij∑
i,j αij

· CE, (2)

where IEij is individual consumption expenditure household member.
Technique of calculation is based on actual consumer expenditure of households and

takes into account the gender, the age structure and the size of the household.
The proposed model requires a combination of annual sample surveys files by mem-

bers of households and households in general. To this end, the annual data on the
members of households participated in the sample survey are grouped according to the
serial number of the household (table rows) and selected age groups (table columns)
to the layout depending on the gender. The data are transferred in the annual im-
age for households as a whole, where the variable is created CE (

∑
i∈I EXPENDi,

I = {1, . . . , 9, 11, 13, 14, 15, 21, 22, 23, 27, 28, 31, 32}).
The models are designed according to the household sample surveys, which include

more than 5000 households, combining more than 14000 members, it is quite a large
collection. Regression coefficients in the models are named number (rubles per person
at age x), which is shown as the average change consumer expenditure is changing the
age of the individual.

3 The results of testing technique

The author obtained estimates of age and gender ratios of consumption, taking into
account the effect of cohabitation on the basis of sample surveys of households in the
Republic of Belarus for 2008. The results give a non-significant regression coefficients
in the age groups of men and women to 14 years, since the equation takes into account
not only the age and composition, but also the number of members of the household.
It is logical that the majority of consumer expenditure in the household is related adult
persons. To obtain more reliable estimates of possible testing factors, specifying the age
groups for equality between itself and the union of these age categories. However, in
this study, the scale is calculated at five-year groups, which ensures equal age intervals.
Quality assessment parameters confirmed the normal distribution model residues.
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On the basis of the formula (2) regression estimates define individual consumer
expenditure household member and find the average consumer expenditure in each
gender and age group and population (see [6]).

4 Findings

The highest consumption rates in the household in both men and women of working
age are marked. In addition, the need for women’s consumption of almost all ages are
superior to the consumption needs of men, which may be due to the need of women
to spend more money on clothes, shoes, cosmetics. It is also no secret that women
make up the majority of visitors to exhibitions, theaters and sports clubs. Higher food
costs men in middle age are neutralized decrease in the proportion of expenditure on
food in total. As already noted coefficients of consumption of persons under 14 years
are underestimated. To overcome this drawback, in the framework of improving the
techniques necessary to assess consumer groups spending data of the population only
on set of households, having in its composition of this age, and refine the estimates
obtained.
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Abstract

The paper briefly describes the sampling methodology of micro-entities and
small enterprises, problems of introduction of the micro-entities sample survey
in practice of Belarusian official statistics. The sampling frame, sampling design
and precision estimation are considered.
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1 Introduction

In recent years, the growing number of small enterprises has motivated the development
of specialized methodology and software for micro-entities and small enterprises sample
surveys.

Since 2005 and until 2008 sample surveys of small enterprises spent quarterly. Sur-
vey objects were artificial persons of small business, i.e. SE. According to the legisla-
tion this was the organization with number of employees 100 persons and less. Sample
frame was the file of SE. The territorial one-stage stratified sample was used. But in
2008 quarter survey was cancelled. Due to this reason only annual continuous small
enterprises survey is conducted.

Nowadays, the National Statistical Committee of the Republic of Belarus together
with Department of Statistics (BSEU) makes the preparatory work on implementation
of the micro-entities and small enterprises sample surveys. In November 2014 a test
sample survey was conducted; since 2015 Micro-entities Sample Survey (MS) is pro-
vided on a regular basis. The first results of Micro-entities Sample Survey indicated the
appearance of significant organizational and methodological problems: non-responses,
the need for localization of the sample, the presence of atypical units, using a combi-
nation of statistical weighting methods, samples in small domains.

This paper on small business sampling has the next parts:

• history of development of branch sample surveys;

• small enterprises sample survey;

• micro-entities sampling frames that incorporate two files of economic units:
micro-entities and private farms;

• micro-entities sample design; territorial stratified univariate and multivariate
(multidimensional) samples are used. The algorithm to receive optimal sample
size for i-th kind of activity and j-th region is presented;
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• statistical weighting that includes three methods: traditional Horvitz-Thomson
estimator and calibration (GREG- and SYN-estimators).

2 History of development of branch sample surveys

In the conditions of command economy in the national statistics of Belarus, as well
as in other countries of FSU Region, a priority it was given to methods of continuous
survey with the exception of 3.5 thousand family budgets survey of workers, employees
and collective farmers. Then the two-level stratified sample was used: at the first step
the enterprises was selected within branches, than hired workers was selected. Such
principle of selection ensured wages data representativeness.

In consequence of disintegration of the USSR and occurrence of market relations
the economic situation has changed. Notably restrictions on individual labor activity
have been removed, the structure of sources of revenue has changed, the number of
small state and private enterprises has sharply increased in all economic branches. So,
the total number of the small enterprises (SE) in republic has came to 28310 in 2000,
33094 in 2005, 111792 in 2014. From each of them was inexpedient to demand of
statistic registration. Full coverage of population has become economically unjustified
and almost unrealizable. As a result process stage-by-stage introduction of enterprises
sampling in the practical statistics has begun:

1. 1997–2005 Theoretical workings out and pilot sample surveys (retail trade, ser-
vices, small business);

2. Since 2006 until now. Theoretical workings out and selection of the enterprises
on a regular basis (retail trade, small business, labor statistics).

At the first stage of introduction sampling in statistical practice (1997–2005) Statis-
tics research institute provided with methodology and software of branch survey of the
enterprises, based on using of group of methods of univariate selection: systematic
sampling, random selection without allocation, simple random sample, stratified sam-
ple with proportional and optimal allocation. Pilot surveys of SE in retail trade were
carried out in 1998–1999, survey of enterprises in services — in 2002, survey of small
enterprises in economic branches — in 2003. In 2005–2006 problems of building of mul-
tivariate sample are investigated, the first version of the program is developed, trial
multivariate samples of SE are spent.

At the second stage (since the end of 2006) researches of multivariate sampling
and improvement data extrapolation are hold on. State statistics began to carry out
quarter samples of SE in area of labor statistics on a regular basis. Since 2008 has
added sample surveys in retail trade and in catering. Special quarter sample surveys
of SE concerning employment and unemployment, and also personal subsidiary plots
is predicted. Since 2015 micro-entities sample survey spent early.

Despite such advantages of sample, as enough low expenses, efficiency of and high
reliability, statisticians was confronted with a number of problems:
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Non-responses. The population of micro- and small enterprises is extremely dy-
namical: the creation of new entities, liquidations, changes in kinds of activity and
size of the enterprises are taken place constantly. Sampling frame is based on the
data of the previous year of complete survey, and not responded enterprises can be
included into the sample (liquidated, changed the kind of activity or not presented the
questionnaire).

Atypical units (outliers), i.e. presence in the frame of atypical units, inclusion (or
not inclusion) of which in a sample strongly influences the estimates of parameters.
Atypical units are the units, which have extreme values of variables, large sample
weights, complex structure.

Samples in small domains. Construction samples of small enterprises by economic
activity and regions, in some cases is connected with partition of survey population
into the small groups and sample fractions become unacceptably high (50–60%). As a
consequence, possibilities of control an admissible sampling error are problematic.

Problems of compromise between the accuracy requirement for various groups
caused by stratification and restrictions on sample size.

Estimation. The problem of estimation still persists when the univariate stratified
sample with admissible standard error and sampling fraction is built. Weights, raising
factors allow to estimate precisely enough values of the parameter which was used for
sample selection, but other estimates which number can rich 10–30 are of a low quality.
In the case of multivariate sample, the error for some group of indicators will be in
admissible limits (to 10%), but will be considerably above comparing with the case of
univariate sample.

The problems of the software are caused by the complexity of mathematical appa-
ratus of sample survey and the necessity of integration of the sample survey programs
in the general system of collection and processing of statistical data.

Specific problems are met designing the multivariate sample (stratified by several
variables): complexity of a choice of an optimal way of multivariate selection, complex-
ity of a choice of a leading indicator (variable), technical difficulties of construction of
multivariate general population (over 500 units), absence of the standard estimation
methods.

The problems of non-responses and atypical units may be solved within traditional
univariate sample; the solution is connected with the change of general population
structure, allocation in separate files of atypical enterprises, use of weighting or re-
placement procedures. Multivariate sampling and different weighting schemes are used
to handle remaining problems, it allows to receive the samples of small size, which are
representative for many different parameters.

It is offered by the author to apply a combination of univariate and multivariate
sampling methods in order to receive representative small business samples [1–3].

3 Small enterprises sample surveys

Survey objects are artificial persons of small business, i.e. small enterprises. According
to the legislation this was the organization with number of the working from 100
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persons in industry and transport branches till 25–30 persons in services, nowadays —
100 persons and less. Sampling carried out at each regions and Minsk by branches. The
used sample design provides possibility of a choice to use a sampling method depending
on population, number and character of survey variables (the program “Multivariate
sampling”). It should be done several steps for searching optimal sample size for i-
th branch and j-th region: allocation of observed variables, applying multivariate or
univariate sample, selection is carried out by the cluster analysis.

Extrapolation of total value of variables on all population is carried out by tradi-
tional group raising factors (ratio of number of units in i-cluster of total population
and corresponding cluster of sample) and simple errors.

Sampling frame is 20-30% from all number of small enterprises. As to branch
sampling fraction is depending on number of SE and the degree of accuracy on a
leading variable: a relative sampling error on regions less than 2%, on branches less
than 5%, and on small branches less than 8–9%.

4 Micro-entities sampling frames and sample de-

sign

Sampling Frames are two files of economic units: 1) micro-entities, represented the
state statistical reports on the financial results for basic years (report 1-MP (micro));
2) set of the private farms. The first file is high — 80 thousands units, sample fraction
depends on a character of the initial information, namely: the size of total population,
kind of economic activity, region. The second array includes more than 2 thousands
farms; it is observed completely (sample fraction is 100%). Predicted non-responses
rate for republic is 12–13%, for regions — 6–12%, for Minsk is higher (18–20%). The
combination of univariate and multivariate (multidimensional) sample is used.

To receive optimal sample size for i-th kind of activity and j-th region the author
together with the colleagues-statisticians have developed the next algorithm:

1. The set of observed variables is allocated (for example, the wages fund, average
number of employees, volume of production, revenues, profitability). Average,
total values, variability of indicators are calculated.

2. Statistician chooses sampling method: univariate or multivariate. Univariate
stratified samples with simple, proportional and optimal allocation are most often
used.

3. It should be executed one of three conditions for applying multidimensional sam-
pling: variation coefficient is more than 100%; survey objects are non-uniform on
many variables; the small size of total population (top limit — 30–40 units). Oth-
erwise univariate sampling should be used: random selection without allocation,
simple random sample, proportional and optimal allocation.

4. It is expediently to use univariate stratified sample, total population is divided
by rather homogenous groups. Then different variants of the sample size are ex-
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ecuted (minimal is 0.05N , maximal is 0.08N). Predicted sample size is allocated
by received groups. The choice of an optimal sample size and optimal kind of
univariate stratified sample depends on a standard error. So, it (the minimal
error) is a main criteria of the determination of sample size.

5. It is expediently to use multidimensional sample, selection is carried out by cluster
analysis: total population is partitioned using cluster analysis (agglomerative
hierarchical, iterative method of k-means) on homogenous groups to k-variables,
i.e. clustering; in each received group the leading (basic) variable is determined
and subsequent random selection of units is performed.

Optimal sample population is chosen for each cluster, where standard errors of
k-variables are criteria of productivity. If the error exceeds admissible bounds, three
methods of its reduction may be applied: a) increasing sample population in cluster; b)
additional stratification of the enterprises in cluster to a leading variable; c) repetition
of clustering, but with larger number of steps, or using an iterative method with the
preliminary number of clusters r > 1.

Sample population is formed once in three-four years, i.e. fixed sample (yearly) is
used.

5 Statistical weighting

To extrapolate sample data on the total population traditional group raising factors
(weights) and standard errors have been used [2,3].

The methodology of weighting for univariate stratified sample is based on the as-
signment for each enterprise corresponding statistical weight (kijl):

kijl = Nijl/nijl, (1)

where kijl is individual weight for each enterprise of l-th group of i-th kind of activity
(3 digit for NACE) in j-th region; Nijl is the size of l-th group of i-th kind of activity
in j-th region in total population; nijl is the size of sample group; l is the number of
groups by observed variable value (l = 1, . . . ,m).

Individual weights are equal within each group of micro-entities, calculated by re-
gion, kind of activity, observed indicator (output, employees or others). Individual
weights, determined for multidimensional sample, are:

kijr = Nijr/nijr, kijrh = Nijrh/nijrh, (2)

where kijr is the weight of r-th cluster of enterprises; kijrh is the weight for h-th group
of r-th cluster; r is the number of clusters in i-th branch of j-th region (r = 1, . . . , α);
h is the number of groups in r-th cluster (h = 1, . . . , γ).

To improve the representativeness by region weighting procedure can be compli-
cated. It is possible to use GREG-estimators and calibration [2–4]. The results of
trial calculations testing the first version of methodological and software sampling
have shown that the main difficulties are associated with the use of different weighting
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schemes, necessary estimation of the whole variables, splitting of the same population
on the smaller groups, little subsamples. Sampling fraction — 10–15%. As to branch
sampling fraction is depending on the number of enterprises and the degree of accuracy
on a leading variable: a relative sampling error on regions less than 2–4%, on branches
(kinds of activity) less than 5–6%, and on small branches less than 8–12%.

6 Concluding remarks

The use of combination of univariate and multidimensional samples, different weight-
ing methods will provide very reliable information over larger number of variables:
employment, wages fund, revenues and others. However, standard errors, calculated
by separate indicators in the context of different kinds of activity at regional level are
rather high. To improve the representativeness by region weighting procedure can be
complicated by usage of auxiliary calibration estimators. Besides, it is important to
take into account the necessity of annual sample updating. The creation of new enti-
ties, liquidations, changes in kinds of activity and size of enterprises are taken place
constantly.
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Keywords: R&D intensity, innovative production, effective national innovation
system, domestic expenditure on technological innovation, investment climate

1 Introduction

In accordance to the Concept of National Security of the Republic of Belarus (see [1]),
scientific and technological safety of the country — a state of national scien-tific and
technological and educational potential. It is provided the possibility of implementing
the national interests of Belarus in the sphere of science and technology. Technolog-
ical evolution is the source of fundamentally new threats. It is provided previously
inaccessible possible negative impact on the individual, society and the state.

The basic element of the national innovation system is formed in the scientific and
technological sphere. Scientific, technological and innovative developments reoriented
to the specific needs of economic, social and other spheres, increasing their effectiveness.

Research and development intensity (R&D intensity) of GDP remains low and the
share of innovative production in total industrial production is so. An effective national
innovation system has not been created as a whole. An innovative infrastructure isn’t
developed, there is a high level of depreciation of equipment.

Internal sources of threats of the national security in the scientific and technological
sphere are:

• R&D intensity of GDP is below the critical level which is necessary for the re-
production of scientific and technological capacity;

• level of the innovation activity and the susceptibility of the Belarusian economy
are low;

• the national innovation system (including legislation, infrastructure, technology
transfer from science to manufacturing, material and technical base of scientific
institutions, the financing system, the industry science) is ineffective-ness.

The annual increase in GDP and knowledge-intensive approach will increase inno-
vative activity and the susceptibility of the Belarusian economy will streng-then the
industry and science.
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An effective system of incentives is established for the development of high-tech in-
dustries and of cross-flow mechanism of financial, human and material resources from
declining sectors of the economy in the long-term, comprehensive computerization of
the economy and society. It is ensured the formation of a qualitatively new techno-
logical order in the Belarus, the expansion of exports of high technology products, the
attract foreign investment and integration of national innovation system in the global
innovation system in the world.

2 Main results

Indicators of innovative capacity and the activity can identify the strengths and weak-
nesses of the innovative development of the country and its regions, to find the barriers
to innovation. The analysis of indicators can be used as management tools, economic
systems at different levels.

The level of R&D intensity of GDP is the general indicator which characterizes the
impact of scientific and innovative activity.

R&D intensity of GDP (on technological innovation) is calculated as the ratio of the
size of domestic expenditure on technological innovation in terms of GDP (CTI/GDP).

Multiplicative model was investigated. It identifies the factors which was influ-
enced the research intensity. It characterizes the relationship between the size of R&D
intensity of GDP (CTI/GDP) and science intensity of shipped innovative products
(CTI/IPS), share of shipped innovative products in shipped products (IPS/PS) and
share of products shipped to the GDP (PS/GDP):

CTI

GDP
=

CTI

IPS
· IPS
PS

· PS

GDP
, (1)

where CTI is the cost of technological innovation, GDP is a gross domestic product,
PS is the products shipped, IPS is the innovative products shipped.

Factors for solving the model are presented in Table 1 (source: own elaboration
based on data value from [2]).

Indicators, % 2005 2014 Growth rate, %
CTI/GPD 3.63 1.69 46.56
CTI/IPS 33.73 12.94 38.36
IPS/PS 15.20 17.85 117.43
PS/GDP 70.79 72.95 103.05

Table 1: Dynamics of GDP R&D intensity factors in Belarus in 2005-2014 years.

As can be seen from Table 1, the level of research intensity of GDP by technological
innovation has decreased by more than 2 times, from 3.63% to 1.69% for the period
from 2005 to 2014. In addition, the level of research intensity of shipped innovative
products has decreased from 33.73% to 12.94%.
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Reducing R&D intensity of GDP due to the fact that the rate of growth of domestic
spending levels on technological innovation, equal to 4.5 times, significantly lags behind
GDP growth and IPR, which are, respectively, 9.8 and 11.8 times.

At the same time there are significant differences in the level of research in-tensity of
gross regional product by regions. In 2014, the highest in comparison with the national
level of research intensity was recorded in Mogilev (5.7%), Vitebsk (3.8%) and Gomel
regions (3.2%). The rest of the research intensity level is lower than the national, and
the smallest — in the Grodno region (0.45%) [9, p.15].

The contribution of each factor in the model change in research intensity of GDP
in 2005–2014 is presented in Table 2.

Factors
Change in the research
intensity of GDP
by each factor, %

The share of production
growth at the expense
of each factor, %

High technology
of shipped innovative products

-2.71 -139.0

Share of shipped
innovative products
in the products shipped

0.65 33.3

Share of products
shipped in GDP

0.11 5.7

Total change
in research intensity of GDP

-1.95 -100.0

Table 2: Contribution of factors in the change of R&D intensity of GDP in the years
2005–2014.

As can be seen from the table, model factors have different effects on the direction
of change in the research intensity of the GDP.

Reduced-tech innovative products shipped by 20.8 percentage points had a strong
negative impact, the magnitude of this impact was 139% with a minus sign. However,
two other factors have had a positive effect, reducing the decrease in R&D intensity.

Namely, due to the growth level of the most important indicators of the im-pact of
scientific innovation, as the share of shipped innovative products shipped products (up
2.6 pp) research intensity of GDP has increased by 0.11 percentage points, which is
33.3% of its total change; and by increasing the share of prod-ucts shipped in the GDP
(2.1 percentage points) and an increase research intensity of GDP by 0.11 percentage
points, which corresponds to 5.7% of its total change.

3 Conclusion

The innovative new-technological structure, its formation and growth will deter-mine
the economic dynamics in the coming years. It is characterized by increasing instability,
causing the need to transform the economy. It is occurs in an envi-ronment where
information sphere is transformed into a system factor of society.
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To move businesses to a higher technological level of innovative activity, it is nec-
essary to make a quantitative leap in the volume of unit costs for technological inno-
vations. It will be contribute to the competitiveness of products and organizations in
the country.

According to the national strategy for sustainable socio-economic development in
2030 is expected to increase the share of domestic spending on research and devel-
opment in GDP (R&D intensity of GDP) to 2-2.5%. Index the share of innovative
products in the total volume of industrial production is one of the criteria for effective
use of scientific and technological capacity. It is forecasted at 28-30%.

It is necessary to ensure adequate funding of technological innovations carried out at
the enterprises upon reaching the competitive scientific groundwork. Currently, equity
in the enterprises in most cases is not enough.

Improving the investment climate in Belarus, required for the perception of inno-
vation and creation of high-tech jobs is a necessary step in ensuring the at-traction of
budgetary funds and investors to support and implement innovative projects.
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1 Introduction

Belarus commitment to and targeting at sustainable social and economic development
dictates the buildup of human potential impossible without gender equality in society
and economy.

Today, the importance of gender statistics reflecting the situation of men and women
has become ever more evident. Its improvement is of great importance, as in the same
socio-economic environment men and women have different needs and opportunities
and face different problems. The possibility and reliability of solving these problems,
development of an efficient national socio-economic policy (both at the national and
regional levels), public information, key managerial decision making, elimination of
existing gender stereotypes all depend on the scope and adequacy of statistical data.

2 The main indicators of gender statistics in the

Republic of Belarus

Official gender disaggregated statistics in the Republic of Belarus is developed on na-
tional and subnational levels in the following areas: analysis of natural population
movement and migration; education; labor and employment; health; crime study; pub-
lic administration; family relations; child protection.

Gender disaggregated data are an efficient and indispensable tool for research into
the causes and assessment of gender inequality in the country, reflection of existing
gender asymmetry, analysis of possible effects of gender problems, development and
introduction of necessary changes to the existing social and economic policy, etc.

Lack of statistical information on obstacles and difficulties faced by men and women
in Belarus is one of the reasons for inadequate study of many gender issues. First and
foremost, this is true for gender differentiation in wages, access to key resources, division
of household work and professional segregation. This indicates the need to extend the
national system of gender statistics indicators.
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In the Republic of Belarus, gender disaggregated data are generally collected and
processed by statistical authorities (based on results of population censuses, sample
surveys, current records, special surveys, etc.) and state administration bodies au-
thorized to maintain statistics on issues within their competence or competence of
their subordinate organizations (for example, the Ministry of Health of the Republic
of Belarus).

3 Statistical evaluation of the gender imbalance of

social development of the Republic of Belarus

More or less, gender segregation is present in the labor market of any coun-try. Ac-
curate assessment of this phenomenon requires a clear picture of its dynamics and
processes in the labor market and in society generally that contribute to increasing or
decreasing gender asymmetry in distribution of workers by sectors and occupations.

In this sphere gender-specific indicators include economically active population, fe-
male/male proportions by personnel categories, occupational groups, economic sectors,
education level, age groups, and gross average monthly wage for separate industries.

Also, gender disaggregated data on registered unemployment (by unemployment
time, education level, age, causes of dismissal, latest employment) are systematically
reflected, as well as age- and sector-specific statistics on proportion of employed in
hazardous industries and victims of industrial injuries. However, age-specific differen-
tiation in wages depending on education level is not monitored.

Of total employed population at the beginning of 2015, women accounted for 49.6%
(at the beginning of 1999 — 52.0%). As a result of reforms in the national economy,
the number of public sector workers decreased from 57% in 1999 to 39% in 2015.

In recent years, proportion of women in traditionally “female” sectors has been
increasing: in education — from 78.0% at the beginning of 1999 to 78.8% at the
beginning of 2015, in culture and arts — from 70.7% to 70.9%. Proportion of women
continues to be high in health care, physical culture and social welfare organizations
(83.0% at the beginning of 1999 and 82.4% at the beginning of 2015), trade and public
catering (75.9% and 66.5%).

At the same time, despite an insignificant reduction of proportion males continue to
predominate in the forest and transport sector (more than 70%). In the largest sector
— production — proportion of males increased from 50.8% at the beginning of 1999 to
58.6% at the beginning of 2015. A similar increase is observed in construction (from
76.6% to 84.0%).

In terms of personnel categories, as before men predominate in the total number of
blue-collar workers (more than 56%), and women - among white-collar workers (about
70%). In recent years, the number of women in executive positions has increased from
44.2% of the total number of white-collar workers at the beginning of 1999 to 47% at
the beginning of 2009.

Education level of women is generally higher than that of men, the situation being
the same over a long period of time. About 60% of working women have tertiary and
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secondary special education (about 40% of working men) (in 1999, 46.7% and 31.3%,
respectively).

It’s interesting to know, that in tertiary education there is a substantial gender
asymmetry. In accordance with the International Standard Classification of Education,
tertiary education includes specialized secondary education.

Women are more inclined to obtain complete general education and more often wish
to obtain higher professional qualifications. Over the past ten years, tertiary education
in the Republic of Belarus has become more feminized: at the beginning of 2015 females
accounted more than 57% of total student population as against 56.24% in 1999.

High education level is a competitive advantage in the labor market; however,
women face objective difficulties due to their greater involvement in child care.

In the Republic of Belarus, the right to equal remuneration for equal work for women
and men is envisaged in the current Constitution of the Republic of Belarus (Article
42) and Labor Code. However, wages of females are on average less than wages of
males. Gender-based difference in wages is usually explained by unequal distribution
of males and females by occupations and sectors (horizontal segregation), inequality in
wages within occupations and types of activity (vertical segregation), and the fact that
women usually hold posts with less remuneration. Wage disbalance to the disfavor of
women is in fact typical for all sectors. Thus, in December 2015, the ratio of female to
male average accrued wages was more than 70%.

The gender wage gap is largely due to gender specifics of employment. More women
than men are traditionally employed in economic sectors such as trade and public
catering, education, health care, physical culture and social welfare, culture and arts,
where wages are 7-30% less than average in the Republic, while in sectors such as
industry, construction, transport where wages are quite high there are much more men
than women.

It should also be mentioned that wages in the private sector are usually considerably
higher than in the public sector (in December 2009 — by 12.1%), while a considerable
number of women are employed in education and child care where state-run organiza-
tions prevail.

4 Conclusion

Analysis of gender issues in social and labor sphere makes it possible to identify mea-
sures that would help mitigate trends outlined above and identify key areas of socio-
economic policy that would reduce gender gaps in some indicators under review.
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In this direction there is identification of problems the effects of long-term
exposure of air pollutants on human health.
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The relevance of the statistical analysis of the environmental impact on the demo-
graphic processes in the context of the territories of Belarus is due, on the one hand,
the increase of anthropogenic load on the air, and all the more apparent relationship
of demographic and ecological processes, and on the other — insufficient development
of the mutual influence of ecological and demographic processes. The present study
is intended to fill the gaps in quantitative analysis in this area, to create a system
of indicators and models to describe and analyze the environmental characteristics in
relation to the demographic development of certain areas. Our study is a response to
the increased attention of all countries with developed market economies to environ-
mental issues, including a debate on the adoption of the Kyoto Protocol, as declared
by the international community of the Millennium goals for sustainable development.
The selected object - the state of the atmospheric air is vital to ensure the normal life
of the people, for the demographic reproduction, achieving the goals of economic and
social development.

The impact of environmental factors on human activity is a complex and multi-
faceted socio-economic process, which covers all aspects of society. This raises the
problem of assessing the changes in the environment and public health. For the said
task, you must use the aggregate, to absorb all information necessary to analyze the
influence of the environment on human health. Moreover, in practice there are different
variants of general indicators, making it difficult to achieve the goal.

To construct the integral index (regardless of the method of its calculation) you need
to define an initial set of features and the degree of influence of each of them on the
outcome. Included in the comprehensive indicator parameters and their weights should
be chosen so that the composite indicator best reflects the true picture of changes in
the environment and public health. Two different approaches to the solution of the
issue can be used.

The first way — is to use expert estimates. In this case it is necessary to collect a
large enough group of experts, each of whom will have to rank the proposed indicators
on him the degree of public health impact, based on his personal judgment. The
disadvantage of this method is the subjectivity of expert evaluations, so that the results
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do not reflect the actual situation and its representation, understanding of specific
people.

The second possible way to solve this problem— is the use of multivariate statistical
analysis. These methods allow us to determine the hidden, implicit laws objectively
existing in the study of social and economic processes, but not directly measurable.
The most promising in economic studies are a factor or component analysis. It enables
the reduction of extensive numerical material to several independent and simple factors.

The choice of system baselines largely determines the results of the analysis and
therefore is a very responsible stage of the study. In our study we propose to distinguish
four groups of indicators that describe the basic directions of changes in environmental
conditions impact on population health. The study examined the effect of 10 char-
acteristics of the environment on human health, and in the initial set of indicators
included in the Republic of Belarus for 15 years, from 2000 to 2014.

As a result of two factors were obtained:
the first factor (F1) — indicator of anthropogenic load on the environment;
the second (F2) — integral index of resources and development of society.
In the future, we assessed the relationship of the processes on the basis of the time

series (F1 and F2). Evaluation was performed using correlation analysis lag (Almon
method).

As a result it was found the presence of certain speakers depending on the values of
the factor F2 (building society development) on the dynamic changes of anthropogenic
load level on the environment (F1).

Selecting the maximum lag length and degree of the polynomial carried out em-
pirically. The proposed 3-year lag polynomial first degree possible to obtain cost-
interpretable model parameters, namely, the influence of one orientation of the time
factor on the exogenous variable. Model relationships of society’s development poten-
tial (F2) from the change of anthropogenic load on the environment (F1) is as follows:

F t
2 = −1.15F t

1 − 0.475F t−1
2 − 0.2F t−2

2 − 0.88F t−3
2 ,

R2 = 0.735, n = 12, Fcalculated(4, 8) = 5.548 > Ftabular = 3.838.

Relative regression coefficients in the model are:

β0 =
1.15

2.703
= 0.425 or 42.5%

β1 =
0.475

2.703
= 0.176 or 17.6%

β2 =
0.2

2.703
= 0.074 or 7.4%

β3 =
0.88

2.703
= 0.324 or 32.4%.

Thus, 42.5% (F1) general decline in society’s development potential (F2), due to the
increased anthropogenic load on the environment, there is in the current time; 17.6%
— at time t + 1; 7.4% — at the moment t + 2 and 32.4% of this decrease occurs at
time t+ 3.
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Average lag in this model is:

l̄ =
∑
j

jβj = 0 · 0.425 + 1 · 0.176 + 2 · 0.074 + 3 · 0.324 = 1.296.

On average, most of the effect of anthropogenic load growth on the natural en-
vironment manifests itself almost immediately (more precisely through 1,296 years)
on reducing the development of society. As a result of constructing distributed lag
model it was established and demonstrated statistically significant presence of feed-
back between the factors F1 and F2. It should be noted that 43% of the overall society
development potential (F2) in the current period due to increased anthropogenic load
on the environment (F1) in the same period. However, increased anthropogenic load on
the environment in the current period and has a deterrent nature of the impact, caus-
ing 32,4% of the overall society development potential reduction after only three years.
Given the dynamic relationship established as a result of the lag analysis, short-term
positive changes will not have a significant positive impact on the stabilization and
even more to improve the health of children conditional aged 0-14 years. In this case,
the stabilization of (maintaining the current level) of healthy children aged 0–14 years
is a long-term nature, as shaped by the degree of anthropogenic load both current and
previous periods.

Achieving sustainable improvement of healthy children aged 0–14 years, perhaps
through an annual sustained reduction of anthropogenic load on the environment by
increasing the level of dust and gas cleaning equipment manufacturing equipment;
activation and diffusion of energy- and resource-saving technologies; ensure environ-
mentally optimal spatial planning in the implementation of economic activities which
are harmful to the environment.

References

[1] Republics scientific-practical health center (2010). Health and the Environment
(2010). Sat. scientific. tr.. Minsk.

[2] Matkovskaya O. G. (2009). Technique of construction of integrated indicators of air
condition. Statistics of Ukraine. Vol. 2(45), pp. 12–17.

[3] Soshnikova L.A. (1999). Multivariate statistical analysis in economics. M.: UNITY-
DANA.

[4] National Statistical Committee of the Republic of Belarus (2015). Protection of the
environment in Belarus (2015): stat. sb.. Minsk.

[5] National Statistical Committee of the Republic of Belarus (2015). Statistical Year-
book (2015): stat. sb.. Minsk.

252



THE RELEVANT LEADING INDICATOR OF
MACROECONOMIC DYNAMICS

M. M. Novikov
Belarusian State Economic University

Minsk, BELARUS
e-mail: mm novikov@rambler.ru

Abstract

The dynamic cross-correlation-regressive model of gross internal product is
worked out on explaining to the variables consumer and investment functions of
gross internal profit. It is set that a gross internal receipt is a passing ahead
index, laying the ”waterway” of subsequent motion in time of physical volume of
GDP with the two-year passing, that allowed to get the expected values of gross
internal product with horizon of prediction on three years.

1 Introduction

Conditions of foreign economic activity are characterized by the mobility level and
the prices of exports and imports. Exporters, given the pricing situation on the world
markets, are trying to direct their export and import activities in the riverbed advanced
dynamics of export prices in comparison with prices of imports of goods and services.
If export prices rise faster than prices to import, it shows the improvement of foreign
trade conditions. In these circumstances, to pay a specified amount of imports requires
a smaller volume of export sales. A similar situation exists in conditions when the
prices for exports decline more slowly compared with the decrease in import prices.

2 Indicator description

The advanced dynamics of prices for exports of goods and services has a direct impact
on the balance of foreign trade and participates in the formation of gross domestic
product (GDP) by the final use method. While studying the dynamics of physical vol-
ume of GDP, its components are converted into constant prices by deflation (divide) to
the relevant indexes-deflators. As a result, the deflation thereby benefit from advanced
dynamics of export prices becomes negligible, while producers of goods and services in
such economic policies get increasing the benefits from its export-import activities.

The author constructed a macroeconomic indicator, sensitive to changes in condi-
tions on external markets. Multidirectional dynamics of prices on exports and imports
of goods and services reflected in the index of physical volume and dynamics of gross
domestic income (GNI). Gross domestic income as an analytical indicator contained
in the system of national accounts 2008 [3, p. 371-373). However he is not developed
in statistical practice of the Republic of Belarus .Meanwhile, in an open economy of
the Republic of Belarus its development becomes a high priority. GDP and GNI at
current market prices differ. The difference between them is detected due to the fact
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that the export-import balance as a component of physical volume indices of GNP and
GDP in different ways converted to constant prices. Because of this differ the only real
indicators physical volume of GDP and GNI.

In GDP balance indicator export and import activities is recalculated in the prices
of the base period using the two deflators. Exports at current prices deflated in the
export price index and import used when deflating the price index for imports of goods
and services. Thus, the export-import balance as a component of GDP physical volume
becomes meaningful expression of pure export-import product. Balance component of
gross domestic income is filled with economic content in the real volume of export and
import in net income [1, p. 52]. Calculation algorithm of this indicator is presented in
a single operation deflation: current export-import balance deflate to the standardized
deflator. In terms of advanced dynamics of export prices as the deflator standardized
should recognize the composite price index for imports. In the opposite case, the
standardized deflator will be the composite index of export prices. The difference
between the real net export-import revenue and net export-import product - volume
profit (losses) from changes in the terms of export and import activities. Real gross
domestic income is represented by the sum of GDP in the estimate by the method of
end use and the amount of profit (loss) from changes in the terms of export and import
activities.

3 Conclusion

As a result of a comparative assessment of the trajectories of the physical volume of
GDP and GNI for the economy of the Republic of Belarus in 2000-2013 was found
that the dynamics of real gross domestic income has outpaced the dynamics of gross
domestic product. The author developed a statistically significant autoregressive model
gross domestic income, then its explanatory variables the resulting regression equation
of the gross domestic product has predictive power for two time periods. Based on its
evaluations, the following conclusions are formulated.

First, it is analytically proven that in the dynamics of the gross domestic product
does not reflect the change of conditions of export-import activities.

Secondly, the change of conditions of export-import activities measured by the
indicators of volume of profit (loss). Thus the profit is formed under the influence of
strong performance in export prices of goods and services in comparison with dynamics
of the prices for import purchases. Otherwise, the image of losses.

Third, to change the terms of export and import activity is sensitive gross do-
mestic income (GNI). Common components of GDP and GNI are final consumption
expenditure and gross. The index of physical volume of WSC additionally describes
characteristics of the volume of profits (losses) from changes in the terms of export and
import activities.

Fourth, at the macroeconomic level, the generated indicators of volume and dynam-
ics of: a) gross domestic product b) gross domestic income of the Republic of Belarus
in 2000-2013 and methodological basis for the development of autoregressive models of
the 2nd and 3rd orders [2, p. 70-95] the regularities of their behavior in time.
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The close interaction between the dynamics of GDP and GNI.The indicator of gross
domestic income is a leading indicator that determines the subsequent change of the
physical volume of GDP lagged two years ahead of schedule. It is established that the
lead lag effect gross domestic income is determined by the duration of the period of
redistribution of profit from improved terms of export-import activities on consumption
and accumulation.

Property advanced dynamics of gross domestic income compared to dynamics of
GDP used to obtain expected values of GDP with the horizon of the prediction three
years. The predictive power of recommended models tested on actual data 2014. On
the predicted estimates of the likely growth of GDP in 2014 compared with the previous
year represented a growth rate equal to 0.7% when the actual rate of increase of 1.6%.
By the author’s estimation in 2015 is expected to reduce the physical volume of GDP
by 0.56 percent, and in 2016 - 1.5 percent. Gross domestic income, being expressed
in constant prices that represents the initial information base for the development of
indicators of the dynamics of real gross national income and gross disposable income.
As shown in the SNA 2008, the real gross national income is equal to the sum real gross
domestic income and net primary income from abroad in real terms. In turn, real gross
national disposable income is formed as the algebraic sum of real gross national income
and net current transfers from abroad [2, p. 372]. In this regard, formulated and solved
the question of the choice of the deflator index external traffic streams of income from
abroad and abroad.

According to accounts of external transactions with the rest of the world external
flows of primary incomes, current and capital transfers, foreign lending and borrowing
in the pure additive measurement in the form of a functionally balanced with a balance
indicator the external transactions of goods and services. Hence, a definite conclusion
as to the choice of the deflator index external traffic streams of income from abroad
and abroad. Assessment of balance indicators of primary incomes and current transfers
from abroad in constant prices as components of real gross national income and gross
disposable income can be accomplished by deflation of the respective external income
streams in a pure measurement on the same standardized deflator, which was used in
the assessment of profit (loss) from changes in the terms of export and import activities.

Thus, under changing conditions of foreign economic activity after real gross do-
mestic income real development of indicators of dynamics of gross national income and
gross disposable income for the study of macroeconomic dynamics becomes equally
relevant.
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Abstract

There is a statistical justification of the need of increase the retirement age in
the Republic of Belarus. In particular, through the use of exponential smoothing
procedure, was found a trend toward life expectancy improvement in Belarus.
Keywords: pension reform, life expectancy at birth, prediction

1 Introduction

In determining the retirement age take into account life expectancy and health status,
the economic situation in the country, the needs of society in the labor force, the ability
of the pension system perform its mandated functions. In general, low bound of the
retirement age is the precise point beyond which the performance of the average worker
is lowered so that the preservation of previous earnings is economically impractical or
require excessive effort and health costs. Of course, much of this depends on the age of
the changes in the human body caused by the aging process of an individual. Features
of aging individuals create obstacles in establishing the average age of retirement (later
retirement age), as researchers face a very heterogeneous set of statistics. Thus, one
group of persons qualitative changes in the condition of the body associated with aging,
already observed in the 45, and the other — only 70 years.

2 Factors determining the increase in the retire-

ment age in the Republic of Belarus

In the Republic of Belarus adopted by the Presidential Decree 137 ”On improvement
of pension” April 11, 2016. Until the end of 2016, the country will remain ”Soviet”
threshold of retirement: 55 years for women and 60 for men. From 1 January 2017 the
retirement age will increase annually for 6 months before reaching the age of men 63,
women — 58 years (see [1]).

The following facts should be noted as a prerequisite to increase the retirement age:
1) in Belarus since the 1930s. preserved rather low retirement age in comparison

with many countries in the world. Lower values are recorded only in the poorest
countries of Africa and the Pacific (Swaziland, Nigeria, Kiribati — 50 years for men
and women), the population of which is characterized by low levels of life expectancy
at birth;
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2) from 1990 to 2015, the ratio of the number of employed persons and the retirement
age, so significant for the PAYG pension system of the country, one of the principles
which the operation is a ”means of distribution of able-bodied citizens to the disabled,
from working to non-working” was reduced from 2.56 to 1.93;

3) for the 1993-2012 biennium percentage ratio of total public spending on pensions
and the gross domestic product increased from 5.8 to 8.4%;

4) part of the retirement age workers is continue working. Thus, in the period
between the censuses of population of Belarus 1999 and 2009 the level of employment
of the population in the age older than able to work rose from 9.1 to 12.9%, while the
share of employed persons of retirement age in the total employment — rose from 4.4
to 6%. According to census of population 2009, 12.7% of women of retirement age are
employed in the economy (according to the 1999 census — 7.7%).

3 Obstacles to increase the retirement age in the

Republic of Belarus

In Belarus there are ”contra” to raise the retirement age (increase in morbidity and
disability; possible increase in unemployment due to the significant and sudden increase
in the number of people of working age, the need for employment, ”the former senior
citizens”, their training and retraining, qualification and educational level and etc.).

Intercountry differentiation of retirement age values retired due to including the
differences in the levels of life expectancy at birth. In 2014, the value of this index
ranged from 45.6 years (Sierra Leone) to 83.6 years (Japan). In Belarus, the value of
life expectancy at birth is almost corresponds to the world average. For the 1958-2014
biennium the value of this indicator in the country has increased by 2.9 years, and
in 2014 was 73.2 years. Although a certain gap from the levels of life expectancy in
some countries (Switzerland — 82.6 years, Italy — 82.4 years, Canada — 81.5 years,
Germany — 80.7 years, and others.), 2002 (point minimum - 68 years) in the Republic
of Belarus has been a fairly stable positive dynamics of this value. So, for the 2002-2014
biennium. it increased to 5.2 years in an absolute, or 7.6% in relative terms.

There is an of interest in calculation promising levels of life expectancy at birth in
Belarus. For these purposes it can be used a model based on the use of exponential
smoothing procedure. As a general rule, using the method of least squares on the first
point of the time series are estimated values of linear trend model parameters to zero
time (see [2]).

As a starting point of the calculations are the parameters of a linear trend, which
was built according to the in 2002-2006. In accordance with the results forecast for
the 2015-2017 biennium. in Belarus by the end of the period of anticipation value of
life expectancy at birth will reach 74.4 years, which should be regarded as a positive
development in the field of health and longevity of the population. The average relative
error of approximation was 4.5%, which indicates the high quality of the model.
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4 Conclusion

The aging of the population — an objective, natural and long-term process that is
associated with the development of society. Therefore, as far as strengthening the
position of the Belarusian economy and further improve people’s living standards is
quite expect western script development process of demographic aging, based on the
increase in life expectancy at older ages. The proof of this assumption is the outlined
Belarus increase in life expectancy, which is in line with the forecast for the future will
continue. Therefore, using the advocacy role of such statistical indicators as the ratio
of old-age dependency ratio, the average age of the population, the ratio of number of
employees and retirees, the percentage of spending on pensions and GDP and others,
should always inform the public about the necessity and inevitability of the measure.
In the information society to achieve this goal it is advisable to use traditional and
electronic media, the Internet.
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Abstract

The article deals with possible approaches to the construction of
environmental-economic accounting of the national system using a variety of
methodological approaches. We consider two systems of environmental-economic
accounting: SEEA and NAMEA. Comparative characteristic is given.
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1 Introduction

In modern conditions of managing the exploitation of natural resources should be
carried out within the framework of long-term preservation of environment concepts
for the needs of the person. Based on this reflection process involving natural resources
in economic activity also must undergo a very significant change.

The traditional system of national accounts (SNA) does not have the necessary
methodological tools and analytical capabilities for the valuation of the total volume
of consumption and stocks of natural assets, environmental protection industries and
sectors of the economy. This article describes the basic principles of the national en-
vironmental accounting, the advantages and disadvantages of existing systems and
proposed approaches to the integration of environmental factors in the statistics. Be-
fore you begin to develop a national system of environmental-economic accounting, it
is necessary, in our view a detailed analysis of options offered by international organi-
zations, to assess their strengths, weaknesses, labor and cost of implementation. You
should start with the simplest options that do not require any additional large-scale
statistical observations.

2 Approaches to Environmental-Economic Ac-

counting

Between 1970 and 1995 a number of approaches to the accounting involved natural
resources and to the evaluation of environmental damage have been developed. In
particular it has been proposed two approaches to the construction of environmental
accounts to account for the natural assets on the one hand payment of so-called “green

1The System of Environmental-Economic Accounting
2National Accounting Matrix including Environmental Accounts
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national income” and on the other hand the construction of “physical accounts” for
certain types of natural resources.

Dutch economist Roofie Hurting was probably the first to propose the measure
“sustainable national income” (SNI), which should be fully taken into account the
consumption of natural resources by deducting from the gross national income of the
amount of damage to the environment. Proponents of “green national income” offered
to give each of its natural resource valuation, monetization damage. Dutch economist
Stephen King and his colleague de Haan of Statistics Netherlands (CBS) offered to link
economic performance to damage to the environment, but measured in physical units,
that is, to develop a hybrid system of accounting, which will be connected to the cost
parameters and physical quantities.

Consequently, the development of national statistical methodology in the direction
of its greening can go two ways. You can develop a hybrid system of environmental-
economic accounting, which along with the traditional accounts of the SNA will be
built satellite accounts for each type of natural resources in physical terms. This
option is available in the Central bases SEEA, adopted in 2012, the UN Statistical
Commission as an international statistical standard [1]. The basis for the develop-
ment of natural assets in the SEEA are accounts SNA non-financial assets, which also
include non-produced and natural assets. SEEA provides the above SNA account in
part in aggregate form and partly in a disaggregated form. Disaggregation helps iden-
tify environmental protection measures to prevent or attenuate the deterioration of
environmental quality or reducing the damage caused by environmental degradation.

As for non-financial assets, it is proposed to further disaggregate data on stocks
and changes in the volume of natural assets to improve and extend the registration of
consumption of natural resources in the production process, taking into account changes
in the value of natural assets under the influence of production and consumption.

On the accounting principles damage builds another hybrid accounting system —
National accounting matrix including environmental accounts (NANEA), developed by
Dutch researchers [2]. It uses economic indicators, measured in monetary units, and
linked to their environmental indicators presented in physical units. According to the
developers of the system, to get a clear understanding of the relationship between the
natural environment and the economy, it is necessary to use a physical representation
of environmental resources in order to avoid the problems of valuation and revaluation.

The basic idea is to expand NANEA traditional national accounting SNA due to
two additional accounts. The developers of this system offer to keep records on key
environmental areas: the greenhouse effect; depletion of the ozone layer of the earth;
Soil oxidation; waste, discharge of polluted wastewater and others.

Second additional expense to the environment by such substances as carbon dioxide
or sulfur dioxide, in which these substances should be expressed in physical quantities
(kilotons, tons, etc.). We can say that NAMEA create the summary indicators for
the environmental issues, which are considered the most relevant at the international
level. This system is based on a set of tables that provide an overview of relevant
relationships between accounts and data streams on environmental change [2]. The
indicators in this table characterize the contribution of each activity in the economic
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performance and environmental burden as a percentage. The tables gives an idea
about the total rejection of pollution per unit of final demand for specific activities
in relation to the average for all industries. Development of this type of table is the
complexity of data sources, according to the method of calculation of indicators for
individual environmental themes (destruction of the ozone layer, the greenhouse effect,
eutrophication).

3 Comparative characteristics of the two systems of

integrated environmental and economic account-

ing

In fact, NAME has much in common with the SEEA. Both systems are similar to the
format used by the accounting matrices. However, there are some differences:

1. The SEEA focuses on expanding the standard accounts of assets due account
of environmental assets such as water, air and others. In contrast, NAMEA
starts with expansion to a full national accounting system to account polluting
substances and environmental topics.

2. NAMEA does not involve calculation of environmentally adjusted ’green’ GDP,
as it makes SEEA.

3. NAMEA links pollutants c environmental themes (for example, the destruction
of the ozone layer), and the SEEA system does not contain such an aggregation.

4. NAME system can be used for analytical applications based on Leontief model.
It can be used to determine the amount of pollution induced by one unit of final
demand for each type of activity. This type of accounting is unfortunately not
provided for in the SEEA system.

5. SEEA methodology allows for the degradation of natural resources as consump-
tion of fixed capital in the traditional SNA. This is not provided for in the
NAMEA system.

It can be concluded that NAMEA is a multipurpose information system that is able
to generate information for the public and governments about the status of environmen-
tal assets and environmental pollution. The choice of environmental problems depends
on political decisions, rather than on the decisions of scientists. This is the reason why
the NAMEA of different countries are different3. Without a doubt, it would be useful
to standardize sets of pollutants and the list of environmental topics for all countries,

3British NAMEA contains 15 environmental substances and only 3 environmental issues (Vaze
1999), Japan has 16 agents and 6 environmental themes (IKE 1999), the German has 8 pollutants
and 2 environmental issues (Tjahjadi, Schaefer, Radermacher & Hoh 1999) and Swedish NAMEA are
5 pollutants (Hellsten, Ribacke & Wickbom 1999).
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since environmental problems are global in nature. NAMEA is a tool for the integra-
tion of environmental concerns and combines environmental data with the economic
data of the main SNA accounts. There is no specific economic constraints to select a
specific nationally adapted version NAMEA. Developers are free to decide which en-
vironmental themes and some substances that may pollute the environment should be
controlled to solve environmental problems. In addition NAMEA provide data in the
required format for all kinds of in-depth environmental and economic analysis.

4 Findings

Any of the above systems can begin to put into practice the work of statistical bodies
of the Republic of Belarus, but first need to select priorities in environmental-economic
accounting, identify the most important environmental issues, the integration of all
available information on the state of the environment, stocks and consumption of nat-
ural assets within unified statistical methodology aimed at the greening of macroeco-
nomic indicators and assessment of sustainable development. It is possible to start with
the development of water resources and forests accounts in physical units on the SEEA
methodology, parallel to the table to develop a relationship of economic performance
and contamination by NAMEA sample.
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Abstract

The article gives a theoretical and economic substantiation category of “re-
gional competitive advantages”. The essence and the novelty lies in the posi-
tioning of the author’s determination not only as a definition of the theory of
competition, but also as an object of statistics. The proposed interpretation
of the category within the statistical science to allow formal assessment of the
impact nationwide, industry and regional incentives for growth of industrial ac-
tivities on the dynamics of the major indicators of the territories.
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1 Introduction

Scarcity of resources in the regional industrial complex provokes the infusion of the
republican and local budgets, which induces dependency in industrial business. Such
a path of economic development should be recognized as a dead end because of its
inefficiency.

Today more than ever, it became clear that the modernization of industrial en-
terprises is not just the replacement of fixed assets and a reduction in the number of
redundant employees. The transformation of the regional industrial complex, in-first
— is the conversion based on the philosophy of innovation of industrial activity in the
synthesis of the development of entrepreneurial competence of senior management.

In this respect, on the part of economic science and the business community with
an interest in the quantification of the contribution of competitive advantages in the
dynamics of the key indicators of industrial production regions. Therefore, the search
and evaluation of the statistical regularities of influence of regional competitive advan-
tages in key indicators of the economic development of the region are now extremely
relevant.

2 The system attributes (criteria) statistical mea-

surement “regional competitive advantages” cat-

egory

The statistics are no methodological development of the assessment of regional compet-
itive advantages. Not the theoretical substantiation categories of regional competitive
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advantages of industrial activity, which complicates the process of analytical reasoning
to assess its impact on the dynamics of the key indicators.

The author of the study highlighted a set of properties inherent theoretical mean-
ingful economic interpretation of the definition of regional competitive advantages.
The generalization of these properties allows to uniquely identify the competitive ad-
vantages of regional development category of industrial activity in the framework of
statistical science.

Learning the term is relatively new to economics. Domestic and foreign researchers
carried out an analysis of this category in relation to the competitiveness of the term.

The basis of competition and competitiveness theory was laid in the work [1] A.
Smith. According to the scientist, the country exported goods, the production of which
has an absolute advantage. Later, Ricardo Smith improved teaching and developed the
theory of comparative costs. According to this theory, the country benefits from trade
in goods, the production of which have a higher relative efficiency.

The greatest recognition in the modern world received theory of competition Ameri-
can economist Michael Porter [2]. At the heart of Porter’s teachings [2] is the concept of
“value chain”. Underneath scientist understands a set of interrelated activities, which
allows you to create value (cost) for the end customer (consumer). Porter’s value chain
in companies of one branch may vary. These differences, in his opinion, arise due to
variations in the company’s strategy, buying groups, the organization’s history, geo-
graphical location, etc. A comparison of the value chains of competitors brings out
their differences, the underlying competitive advantages.

Symptom of comparison allows you to compare competitors in the same market,
ie to relate the subjects of competition involved a uniform industrial production. The
grouping of statistical data of economic entities on the criterion of homogeneity of their
products is made possible by using statistical classifiers.

From 1 January 2011, statistical surveys practice in the Republic of Belarus started
using “General Classification of Economic Activities”. According to the new classifier
economic activity of the country divided by economic activity. Thus under economic
activity is meant a process where material resources, equipment, labor and technology
are combined in such a way that it produces a similar set of outputs.

Using the modern classification of activities, allows you to group objects of statisti-
cal observation in terms of homogeneity of products. Research category “competitive
advantage” in relation to industrial production should be carried out by directly com-
parable products. Relatively high security of the territory of a particular resource may
have a positive impact on some economic activities and to be neutral in relation to the
other. Therefore, analysis of regional competitive advantages of industrial activities is
made possible by using the classifier.

Theory L. N. Chainikova [3] reveal the dynamism of the property. The use of this
property in the statistical description of the key category will take into account the
volatile nature of the outcome of competitive action.

Belarusian scientist A. S. Golovachev [4] emphasizes the importance of the effec-
tiveness of the control of local authorities in addressing the problems of regional com-
petitiveness. Increased levels of competitiveness of the territorial entities it connects
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with the creation and management of the competitive advantages of the region. In
this context it reveals another property “regional competitive advantages” category
— conditioning. Symptom conditionality will allow competition to compare entities
engaged homogeneous production, based on the impact of their activities, caused by
scientific and technological innovation and transformation.

It is proposed to supplement the three identified properties that should be reflected
in the definition of the category, another — the target determination. It will allow
to characterize the key study object with the subject position estimates and the main
purpose of the meeting.

National statistical offices form the necessary information support to national and
regional authorities in order to make timely management decisions on the economic
development of the country as a whole and its separate territories.

The role of statistical science in the knowledge of the socio-economic processes
and phenomena is determined by the subject of its study. Statistics as a science
studying the massive socio-economic processes and identify regularities inherent in
them. Therefore, the regional competitive advantages in the context of the statistical
interpretation is necessary to present a quantitative assessment of the development
of industrial activities areas. The ability to quantify factors “regional competitive
advantages” will assess its impact on the dynamics of the major indicators of industrial
production in the region as a source of growth of the industry and the country as a
whole.

Under the regional competitive advantages of industrial activity in the statistical
science are invited to understand the comparative assessment of the dynamics of quan-
titative and qualitative indicators that determine economic growth of industrial activity
of the administrative-territorial unit in comparison with the country as a whole (with
the maximum of the observed values of other units / reference value).

The theoretical justification of the category “regional competitive advantages” al-
lows mathematically formalized system of algorithms for the isolation of republican,
branch and regional incentives in the region of the key indicators of industrial activity
in the region. In the framework developed by stimulating the region’s industrializa-
tion initiatives put multilevel target setting regional economic development industry:
macro-level targets, industry and mezo-level targets (regional competitive advantages).

According to the author, republic-wide incentives for industrial activity growth in
the region is a projection macro-level targets economic development areas. Macro-
level targets regional development involves stimulating the growth of efficiency and
competitiveness of industrial activities in the region through regulatory and legislative
activity, subsidies and others. A formal expression of republican stimulus industrial
activity development in the regions proposed to express the volume index of the key
criterion of the study in the industry of the country.

The main purpose of the regional branch of industry growth is the formation of a
competitive innovative industrial complex. One way to designated targets proposed
definition of points of growth, the development of promising economic activities. The
mathematical description of the industry factor is represented by the degree of lead
(lag) of the dynamics of the physical volume of the key criteria for the type of industrial
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activity to the same indicator for the country’s industry as a whole.
Achieving targets meso-level intended to increase the intensity of use and (or) to

create a new regional competitive advantages for the development of industrial activi-
ties in the areas of the Republic of Belarus. Impact of regional competitive advantages
in key criterion for the study proposed to estimate the degree of lead (lag) of the dy-
namics of the key criterion of activity in the region compared to its dynamics in a
similar type of industry in the country as a whole.

3 Conclusion

Based on the properties of the system, substantially inherent in the concept of “regional
competitive advantages” (comparative, agility, conditioning, target determinism, the
ability to quantitatively measure), in statistical science categories formulated its defi-
nition.

Theoretically grounded and mathematically formalized system of analytical algo-
rithms isolation of republican, branch and regional industrial development incentives
for key indicators of the region’s industrial activities in the region.
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Abstract

This paper contains development of methods and algorithms of image recog-
nition for mineral rocks. It is described algorithms of the cluster and morpho-
logical analysis for definition of rocks composition on colors and shapes. This
approach is explained by the fact of the possible presence of objects with similar
color-brightness characteristics, but with different shapes and there are objects
with similar color-brightness characteristics also. Preliminary definition of group
membership allows reducing the computational complexity of classification. It is
determined the sorting into groups according to color of the object at the stage
of segmentation. It is described and discussed the example using multivariate
analysis for mineral rocks recognition.

1 Introduction

Minerals are homogeneous in composition and structure of the rocks and ores. They are
natural chemical compounds resulting from various geological processes. Historically
minerals initially determined by color and shape [1].

The development of computer vision system for mineral rocks is discussed in offered
work in order to assess the qualitative composition of mineral rocks, in particular some
problems of a technique and image recognition technology.

2 Materials and Methods

2.1 Methods of Identification of Mineral Rocks Images

Let us consider a sample of anode copper slag as an example (Figure 1. Micrographs
of this sample were kindly provided by Eastern Research Institute of Mining and Met-
allurgy of Non-ferrous Metals (Kazakhstan, Ust-Kamenogorsk).

According to experts on microscopy of minerals from Eastern Research Institute
of Mining and Metallurgy of Non-ferrous Metals at this picture there is no minerals
having dependent on the direction of the plane of polarization of light. In this picture
you can detect metallic copper and the following minerals: cuprite Cu2O, magnetite
Fe3O4, Delafosse CuFeO2, silicate glass.
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Figure 1: Micrograph of a sample of slag copper anode, increasing in 500 times.

Cuprite Cu2O can be identified as follows: it is characterized by the shape of a round
shape, color - it is light gray (sometimes with a slight bluish tint). Fe3O4 magnetite
on micrographs may also be detected by color and shape. Color of magnetite on
micrographs is dark gray. Shape is angular, as expressed by technologists, “octahedral”.

Delafossite CuFeO2 micrographs can allocate to the needle shape and gray (with
a brownish tint) color.

Metallic copper on the micrographs can be found on the following criteria: color -
yellow, shape - round, without flat faces.

Silicate glass - is a dark gray mass fills the rest of the space that is left of the
other minerals. These data indicate that for real micrographs slag samples (and some
other minerals) it is possible to use automated qualitative assessment of the mineral
composition. After receiving the full image it is often needed to treat it, mainly to
simplify further analysis.

2.2 Methods of Cluster Analysis for Mineral Rocks Images

Clustering - is the automatic partitioning of a set of elements into groups according to
their similarity. Elements of the set can be anything, for example, data or character-
istics vectors. Themselves groups are also called clusters [2].

In our case, using algorithms of cluster analysis will be the identification of ore
minerals by color and texture characteristics of color-coded minerals identified in images
taken in reflected light using a microscope [3].

In general, the K-means method segments the image on K different clusters (areas)
located far away from each other based on certain criteria [4].

Segmentation method “K-means” is implemented through a two-step algorithm that
minimizes the sum of distances “point-to-centroid” obtained by summing over all K
clusters. Another words, the purpose of the algorithm is to minimize variability within
clusters and maximize variability between clusters [5].

The purpose of cluster analysis - to implement such a partition of the n-dimensional
feature space for k-clusters, in which the length between centroids of the resulting
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clusters would be greatest, it is shown in the expression (1).

di,j → max, (1)

where di,j is the distance between centroids of i-th and j-th clusters, i, j = 0, . . . , k.
In this case, the most appropriate method of solving the problem of clustering is

classic algorithm of unsupervised learning - a method of k-means (k-means method).
Clustering incrementally in this case is as follows:

1. Lets specifie the number of clusters K, you want to find.

2. It is randomly selectedK vectors ′ from the set of vectors in selected space. These
vectors are centroids of the clusters on the initial calculation stage.

3. Lets calculate the distance from each vector space used to each of the obtained
centroids in step 2. It can be used metric (2)-(3) to determine the distance.

D(x,y)k =

√√√√ n∑
p=1

(P p
x,y − P p

k )
2, (2)

D(x,y)k =
n∑

p=1

|(P p
x,y − P p

k )|, (3)

where:

• (x, y) – coordinates of the observation,

• k ∈ [1, K] - cluster index,

• n – dimensionality of the used feature space,

• p ∈ [1, n] – index of the feature observations.

4. Than we determine the centroid of the cluster to which the distance from the
observation is the smallest. This cluster matched the observation.

5. Going through all available vectors we can recalculate centroids for each resulting
cluster according (4).

P ′n(x,y)k =
1

S(k)

Sk∑
s=1

(P n
(x,y)s), (4)

where:

• k - cluster index,

• S(k) – number of observations related to the cluster index k,

• s - indexes of the observations,

• P ′n
k - new value n-th feature of centroid cluster k.
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6. Iterative process stops on steps 3-5 when the process of centroids changes stops
or centroids will be fluctuate around some stable values. If the step of centroids
change reaches a predetermined value it is possible to stop iterations.

Algorithm of the program can provide additional information after completion of the
segmentation such as:

• a sum of distances “point-to-centroid”;

• coordinates of centroid as well as some other data.

Algorithm of K-method can converge to a local optimum, when the separation
points move any point to another cluster it increases the resultant sum of the distances.
This problem can be solved only by a reasonable (successful) choice of initial points [7].

2.3 Methods of the Morphological Analysis of Mineral Shapes

Identification of the classification parameters is one of the primary task in pattern
recognition [6].

It is offered the following description of the basic model of the object on the basis
of morphological features (5–8):

M = ⟨C,F,G⟩, (5)

C = ⟨H,Sc, V ⟩, (6)

F = ⟨A⟩, (7)

G = ⟨S, β⟩, (8)

where:

• C - cortege of metrics color of the object;

• F – cortege of morphological metrics of the object;

• G – geometrical metrics of the object;

• H - tone, Sc - saturation; V - value;

• A - number of allocated erosion circles;

• S - area of the object , β - the ratio of the long axis to the short one.

Proposed formalized description is focused on the entire spectrum of morphologically
recognizable object parameters.
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3 Results and Discussion

Nowadays developed automated image recognition system for assessing the qualitative
composition of mineral rocks consists of 7 main subsystems [3]:

1. Research and getting micrograph rock.

2. Input and identification micrograph rock.

3. Pre-processing: improving the quality.

4. Definition of image reduction threshold [8].

5. Select the feature vector for cluster analysis.

6. Cluster analysis of color image to determine the mineralogical composition of
rocks.

7. Morphological analysis of mineral shape to determine the mineralogical compo-
sition of rocks.

Each cluster includes a certain number of points. Given the ratio of the number of
points allocated in each cluster with a number of common points can be displayed
relative rates of minerals in rock samples. Various minerals marked in different colors.
In this case, the metallic copper is red, magnetite - blue cuprite - orange. The result
of the segmentation is shown in Figure 2.

Figure 2: DFD - diagram decomposition subsystem “The result of cluster analysis”.

Considered sample has the following content of useful elements:

• Magnetite - 28.45%;

• Metallic copper - 18.45%;

• Cuprite - 7.92%.
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4 Conclusion

In this article we have considered the development of segmentation algorithms for
solving tasks of geological material analysis. We have proposed two different methods
of ensuring the stability of results, based on pre-selection of centroids according to a
few established principles in order to increase the stability of the segmentation pattern.
The method of single-component searching consists of preliminary segmentation of the
image based on a single variable vector. Every cluster has to get a matching segment
assigned to it after the stage of segmentation. We have taken the average of every
component of given variable space inside the assigned segment as initial values of
the centroids. The basis of another method includes defining a point situated inside
clusters defined by variables in N-dimensional space. We have proposed non-uniform
partition of analyzed variable space followed by selection of initial values of centroids
with maximum difference of color brightness characteristics in order to ensure stability.
The program complex has been written in the language C# Visual Studio 2015. It was
developed for results of research checking.
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Abstract

Generalized linear mixed models (GLMM) are addressed for inference and
prediction in a wide range of different applications providing a powerful scien-
tific tool for the researchers and analysts coming from different fields. At the
same time more sources of data are becoming available introducing a variety of
hypothetical explanatory variables for these models to be considered. Estimation
of posterior model probabilities and selection of an optimal model is thus becom-
ing crucial. We suggest a novel mode jumping MCMC procedure for Bayesian
model averaging and model selection in GLMM.

1 Introduction

In this paper we study variable selection in generalized linear mixed models (GLMM)
addressed in the Bayesian setting. These models allow to carry out detailed modeling
in terms of both linking reasonably chosen responses and explanatory variables via
a proper link function and incorporating the unexplained variability and dependence
structure between the observations via random effects. Being one of the most powerful
modeling tools in modern statistical science GLMM models have proven to be efficient
in numerous applications from banking to astrophysics and genetics [2, 3]. The pos-
terior distribution of the models can be viewed as a relevant measure for the model
evidence, based on the observed data. The number of models to select from is expo-
nential in the number of candidate variables, moreover the search space in this context
is often extremely non-concave. Hence efficient search algorithms have to be adopted
for evaluating the posterior distribution of models within a reasonable amount of time.
In this paper we introduce efficient mode jumping MCMC algorithms for calculating
and maximizing posterior probabilities of the GLMM models.

2 The generalized linear mixed regression model

Generalized linear mixed models consist of a response Yt coming from the exponential
family distribution, a vector of P variables Xti for observations t ∈ {1, ..., T} and latent
indicators γi ∈ {0, 1}, i ∈ {1, ..., P} defining if variable Xti is included into the model
(γi = 1) or not (γi = 0). We are also addressing the unexplained variability of the
responses and the correlation structure between them through random effects δt with
a specified parametric and sparse covariance matrix structure. Conditioning on the
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random effect we model the dependence of the responses on the explanatory variables
via a proper link function g(·):

Yt|µt ∼ f(y|µt), g(µt) = β0 +
∑P

i=1 γiβiXti + δt, δ = (δ1, ..., δT ) ∼ NT (0,Σb) .

Here βi ∈ R, i ∈ {0, ..., P}, are regression coefficients showing in which way variables
influence the linear predictor and Σb = Σb (ψ) ∈ RT × RT is the covariance structure
of the random effect. We then put relevant priors for the parameters of the model in
order to make a fully Bayesian inference:

γi ∼ Binom(1, q), βi|γi ∼ 1(γi = 1)N(µβ, σ
2
β), ψ ∼ φ(ψ),

where q is the prior probability of including a covariate into the model.
Let γ = (γ1, ...γP ), which uniquely defines a specific model. Then there are 2P

different fixed models in the space of models Ωγ. We would like to find a set of the
best models of this sort with respect to a certain model selection criterion - namely
marginal posterior model probabilities (PMP) - p(γ|y), where y is the observed data.
For the class of models addressed marginal likelihoods (MLIK) - p(y|γ) are obtained by
the INLA approach [5]. Then PMP can be found using Bayes formula and estimated
by iterating through the reasonable set of models V in the space of models Ωγ.

p(γ|y) = p(y|γ)p(γ)∑
γ′∈Ωγ

p(y|γ ′)p(γ ′)
≈ 1(γ ∈ V)p(y|γ)p(γ)∑

γ′∈V p(y|γ ′)p(γ ′)
. (1)

In (1) only models with high MLIK give significant contributions and thus iterating
through them when constructing V is vital. The problem seems to be pretty challeng-
ing, because of both the cardinality of the discrete space Ωγ growing exponentially fast
with respect to the number of variables and the fact that Ωγ is multimodal in terms
of MLIK. Furthermore, the modes are often sparsely located [3]. [3] also report and
discuss properties of the obtained in (1) estimator.

3 Mode jumping MCMC

In the MCMC approach as described by [4], Metropolis-Hastings algorithms are ad-
dressed as a class of methods for drawing from a complicated target distribution. [6]
describes high potential flexibility in choices of proposals by means of generating ad-
ditional auxiliary states allowing cases where the proposal densities are not directly
available. The auxiliary states can be chains generated by some local optimizers
chosen randomly from a mixture and allowing for jumps to alternative modes. [6]
shows that the detailed balance equations is satisfied for this general case. Assume
the current state to be γ ∼ π(γ). Generate (χ∗,γ∗) ∼ q(χ∗,γ∗|γ) and consider
χ|γ,χ∗,γ∗ ∼ h(χ|γ,χ∗,γ∗) as some auxiliary variables for some arbitrary chosen
h(·|·). Accept γ ′ = γ∗ with the following acceptance probability

rm(χ,γ;χ
∗,γ∗) = min

{
1,
π(γ∗)h(χ∗|γ∗,χ,γ)q(χ,γ|γ∗)

π(γ)h(χ|γ,χ∗,γ∗)q(χ∗,γ∗|γ)

}
, (2)
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or remain in the previous state otherwise. Then an ergodic Markov chain is generated
and γ ′ ∼ π(γ ′). In a typical setting χ∗ is generated first, followed by γ∗. The extra χ
is needed in order to calculate a legal acceptance probability, relating to a symmetric
reverse move.

For generating the locally optimized proposals we first make a big jump to a new
region of interest with respect to kernel ql(χ

∗
0|γ), followed by some local optimization of

π(γ) with the chosen transition kernels Qo(χ
∗
i |χ∗

i−1), i ∈ {1, ..., k}, which can be either
stochastic or deterministic, and finally make randomization qr(γ

∗|χ∗
k) with a kernel

based on a small neighborhood. For the reverse move we correspondingly first make
a big jump ql(χ0|γ∗), followed by the same type of local optimization Qo(χi|χi−1),
i ∈ {1, ..., k}, and finally the probability of transition from the point at the end of op-
timization to the initial solution γ is calculated with respect to the randomizing kernel
qr(γ|χk). Then acceptance probabilities with respect to (2) are calculated and the move
to a new state is either accepted or rejected. A convenient choice of h(χ|γ,γ∗,χ∗) func-
tion allowing to store very little of the information from the local optimization routine
is to consider it of a form h(χ|γ,γ∗,χ∗) = h(χ|γ,γ∗):

h(χ|γ,γ∗) = ql(χ0|γ∗)

[
k∏

i=1

Qo

(
χi|χi−1

)]
.

Then (2) reduces to

rm(γ,γ
∗) = min

{
1,
π(γ∗)qr(γ|χk)

π(γ)qr(γ∗|χ∗
k)

}
.

We recommend that in not less than 95% of the proposals no mode jumping is per-
formed. This provides the global Markov chain with both good mixing between the
modes and accurate exploration of the regions around them. As described by [3] we ad-
dress accept the first improving neighbor, accept the best neighbor, simulated annealing,
and local MCMC approaches for performing local combinatorial optimization, whilst
transitions in these routines are based on random change or deterministic swaps of a
fixed or randomized number of components of γ, or by uniform addition or deletion of
a positive component in γ. Notice that tuning of the probabilities of addressing local
optimizers with particular proposal kernels in a mixture is often beneficial and we can
carry it out during the burn in of the mode jumping MCMC without violating the de-
sired ergodicity of the chain [3]. Also notice that both local optimizers and the global
MCMC procedures are extensively parallelizible [3]. Finally, all of the unique models
visited during the procedure are then appended to V ⊆ Ωγ and used to estimate (1).
Alternative MCMC estimators for (1) as described in [1, 3, 4] are also available.

4 Results and discussion

We apply and compare the described algorithm further addressed as MJMCMC on
the famous U.S. Crime Data and compare its performance to some popular algorithms
such as BAS and competing MCMC methods (MC3, RS, and thinned RS) with no
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mode jumping [1, 3]. We apply the Bayesian linear regression with a g-prior [1] to the
aforementioned data set with T = 47 observations and P = 15 explanatory variables.
We carry out 100 replications of each algorithm on 10% of cardinality of Ωγ, which in
the best case scenario contains 86% of the total posterior model mass. As can be seen

Parameter Truth MJMCMC BAS MC3 RS RS-thin
BIAS×105 0.00 15.49 9.28 10.94 27.33 27.15 27.3
RMSE×105 0.00 16.83 10.00 11.65 34.39 34.03 28.99
Explored mass 1.00 0.58 0.71 0.67 0.10 0.10 0.13
Unique models 32768 1909 3237 3276 829 1071 1722
Total models 32768 3276 5936 3276 3276 3276 3276

Table 1: BIAS, RMSE of posterior model probabilities, explored masses, total and
efficient numbers of iterations from the 100 replications of the involved algorithms.

from Table 1, our approach by far outperforms simpler MCMC methods in terms of the
total posterior mass captured [1, 3] as well as the RMSE and BIAS [1, 3] of the model
posterior probabilities (1); moreover, unlike the latter, it does not get stuck in the local
modes and estimates a greater number of the unique models within the same amount
of proposals. On the same amount of estimated models MJMCMC outperforms BAS
in terms of all parameters, however for the same amount of proposals BAS is slightly
better. More examples with various GLMM addressed and description of the developed
R package EMJMCMC can be found in [3]. In general, we claim that MJMCMC is
not only a very competitive novel algorithm, but also that it addresses a much wider
class of models (GLMM) than all of the competing approaches. In future it would be
of an interest to extend the procedure to level of the choice of link functions, priors
and response distributions.
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Abstract

Development of the new master program on Applied Computer Data Analysis
within the TEMPUS Project “Applied Computer Data Analysis” is discussed.
The program has been started in 2015 at the Belarusian State University.
Keywords: master program, TEMPUS, ACES project, computer data analysis,
statistical modeling

The successfull research co-operation in the area of Statistical Data Analysis be-
tween scientists from the Vienna University of Technology (TU Wien) and Belarusian
State University (BSU) was the base for the TEMPUS project “Applied Computing
in Engineering and Science” (ACES) that has gathered in one team the experts in 5
areas benefiting from each other:

• Scientific Computing;

• Mathematical Modeling;

• Numerical Analysis and Optimization;

• Statistical Modeling;

• Statistical Computing.

The main goal of the ACES Project [1] is starting of a new master program in
the area of Applied Computing at three Universities from Belarus (BSU, Belarusian
National Technical University, Yanka Kupala State University in Grodno) and two Uni-
versities from Russian Federation (Siberian Federal University in Krasnoyarsk, Tomsk
Polytechnic University) under the methodical support from five EU Universities: TU
Wien (Austria), KU Leuven (Belgium), University of Wuppertal (Germany), Technical
University of Lisbon (Portugal), and Palacky University in Olomouc (Czech Republic).
In Belarus the mentioned Universities will run the master program “Applied Computer
Data Analysis” in accordance with the Educational Standard approved in 2015 by the
Ministry of Education of the Republic of Belarus.
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The BSU has started the master program in 2015 with students who have success-
fully completed the 5-years programs with the diploma of a specialist. In June of 2016
the nine graduates from the master program were acknowledged with the Master of
Science diploma in applied mathematics and infromation technologies. The two other
Belarusian Universities plan to start the master program in 2016.

Two major activities were performed in the Project to reach the goal:

• Training at the EU partner Universities of the staff from the eastern partner
Universites to get the optimal structure and contents of the curriculum;

• Preparing of the teaching materials books for students in 5 areas mentioned above
to provide students with the information agreed by the consortium of partner
Universities as the obligatory knowledge.

Some of the teaching materials books cover more than just the obligatory topics
as, for expamle, the teaching materials on Statistical Modeling. The main parts of
the contents are: Introduction; Basics of Multivariate Statistical Analysis; Principal
Component Analysis; Factor Analysis; Regression Analysis; Discriminant Analysis;
Advanced Methods for Classification; Cluster Analysis; Advanced Methods for Statis-
tical Inference; Conclusions; References. The mentioned book is strongly related to the
teaching materials on Statistical Computing.

At the moment we can mention the fact that the International Conference on Com-
puter Data Analysis and Modeling in Minsk granted a lot into the research co-operation
between TU Wien and BSU, and later into the ACES Project, is now benefiting from
contributions of the developed master program graduates.

References

[1] http://www.ai.tuwien.ac.at/aces

279



UNRELIABLE QUEUEING SYSTEM WITH
BACKUP SERVER

V. I. Klimenok
Belarusian State University

Minsk, BELARUS
e-mail: klimenok@bsu.by

Abstract

In this paper, we analyze a queueing system with two main unreliable servers
and backup reliable server. The input flow is a BMAP (Batch Markovian Arrival
Process). Heterogeneous breakdowns arrive to the main servers according to a
MMAP (Marked Markovian Arrival Process). Service times and repair time
have PH (Phase Type) distribution. The queue under consideration can be
applied for modeling of hybrid communication system. We derive a condition
for stable operation of the system, calculate its stationary distribution and base
performance measures.

1 Introduction

As it is mentioned in [6], one of the main directions of creating the ultra-high speed
(up to 10 Gbit/s) and reliable wireless means of communication is the development of
hybrid communication systems based on laser and radio-wave technologies. Because
of the high practical need for hybrid communication systems, a considerable amount
of studies of this class of systems have appeared recently. Some results of these stud-
ies are presented in [1], [5]- [7]. As we know, all research on hybrid communication
systems are devoted to study single-server queues with backup server. The present
work is a further development of these studies to the case of a queueing system with
two main unreliable servers and backup reliable server. This system is suitable to
model a hybrid communication system consisting of two main communication channels
- FSO (Free Space Optics) channel and millimeter-wave radio channel - and radio-
wave IEEE802.11n channel which is used as a backup channel. FSO channel can not
transmit data in conditions of poor visibility (fog or overcast weather) and millime-
ter radio-wave channel can not transmit during precipitation (rain, snow, etc.). In
case when FSO-channel and millimeter radio-wave channel break down, information is
transmitted via backup radio-wave IEEE802.11n channel which is absolutely reliable
but has a much slower rate compared with the main transmission channels. Thus,
a hybrid communication system is able to transmit data at practically all weather
conditions.

2 Mathematical model

We consider a queueing system with waiting room and two unreliable heterogeneous
servers which model FSO and mm-wave channels and backup reliable server which
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models radio-wave IEEE802 channel. In the following, FSO cannel will be named as
server 1, mm-wave channel as server 2 and radio-wave IEEE802 channel as server 3.

Customers arrive into the system in accordance with Batch Markovian Arrival Pro-
cess (BMAP ). The BMAP is very general arrival process which is able to capture any
correlation and burstiness that are commonly seen in the traffic of modern communi-
cation networks. The BMAP is defined by the underlying process νt, t ≥ 0, which is an
irreducible continuous-time Markov chain with finite state space {0, . . . ,W}, and the

matrix generating function D(z) =
∞∑
k=0

Dkz
k, |z| ≤ 1. The batches of customers enter

the system only at the epochs of the chain νt, t ≥ 0, transitions. The (W +1)×(W +1)
matrices Dk, k ≥ 1, (non-diagonal entries of the matrix D0) define the intensities of the
process νt, t ≥ 0, transitions which are accompanied by generating the k-size batch of
customers. The intensity (fundamental rate) of the BMAP is defined as λ = θD′(1)e
where the vector θ is the unique solution of the system θD(1) = 0, θe = 1. Hereinafter
e is a column vector of units. For more information about the BMAP see, e.g. [3].

The service time of a customer by the jth server, j = 1, 2, 3, has PH type distribu-
tion with irreducible representation (βj, Sj). The service process on the jth server is

directed by the Markov chain m
(j)
t , t ≥ 0, with state space {1, . . . ,Mj,Mj + 1} where

Mj +1 is an absorbing state. The intensities of transitions into the absorbing state are

defined by the vector S
(j)
0 = −Sje. For more information about PH type distribution

see, e.g. [4].
Breakdowns arrive to the servers 1,2 according to a MMAP which is defined by

the underlying process ηt, t ≥ 0, with state space {0, . . . , V } and by the matrices
H0, H1, H2. The matrix H0 defines the intensities of the process ηt, t ≥ 0, transitions
which does not lead to generation of a breakdown. The matrixHj defines the intensities
of the ηt, t ≥ 0, transitions which are accompanied by generating a breakdown which
is directed to the server j, j = 1, 2.

When a breakdown attacks one of the main server, the repair period at this server
starts immediately and the other main server, if it is available, begins the service of the
interrupted customer anew. If the latter server is busy or under repair, the customer
goes to the server 3 and starts its service anew. However, if during the service time of
the customer at the server 3 one of the main servers becomes fault-free, the customer
restarts its service on this server.

The repair period at the jth main server, j = 1, 2, has PH type distribution with
an irreducible representation (τ j, Tj). The repair process at the jth server is directed

by the Markov chain r
(j)
t , t ≥ 0, with state space {1, . . . , Rj, Rj + 1} where Rj + 1 is

an absorbing state.

3 Process of the system states

Let at the moment t
it be the number of customers in the system, it ≥ 0,
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nt =



0, if both main servers are fault-free (both ones are busy or idle);

0j, if both main servers are fault-free, the jth server is busy and

the other one is idle, j = 1, 2;

1, if the server 1 is under repair; 2, if the server 2 is under repair;

3, if both servers are under repair;

m
(j)
t be the state of the directing process of the service at the j-th busy server,

j = 1, 2, 3,m
(j)
t = 1,Mj; r

(j)
t be the state of the directing process of the repair time

at the j-th busy server, j = 1, 2, r
(j)
t = 1, Rj; νt and ηt be the states of the directing

processes of the BMAP and the MMAP respectively, νt = 0,W , ηt = 0, V .
The process of the system states is described by the regular irreducible continuous

time Markov chain, ξt, t ≥ 0, with state space

X = {(0, n, ν, η), i = 0, n = 0, 3, ν = 0,W , η = 0, V }
∪

{(i, 0j, ν, η,m(j)), i = 1, j = 1, 2, n = 0j, ν = 0,W , η = 0, V , m(j) = 1,Mj}
∪

{(i, 0, ν, η,m(1),m(2)), i > 1, n = 0, ν = 0,W , η = 0, V , m(1) = 1,M1,m
(2) = 1,M2}

∪
{(i, 1, ν, η,m(2), r(1)), i ≥ 1, n = 1, ν = 0,W , η = 0, V ,m(2) = 1,M2, r

(1) = 1, R1}
∪

{(i, 2, ν, η,m(1), r(2)), i ≥ 1, n = 2, ν = 0,W , η = 0, V ,m(1) = 1,M1, r
(1) = 1, R2}

∪
{(i, 3, ν, η,m(3), r(1), r(2)), i > 0, n = 3, ν = 0,W , η = 0, V ,m(3) = 1,M3,

r(j) = 1, Rj, j = 1, 2}.

Lemma 1. Infinitesimal generator of the Markov chain ξt, t ≥ 0, has the following
block structure

Q =


Q0,0 Q0,1 Q0,2 Q0,3 Q0,4 · · ·
Q1,0 Q1,1 Q1,2 Q1,3 Q1,4 · · ·
O Q2,1 Q1 Q2 Q3 · · ·
O O Q0 Q1 Q2 · · ·
...

...
...

...
...

. . .


where blocks Qi,j, i, j ≥ 0, are the matrices formed by intensities of the chain transition
from the states corresponding to the value i of the denumerable component in to the
states corresponding to the value j of this component.

Corollary 1. The Markov chain ξt, t ≥ 0, belongs to the class of continuous time
quasi-Toeplitz Markov chains, see [2].
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4 Stationary distribution. Performance measures

Theorem 1. The necessary and sufficient condition for existence of the stationary
distribution of the Markov chain ξt, t ≥ 0, is the fulfillment of the inequality

λ < −π0(S1 ⊕ S2)e+ π1S
(2)
0 + π2S

(1)
0 + π3S

(3)
0 , (1)

where π0 = x0(eV+1 ⊗ IM1M2), π1 = x1(eV+1 ⊗ IM2 ⊗ eR1), π2 = x2(eV+1 ⊗ IM1 ⊗
eR2), π3 = x3(eV+1 ⊗ IM3 ⊗ eR1R2) and the vectors x1, x3 are sub-vectors of the vector
x = (x1, x2, x3, x4), which is the unique solution of the system of linear algebraic
equations.

In what follows we assume inequality (1) be fulfilled. Denote by pi the row vector
of steady state probabilities corresponding the value i of the first component of the
chain ξt, t ≥ 0, i ≥ 0. To calculate the vectors pi, i ≥ 0, we use the numerically
stable algorithm, see [2], which has been elaborated for calculating the stationary dis-
tribution of multi-dimensional continuous time quasi-Toeplitz Markov chains. Having
the stationary distribution pi, i ≥ 0, been calculated we find a number of important
stationary performance measures of the system and examine their behavior through
the numerical experiments.
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Abstract

We give a description of a portable system for acquisition of the brain electri-
cal activity and discuss some problems which arise while developing, implement-
ing, and fine-tuning the system.

We developed, implemented, and fine-tuned a portable system for acquisition of the
electrical activity of a brain, which was successfully utilised to acquire the electroen-
cephalogram and nociceptive evoked potentials (EPs) in the somatosensory S1HL and
the anterior cingulate Cg areas of cerebral cortex in the right hemisphere in rats.

The heart of the system is either an Intel Pentium IV-based portable computer
(an IBM ThinkPad G40 in our study) or a Raspberry Pi 2 ARM Cortex-A7-based
microcomputer loaded with Linux. So the analogue-to-digital converter is selected
from amongst those supported by the COMEDI project [7] which develops open-source
drivers, tools, and libraries for data acquisition implemented as a core Linux kernel
module suitable for real-time tasks. We choose the 16-channel analogue-to-digital con-
verter usbdux-fast coupled with 4-channel amplifier modules assembled to the open
specifications provided by Incite Technology Ltd., Computing & Maths Dept., Uni-
versity of Stirling, United Kingdom (see [5, 6]); the amplifier was originally developed
for teaching ECG at the Medical Faculty of the Ruhr University Bochum. The full
schematic diagrams of the converter and the amplifier can be found in [3, 5, 6]. We
make use of readily-available electronic components which inhabit custom printed cir-
cuit boards. Since the libraries and the firmwares source codes are in public domain, in
our experiments we succeeded in implementing necessary corrections and revisions of
the software in minimal time. The generation of the stimulus routed to the tail of an
experimental animal (a male Wistar rat) via a constant current isolator unit (we used
the isolator unit A365 produced by World Precision Instruments, Inc.), as well as that
of the synchronising stimulus which triggered the start of acquisition, were carried out
with the use of either the IEEE-1284 parallel port of the Intel-based computer or the
general purpose input-output ports of the Raspberry box. Both of the electrophysio-
logical data acquisition and stimuli generation tasks can also be executed concurrently
on dedicated computers of the above architectures.

The key features of the system consist of the following: high sensitivity (µV); high-
resolution measurement (discretisation up to a hundred kHz per channel); presence of
no filters of the input signal in both the analogue-to-digital converter and amplifier
modules; this results in the near absence of analogue data loss while acquiring the real
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time brain bioelectrical activity. The system can perform a software filtering of the
input data flow when needed.

The complex problem to prevent garbling of the input data due to intense elec-
tromagnetic pollution of the environment was solved by making use of a multilayer
shielding of the analogue part of the system (the laboratory animal, cables, and the
amplifier) and by using an autonomous direct current source to feed the whole system.

If one takes the laboratory animal as a ‘black box’ whose input is some external
stimulus while the output yields a high-volume data flow, then the goal of the experi-
ment consists of separating the response to the input stimulus in the output data flow.
The start of acquisition of the electrical activity of the rat brain is triggered by the
synchronising impulse issued at a fixed (maybe zero) time interval before the leading
front of the stimulating impulse.

The input electroencephalogram is conveniently observed in the real time with the
use of xoscope 1.12 [8]. In order to capture the data, we use ktimetrace 0.2.37 [2];
it permits to capture samples from desired channels of our data acquisition device in a
given time interval starting either from an arbitrary time instant or from that governed
by the external synchronising signal and to save it to a file while providing a real-time
graphing display. The data thus obtained form a text file whose each row consists of
numerical values captured from the channels at the corresponding time instants. The
size of the file can grow to a very large value, so we decide to use the appropriate file
system (ext4 in our study).

We investigate the role which the brain cortex plays in formation of the nociceptive
reactions by means of analysis of the evoked potentials acquired in the somatosensory
S1HL and the anterior cingulate Cg areas of cerebral cortex in the right hemisphere
in immobilised Wistar male rats before the intraperitoneal injection of a lipopolysac-
charide (LPS) and at the 1st, 3rd and 7th days after it upon an electrocutaneous
stimulation of the tail. The stimulation of the rat tail is by single rectangular cur-
rent impulses of 80% of the initial vocalisation threshold. The EPs are averaged over
36 trials. The changes of the late components of the EPs, which reflect the emotional
component of the nociceptive reaction, were analysed by their peak-to-peak amplitudes
(A) and the areas of the secondary negative responses (S). In [4, 3], we give an example
of dynamics of nociceptive evoked potentials registered in the somatosensory area of
the rat’s cerebral cortex before the intraperitoneal injection of the lipopolysaccharide
and at the first and the seventh days after it. We thus came to the classical biostatistics
problem to find whether there was an effect of a single administration of a drug or not
(see, e.g., [1]); to solve it, we made use of the non-parametric Wilcoxon test; this test
uses only the information on the differences between values of the parameters and their
signs, and there is no need to make assumptions concerning the laws of distribution of
the differences of the parameters under investigation upon the action of the drug. The
parametric tests based on the normal approximations appear to be of little use in our
case.

The battery of solutions we have used while developing and setting up this system
are pioneering and allow us to deal with a wide range of problems of electrophysiology
including electromyography, electrocardiography, electroencephalography, and record-
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ing of neuronal activity in the brain.
All investigations on the laboratory animals were carried out in full compliance with

the GLP principles.
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Abstract

In the article an open Markov queueing G-network with incomes and random
waiting time of negative customers has been considered. Negative customers de-
stroy positive customers on the expiration of a random time. Queueing system
(QS) receives a certain random income when positive customer arrives to it and
loss when negative customer arrives to it. A technique for finding the expected
incomes of the network QS has been proposed. In information systems and net-
works negative customers may describe behavior of requests for service, at which
request is a command to stop the operation being performed or the behavior
of computer viruses, the effects of which on the information (positive customer)
occurs through a random time and has a damaging effect.

1 Introduction

Consider an open G-network [1] with n single-queues QS: S1, S2, ..., Sn. Lets introduce
system S0, from which Poisson flow of customers arrive to the network. The network
state at time t described by the vector k (t) = ((k1(t), l1(t)) , ..., (kn(t), ln(t))), which
forms a homogeneous Markov process with a countable number of states, where the
state (ki(t), li(t)) means, that at time t in QS Si there are ki positive customers and li
negative customers, i = 1, n. We introduce the vectors k (t) = (k1 (t), k2(t), ... , kn(t))
and l (t) = (l1 (t), l2(t), ... , ln(t)).

External arrivals to the network, service times of rates and probabilities of customer
transitions between QS depend on time, [2]. In QS Si from the outside (from the
system S0) is coming a Poisson stream of the positive customers with the intensity
λ+0i(t) and Poisson stream of negative customers with the intensity λ−0i(t), i = 1, n.
All flows of customers incoming to the network are independent. Lets µ+

i (ki(t)) –
service rate of positive customers in QS Si at time t, depend on count of customers
at it system, i = 1, n. If in QS Si at time t there are ki (t) customers, then the
probability, that the positive customer serviced in QS Si during time [t, t+∆t), are
equals µ+

i (ki(t))∆t + o (∆t). Positive customer, get serviced in Si at time t with
probability p+ij(t) move to QS Sj as a positive customer, and with probability p−ij(t) –

as a negative customer, and with probability pi0(t) = 1 −
∑n

j=1

[
p+ij(t) + p−ij(t)

]
come

out from the network to external environment, i, j = 1, n.
Negative customer is arrived to QS increases the length of the queue of negative

customers for one, and requires no service. Each negative customer, located in i -th
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QS, stay in the queue random time according to a Poisson process of rate µ−
i (li),

i = 1, n. By the end this time, negative customer destroy one positive customer in
the QS Si and leave the network. If after this random time in the system there are no
positive customers, then given negative customer leave network, without exerting any
influence on the operation of the network as a whole. Wherein probability that, in QS
Si negative customer leave queue during [t, t+∆t), on condition that, in this QS at
time t there are li negative customers, equals µ−

i (li)∆t+ o (∆t).

2 Finding expected incomes of network systems

Consider the dynamics of income changes of a network system Si. Denote by the Vi(t)
its income at moment time t. Let the initial moment time income of the system equal
Vi(0) = vi0. The income of its QS at moment time t + ∆t can be represented in the
form

Vi(t+∆t) = Vi(t) + ∆Vi(t,∆t), (1)

where ∆Vi(t,∆t) – income changes of the systemSi at the time interval [t, t+∆t),
i = 1, n. To find its value we write down the value of the conditional probabilities of
events that may occur during ∆t and the income changes of its QS, associated with
these events:

1. With probability p
(1)
i (t,∆t) = λ+0i(t)∆t+ o (∆t) at moment time t to the system

Si from the external environment will come positive customer, which will bring an
income to the amount of r0i, where r0i – random variable (RV), expectation (E) which
is equals E {r0i} = a0i, i = 1, n.

2. With probability p
(2)
i (t,∆t) = λ−0i(t)∆t + o (∆t) in the QS Si at moment time t

from the external environment will come a negative customer, i = 1, n; income change
of this system this case will not occur.

3. If at the moment time t at the system Si is located ki (t)of positive customers,

then with probability p
(3)
i (t,∆t) = µ+

i (ki(t))u (ki(t)) pi0(t)∆t + o(∆t), where u(x)−
Heaviside function, positive customer comes out from the network to the external
environment, while the total amount of income of QS Si is reduced by an amount
which is equal to −Ri0, where E {Ri0} = bi0, i = 1, n, µ+

i (0) = 0.

4. With probability p
(4)
i (t,∆t) = µ−

i (li(t))u (li(t))∆t + o (∆t) in QS Si at the
moment time t negative customer, destroying positive customer in QS Si, will leave
the network, i = 1, n; In this case income for the system Si decreases by an amount
−Rneg

i0 , E {Rneg
i0 } = bnegi0 , µ−

i (0) = 0, i = 1, n.
5. If at the moment time t in QS Si there were li (t) negative customers and there

were not positive customers, then negative customer leaves this QS with probability
p
(5)
i (t,∆t) = µ−

i (li(t)) (1− u (ki(t)))∆t+ o (∆t), i = 1, n. In this case income change
of QS Si will not occur, i = 1, n.

6. If at the moment time in the system Si there is positive customer, then after
finishing it servicing in QS Si it move to QS Sj as a positive customer With probability

p
(6)
i (t,∆t) = µ+

i (ki(t))u (ki(t)) p
+
ij(t)∆t+o (∆t), i, j = 1, n, i ̸= j; in such a transition
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income of system Si decreases by an amount Rij, and income of system Sj will increase
by this amount, where E {Rij} = aij, i, j = 1, n, i ̸= j.

7. If at the moment time t in system Sj there is positive customer, then serviced in

Sj, it will move to system Si with probability p
(7)
i (t,∆t) = µ+

j (kj(t))u (kj(t)) p
+
ji(t)∆t+

o (∆t), at the same time income of QS Si decreases by an amount rji, and income of
QS Sj it will increase by the same amount, where E {rji} = bji, i, j = 1, n, i ̸= j.

8. With probability p
(8)
i (t,∆t) = µ+

i (ki(t))u (li(t)) p
−
ij(t)∆t + o (∆t) positive cus-

tomer, serviced in QS Si, at the moment time t forwarded to QS Sj as negative customer
i, j = 1, n, i ̸= j; in such a transition system income of Si decreases by an amount Rneg

ij ,

and income of system Sj will not change, where E
{
Rneg

ij

}
= anegij , i, j = 1, n, i ̸= j.

9. With probability

p(9) (t,∆t) = 1−

{
λ+0i(t) + λ−0i(t) + µ+

i (t)p
+
i0(t) + µ−

i (t) +
n∑

j=1

µ+
i (t)p

+
ij(t) +

+
n∑

j=1

µ+
j (t)p

+
ji(t) +

n∑
j=1

µ+
i (t)p

−
ij(t)

}
∆t+ o (∆t)

on time interval [t, t + ∆t) there will be no change of system Si nothing is going to
happen (not a positive customer or a negative customer is received and no customer
is serviced), in this case, the total income of Si may increase (decrease) to the amount
of ri∆t, where E {ri} = ci, i = 1, n.

It’s obvious that rji(ξj) = Rji(ξj) with probability 1, i.e. bji = aji, i, j = 1, n.
Suppose that at any instant of time RV r0i, Ri0, R

neg
i0 , Rij, rji, R

neg
ij does not depend

on RV ri.
We will assume, that all network systems are single-queues and customers ser-

vice rates in QS Si has an exponential distribution with rate µ+
i (t); let also negative

customer, arrives to QS Si, will leave it queue after a random time, that has an ex-
ponential distribution with rate µ−

i (t). Consequently, in these cases, we obtain, that
µ+
i (ki(t)) = u (ki(t))µ

+
i (t), µ

−
i (li(t)) = u (li(t))µ

−
i (t), i = 1, n.

In addition suppose, that all systems operating under heavy-traffic regime, i.e.
ki(t) > 0 ∀t > 0, i = 1, n. In the simulation, the effect of virus penetration into a
computer network or during a computer attack on it occurs just such a situation. Also,
we assume, that li(t) > 0 ∀t > 0, i = 1, n. Then it follows from the foregoing

∆Vi (t, ∆t) =



r0i + ri∆t with probability λ
+
0i(t)∆t+ o (∆t) ,

−Ri0 + ri∆t with probability µ
+
i (t)p

+
i0(t)∆t+ o(∆t),

−Rneg
i0 + ri∆t with probability µ

−
i (t)q

−
i0(t)∆t+ o (∆t) ,

−Rij + r i∆t with probability µ
+
i (t)p

+
ij(t)∆t+ o (∆t) ,

rji + r i∆t with probability µ+
j (t)p

+
ji(t)∆t+ o (∆t) ,

−Rneg
ij + r i∆t with probability µ+

i (t)p
−
ij(t)∆t+ o (∆t) ,

ri∆t with probability 1−
{
λ+0i(t) + λ−0i(t)+

+µ+
i (t)p

+
i0(t) + µ−

i (t) +
∑n

j=1 µ
+
i (t)p

+
ij(t)+

+
∑n

j=1 µ
+
j (t)p

+
ji(t) +

∑n
j=1 µ

+
i (t)p

−
ij(t)

}
∆t, j = 1, n, j ̸= i .

(2)
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Therefore, taking into account (2) E {∆Vi (t, ∆t)} = fi(t)∆t+ o (∆t), where

fi(t) =
(
λ+0i(t) + λ−0i(t)

)
a0i +

n∑
j=1

(µ+
j (t)p

+
ji(t)bji)+

+
n∑

j=1

p−ij(t)
[
anegij µ+

i (t) + ci
(
µ+
i (t) + µ−

i (t)
)]

+

+
n∑

j=1

[
p+ij(t)µ

+
i (t)(2ci − aij)

]
− bi0µ

+
i (t)p

+
ij(t) + bnegi0 µ−

i (t) + ci.

For vi (t) =M {Vi (t)} from (1) we have vi (t+∆t) = vi(t)+E {∆Vi (t, ∆t)}, where,
passing to the limit ∆t→ 0, we get linear inhomogeneous differential equations of first
order dvi(t)

dt
= fi (t), i = 1, n, i.e.

dvi (t)

dt
=
(
λ+0i(t) + λ−0i(t)

)
a0i +

n∑
j=1

(µ+
j (t)p

+
ji(t)bji)+

+
n∑

j=1

p−ij(t)
[
anegij µ+

i (t) + ci
(
µ+
i (t) + µ−

i (t)
)]

+

+
n∑

j=1

[
p+ij(t)µ

+
i (t)(2ci − aij)

]
− bi0µ

+
i (t)p

+
ij(t) + bnegi0 µ−

i (t) + ci.

By setting the initial conditions vi(0) = vi0, i = 1, n, we can find the expected
incomes of the network systems. In this way

vi (t) = vi0 (0) +

∫ t

0

fi (τ) dτ, i = 1, . . . , n.
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Abstract

The paper is devoted to the analysis of queueing systems in the context of
the network and communications theory. We investigate the inequality in an
open multiserver queueing network and its applications to the theorems in heavy
traffic conditions (fluid approximation, functional limit theorem, and law of the
iterated logarithm) for a queue of jobs in an open multiserver queueing network.

1 Statement of the problem and the network model

This paper is devoted to the analysis of queueing systems in the context of the network
and communications theory. We investigate the inequality in an open multiserver
queueing network and its applications to the theorems in heavy traffic conditions for
a queue of jobs in an open multiserver queueing network. Familiar researches made
by [1], [2], and others, were used in this paper.

Consider a network of j stations, indexed by j = 1, 2, . . . , J, and the station j
has cj servers, indexed by (j, 1), . . . , (j, cj). A description of the primitive data and
construction of processes of interest are the focus of this section. No probability space
will be mentioned in this section, and of course, one can always think that all the
variables and processes are defined on the same probability space.

First, {uj(e), e ≥ 1}, j = 1, 2, . . . , J, are J sequences of exogenous interarrival times,
where uj(e) ≥ 0 is the interarrival time between the (e − 1)-st job and the e-st job
that arrive at the station j exogenously (from the outside of the network). Define

Uj(0) = 0, Uj(n) =
n∑

e=1

uj(e), n ≥ 1 and Aj(t) = sup{n ≥ 0 : Uj(n) ≤ t}, where

Aj = {Aj(t), t ≥ 0} is called an exogenous arrival process of the station j, i.e., Aj(t)
counts the number of jobs that arrived at the station j from the outside of the network.

Second, {vjkj(e), e ≥ 1}, j = 1, 2, . . . , J, kj = 1, 2, . . . , cj, are c1+ . . .+cJ sequences
of service times, where vjkj(e) ≥ 0 is the service time for the e-th customer served by

the server kj of the station j. Define Vjkj(0) = 0, Vjkj(n) =
n∑

e=1

vjkj(e), n ≥ 1 and

xjkj(t) = sup{n ≥ 0 : Vjkj(n) ≤ t}, where xjkj = {xjkj(t), t ≥ 0} is called a service
process for the server kj at the station j, i.e., xjkj(t) counts the number of services
completed by the server kj at the station j during the server’s busy time. We define

µjkj =
(
M
[
vjkj(e)

])−1
> 0, σjkj = D

(
vjkj(e)

)
> 0 and λj = (M [uj(e)])

−1 > 0,
aj = D (uj(e)) > 0, j = 1, 2, ..., k; with all of these terms assumed finite.
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Also, let τ̃j(t) be the total number of jobs routed to the jth station of the network in
the interval [0, t], τj(t) be the total number of jobs after service departure from the jth
station of the network in the interval [0, t], τ̃jkj(t) be the total number of jobs routed
to the kj server of the jth station of the network in the interval [0, t], let τjkj(t) be
the total number of jobs after service departure from the kj server of the jth station of
the network in the interval [0, t], and τijki(t) be the total number of jobs after service
departure from the ki server of the ith station of the network and routed to the kj
server of the jth station of the network in the interval [0, t]. Let pij be a probability
of the job after service at the ith station of the network routed to the jth station of

the network. Denote ptijki =
τijki(t)

τiki(t)
as part of the total number of jobs which, after

service at the ki server of the ith station of the network, are routed to the jth station
of the network in the interval [0, t], i, j = 1, 2, . . . , J, ki = 1, . . . , ci and t > 0.

The processes of primary interest are the queue length process Q = (Qj) with
Qj = {Qj(t), t ≥ 0}, where Qj(t) indicates the number of jobs at the station j at time
t. Now we introduce the following processes Qjkj = {Qjkj(t), t ≥ 0}, where Qjkj(t)
indicates the number of customers waiting to be served by the server kj of the station

j at time t; clearly, we have Qj(t) =
cj∑

ki=1

Qjki(t), j = 1, 2, . . . , J.

The dynamics of the queueing system (to be specified) depends on the service
discipline at each service station. To be more precise, “first come, first served” (FCFS)
service discipline is assumed for all J stations. When a customer arrives at a station
and finds more than one server available, it will join one of the servers with the smallest
index. We assume that the service station is work-conserving; namely, not all servers
at a station can be idle when there are customers waiting for service at that station. In
particular, we assume that a station must serve at its full capacity when the number
of jobs waiting is equal to or exceeds the number of servers at that station. Suppose
that the queue of jobs in each station of the open queueing network is unlimited. All
random variables are defined on one common probability space (Ω,F ,P).

2 The main results

First, denote βj =
J∑

i=1

ci∑
ki=1

µiki · pij + λj −
cj∑

kj=1

µjkj > 0, σ̂2
j =

J∑
i=1

ci∑
ki=1

µ3
iki

· σiki · p2ij +

λ3j · aj +
cj∑

kj=1

µ3
jkj

· σjkj > 0, j = 1, 2, . . . , J.

We assume that the following conditions are fulfilled:

J∑
i=1

ci∑
ki=1

µiki · pij + λj >

cj∑
kj=1

µjkj , j = 1, 2, . . . , J. (1)
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Theorem 1. If Qj(0) = 0, then

|Qj(t)− x̂j(t)| ≤
k∑

i=1

wi(t) +
k∑

i=1

γi(t), where x̂j(t) =

J∑
i=1

ci∑
ki=1

xiki(t) · pij + Aj(t)−
cj∑

kj=1

xjkj(t), w(t) =
J∑

j=1

J∑
i=1

ci∑
ki=1

xiki(t) · |p t
ijki

− pij|,

γ(t) =
J∑

i=1

ci∑
ki=1

sup
0≤s≤t

(xiki(s)− τiki(s)), j = 1, 2, . . . , J.

Proof. By definition of the queue of customers at the stations of the network, we get
that, for j = 1, 2, . . . , J, kj = 1, 2, . . . , cj

Qj(t) = τ̃j(t)− τj(t) =

cj∑
ki=1

Qiki(t) =

cj∑
ki=1

τ̃iki(t)−
cj∑

ki=1

τiki(t)

=

cj∑
ki=1

τ̃iki(t)−
cj∑

ki=1

xiki(t) +

cj∑
ki=1

xiki(t)−
cj∑

ki=1

τiki(t)

≤
cj∑

ki=1

τ̃iki(t)−
cj∑

ki=1

xiki(t) +

cj∑
ki=1

sup
0≤s≤t

(xiki(s)− τiki(s))

=
J∑

i=1

ci∑
ki=1

τijki(t) + Aj(t)−
cj∑

ki=1

xiki(t) +

cj∑
ki=1

sup
0≤s≤t

(xiki(s)− τiki(s))

≤
J∑

i=1

ci∑
ki=1

τiki(t) ·
τijki(t)

τiki(t)
+ Aj(t)−

cj∑
kj=1

xjkj(t) +

cj∑
ki=1

sup
0≤s≤t

(xiki(s)− τiki(s))

≤
J∑

i=1

ci∑
ki=1

xiki(t) · ptijki + Aj(t)−
cj∑

kj=1

xjkj(t) + sup
0≤s≤t

(xjkj(s)− τjkj(s))

=
J∑

i=1

ci∑
ki=1

xiki(t) · (ptijki − pij + pij) + Aj(t)−
cj∑

ki=1

xiki(t)

≤
J∑

i=1

ci∑
ki=1

xiki(t) · pij + Aj(t)−
cj∑

ki=1

xiki(t) +
J∑

i=1

ci∑
ki=1

xiki(t) · |ptijki − pij|

+

cj∑
ki=1

sup
0≤s≤t

(xiki(s)− τiki(s)) = x̂j(t) + w(t) + γ(t), j = 1, 2, . . . , J and t > 0.

Hence it follows that

Qj(t) ≤ x̂j(t) + w(t) + γ(t), j = 1, 2, . . . , J and t > 0. (2)
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Also, note that

Qj(t) ≥ τ̃j(t)−
cj∑

ki=1

xiki(t) =
J∑

i=1

ci∑
ki=1

τiki(t) · p t
ijki

+ Aj(t)−
cj∑

ki=1

xiki(t)

=
J∑

i=1

ci∑
ki=1

(xiki(t) + τiki(t)− xiki(t)) · ptijki + Aj(t)−
cj∑

ki=1

xiki(t)

=
J∑

i=1

ci∑
ki=1

xiki(t) · ptijki +
J∑

i=1

ci∑
ki=1

(τiki(t)− xiki(t)) · ptijki + Aj(t)

−
cj∑

ki=1

xiki(t) =
J∑

i=1

ci∑
ki=1

xiki(t) · ptijki −
J∑

i=1

ci∑
ki=1

(xiki(t)− τiki(t)) · ptijki

+ Aj(t)−
cj∑

kj=1

xjkj(t) ≥
J∑

i=1

ci∑
ki=1

xiki(t) · ptijki + Aj(t)−
cj∑

kj=1

xjkj(t)

−
J∑

i=1

ci∑
ki=1

(xiki(t)− τiki(t)) ≥
J∑

i=1

ci∑
ki=1

xiki(t) · ptijki + Aj(t)−
cj∑

kj=1

xjkj(t)

− sup
0≤s≤t

J∑
i=1

ci∑
ki=1

(xiki(s)− τiki(s)) ≥
J∑

i=1

ci∑
ki=1

xiki(t) · ptijki + Aj(t)

−
cj∑

kj=1

xjkj(t)−
J∑

i=1

ci∑
ki=1

sup
0≤s≤t

(xiki(s)− τiki(s))

=
J∑

i=1

ci∑
ki=1

xiki(t) · (ptijki − pij + pij) + Aj(t)−
cj∑

kj=1

xjkj(t)

−
J∑

i=1

ci∑
ki=1

sup
0≤s≤t

(xiki(s)− τiki(s)) =
J∑

i=1

ci∑
ki=1

xiki(t) · pij + Aj(t)

−
cj∑

ki=1

xiki(t) +
J∑

i=1

ci∑
ki=1

xiki(t) · (ptijki − pij)

−
J∑

i=1

ci∑
ki=1

sup
0≤s≤t

(xiki(s)− τiki(s)) ≥ x̂j(t)−
J∑

i=1

ci∑
ki=1

xiki(t) · |ptijki − pij|

−
J∑

i=1

ci∑
ki=1

sup
0≤s≤t

(xiki(s)− τiki(s)) = x̂j(t)− w(t)− γ(t), j = 1, 2, . . . , J and t > 0.

(3)

Hence it follows that

Qj(t) ≥ x̂j(t)−
k∑

i=1

wi(t)−
k∑

i=1

γi(t), (4)
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j = 1, 2, . . . , J and t > 0.
By combining (2) and (4), we can prove an inequality.

3 Application of the inequality

Note that the inequality is the key inequality to prove several laws (fluid approximation,
functional limit theorem, and law of the iterated logarithm) for a queue of jobs in open
multiserver queueing networks in heavy traffic conditions. At first we present a theorem
on the fluid approximation for a queue of jobs in open multiserver queueing networks
under heavy traffic conditions.

Theorem 2. Under conditions (1) the weak convergence holds:

t−1(Qj(t))
J
j=1 ⇒ (βj)

J
j=1, 0 ≤ t ≤ 1.

Next, we present a theorem on the functional limit for a queue of jobs in open
multiserver queueing networks in heavy traffic conditions.

Theorem 3. Under conditions (1) the following CLT holds:

n−1/2

(
Qj(nt)− ntβj

σ̂j

)J

j=1

⇒ (Wj(t))
J
j=1, 0 ≤ t ≤ 1,

for independent standard Wiener processes Wj(t), j = 1, . . . , J .

One of the results of the paper is the following theorem on the law of the iterated
logarithm for a queue of jobs in an open multiserver queueing network.

Theorem 4. Under conditions (1) the following law of the iterated logarithm holds:

P

(
lim
t→∞

Qj(t)− tβj

σ̂j
√
2t ln ln t

= 1

)
= 1, j = 1, . . . , J.

The proof of these theorems is similar to that in [3].
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Abstract

In this paper, the computer software implementing the model of the gene-gene
and gene-environment interaction among the polymorphisms of nine candidate
genes relating to essential hypertension (EH) and environmental cardiovascular
risk factors, such as obesity, abdominal obesity, smoking and insufficient physical
activity, is presented. Five significant genetic patterns for hypertensive patients
were determined using APSampler software based on the Markov Chain Monte-
Carlo method with a specially adapted Metropolis – Hastings algorithm. The
binary logit model with high sensitivity demonstrated the cumulative effects
for the multilocus combinations and environmental factors associated with EH.
This model allows the classification of subjects into two classes: the healthy and
the hypertensive patients. Performance evaluation of the model by means of
statistical tests indicates an acceptable accuracy of classification and prediction.

1 Introduction

Essential hypertension (EH) is a complex disorder influenced by multiple genetic and
environmental factors [1]. The renin-angiotensin-aldosterone system (RAAS), vascular
endothelial and kallikrein-kinin systems have a vital role in the blood pressure (BP)
regulation and the pathogenesis of EH. The single nucleotide polymorphisms (SNP) in
genes encoding these systems are associated with EH that was showed in the previous
studies [2]. But these associations are often not reproducible and depend on ethnicity,
and environmental factors, such as smoking, overuse of alcohol, insufficient physical ac-
tivity (PA), obesity, abdominal obesity (AO), psychological stress and depression also
influence the development of EH. The interaction of the mutations candidate genes and
environmental factors may substantially increase susceptibility to EH. The objectives
of our study were to examine the gene-gene interaction among the polymorphisms
of the nine candidate genes of RAAS, vascular endothelial and kallikrein-kinin sys-
tems — angiotensin-converting enzyme (ACE), angiotensinogen (AGT), angiotensin
II type 1 and 2 receptor (AGTR1, AGTR2), aldosterone synthase gene (CYP11B2),
renin (REN), 2-bradykinin receptor gene (BKR2), methylenetetrahydrofolate reductase
(MTHFR), endothelial nitric oxide synthase (eNOS) and gene-environment interaction
in patients (pts) with EH.
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2 Methods and Software

A total of 532 subjects are included (356 hypertensive pts and 176 normotensives ones).
Genotyping for ACE-I/D, AGT-235, AGTR1-A1166C, AGTR2-C3123A, CYP11B2-
C344T, REN-19-83G/A, BKR2-T58C, eNOS-E298D, and MTHFR-C677T polymor-
phisms was performed by polymerase chain reactions and the restriction of digestion.
The following environmental (biological, behavioral and psychosocial) factors were as-
sessed: office BP, weight, AO, smoking, alcohol consumption, physical activity, as well
as the level of psychological stress and depression using the international scales (Psy-
chological Stress Measure (PSM-25) and Center for Epidemiologic Studies Depression
scale (CES-D), accordingly). The study included a search of polygenic associations
to determine the genetic pattern, i.e. combination of alleles or genotypes of different
loci associated with a phenotypic trait (the gene-gene interaction analysis) using the
APSampler software based on Markov chains (Markov Chain Monte-Carlo — MCMC
method) with a specially adapted Metropolis – Hastings algorithm [3, 4]. Then a binary
logit model was built to estimate the cumulative effects of the genetic and environmen-
tal factors associated with EH (the gene-environment interaction analysis). This model
allows the classification of subjects into two classes: the healthy and the hypertensive
patients. Performance evaluation of the model by means of statistical tests indicates
an acceptable accuracy of classification and prediction.

A computer program was created as a result of all previous investigation. It allows
to interrogate pts maintaining and accumulating their visit data, classify them using
any applicable to a particular patient model. Binary logit models with different set of
explanatory variables and accuracy are stored and could be added or updated with the
accumulation of new pts data. This tool, on the one hand, helps collect data for future
analysis of new combinations of genes, important factors to improve the classification
models, and on the other, provides an opportunity to demonstrate to a patient his
risk of developing EH in his current state and how it could change through adjusting
lifestyle factors (Figure 1).

3 Results

The significant genetic patterns for the examined groups in patients with EH and
healthy subjects were obtained (Table 1). The binary dependent variable logit model [4]
was constructed to explore the cumulative effects of the significant multilocus combina-
tions and environmental (biological, behavioral and psychosocial) factors. The results
of estimation and testing the model (Table 2) indicate the statistical significance of all
factors at a level near 0.05 and below, as well as the adequacy of the model as a whole.

Expectation-prediction evaluation of the model based on the classification tables
gives the following estimates of accuracy of the classification: overall, the estimated
model correctly predicts 74.08% of the observations; the percentage of correct decisions
in the classification of hypertensive patients is 86.42%.
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Figure 1: The current estimation results for a patient on the base of binary logit model
and possible result after 1 year of therapy

Table 1: Significant genetic patterns for the hypertensive group

# Loci combinations
1. T allele AGT-235/AA genotype AGTR2-C3123A
2. T allele AGT-235/T allele CYP11B2-C344T
3. TT genotype AGT -235/D allele ACE-ID
4. D allele eNOS-E298D/C allele BKR2-T58C
5. D allele eNOS-E298D/ D allele ACE-ID
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Table 2: Estimation results for the binary logit model

Variables β-coefficients Std. Error z-statistics p-value
Age 0.928626 0.224505 4.136318 0.0000

Smoking 0.438137 0.220897 1.983440 0.0473
AO 0.723835 0.273650 2.645118 0.0082
BMI 1.380139 0.310520 4.444605 0.0000

Insufficient PA 0.631120 0.218890 2.883269 0.0039
T allele AGT-235/AA

genotype AGTR2-C3123A 0.491607 0.253880 1.936374 0.0528
D allele eNOS-E298D/ D

allele ACE-ID 0.713285 0.223251 3.194985 0.0014
C -1.295533 0.253726 -5.106024 0.0000

McFadden R-squared 0.185426 LR statistic (p-value)
121.6938
(0.0000)

4 Conclusions

A software that realizes the binary logit model which reflects the cumulative effects
of the multilocus combinations and environmental factors associated with EH is de-
veloped. The software is intended for the classification of patients into two classes:
the healthy and the hypertensive ones. Performance evaluation of the implemented
model by means of statistical tests indicates an acceptable accuracy of classification
and prediction.

References

[1] Lifton R.P., Gharavi A.G., Geller D.S. (2001). Molecular mechanisms of human
hypertension. Cell. Vol. 104(4), pp. 545–556.

[2] Abbate R., Sticchi E., Fatini C. (2008). Genetics of cardiovascular disease. Clinical
Cases Miner Bone Metab. Vol. 5(1), pp. 63-66.

[3] Favorov A.V., Andreewski T.V., Sudomoina M.A., Favorova O.O., Parmigiani G.,
Ochs M.F. (2005). A Markov Chain Monte Carlo technique for identification of
combinations of allelic variants underlying complex diseases in Humans. Genetics.
Vol. 171(4), pp. 2113-2121.

[4] Gilks W.R., Richardson S., Spiegelhalter D.J. (1996). Markov Chain Monte Carlo
in Practice. Chapman & Hall, London.

299



BIOINFORMATICS ANALYSIS OF
M.TUBERCULOSIS WHOLE-GENOME

SEQUENCES

R. S. Sergeev1, I. S. Kavaliou, A. V. Tuzikov, M. V. Sprindzuk
United Institute of Informatics Problems

Minsk, BELARUS
e-mail: 1roma.sergeev@gmail.com

Abstract

Here we consider analysis of variations in M.tuberculosis genomes and dis-
cover methods for genome-wide association studies which allows identifying drug-
resistance mutations in microorganisms. Alterations in genomes are among the
main mechanisms by which pathogens exhibit drug resistance. Analysis of the
reported cases and discovery of resistance-associated genetic markers may con-
tribute greatly to the development of new drugs and effective therapy manage-
ment.

1 Introduction

Two billion people worldwide are thought to be infected with latent form of tuberculosis
(TB). Around 5-10% of these individuals will develop an active TB disease. There
are big challenges associated with emergence and development of multi drug-resistant
(MDR) and extensively drug-resistant (XDR) tuberculosis [1]. While MDR-TB is
difficult and expensive to treat, XDR-TB is virtually an untreatable disease in most of
the developing countries.

There are several lines of drugs applied in basic antituberculosis therapy. First-line
drugs are used in standard course of treatment for newly diagnosed TB cases or fully
sensitive organisms, while treatment of resistant TB requires many different drugs and
therapeutic approaches. The most common causative agent of tuberculosis in humans is
Mycobacterium tuberculosis. MDR-TB is defined as M. tuberculosis strains resistant at
least to the two most important first-line drugs: rifampicin (RIF) and isoniazid (INH).
XDR-TB is MDR-TB strains additionally resistant to a fluoroquinolone (FLQ) and a
second-line anti-TB injectable agent such as kanamycin (KANA), amikacin (AMIK),
or capreomycin (CAPR).

M. tuberculosis has devoted a large part of its genome towards functions that allow
it to successfully establish progressive or latent infection in the majority of infected
individuals. We analyzed 136 tuberculosis whole-genomes from Belarus for the known
high-confidence drug-resistance mutations presented in TBDreamDB database [2] and
investigated statistical methods for searching genetic variations that explain the ob-
served resistance to the first-line and second-line drugs.
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2 Materials and Methods

We included 17.7% of drug-sensitive, 10.3% of MDR, 22.1% of preXDR, 27.2% of XDR
and 19.9% of totally drug-resistant M. tuberculosis strains in the analysis. Illumina
HiSeq2000 instruments was used for sequencing at the Broad Institute (USA). Two se-
quencing libraries were created to capture genetic variations for each sample: fragment
library with 180bp insert size and jumping library with 3-5kb insert size. Paired-end
reads were mapped to H37Rv reference genome (GeneBank accession NC 018143.2) to
identify variants. Pilon software [3] was used for variant detection to capture single-
nucleotide polymorphisms (SNPs) and indels. We have repeated mapping and variant
calling steps applying different reference genomes that represented most common ge-
netic families.

We used RAxML software [4] to reconstruct the phylogeny under general time re-
versible model. We estimated single nucleotide polymorphisms arising in the phylogeny
using maximum-likelihood ancestral site reconstruction.

For digital spoligotyping the reads were mapped against 43 spacer sequences and
frequency was tallied. Background null model for the expected coverage was made from
the total sequencing data using an exponential distribution under the assumption that
more than 90% of the reads align. The Benjamini-Hochberg correction was applied
to p-values calculated for frequency and when significant, the marker was reported as
present.

Finally, we performed association analysis to check for significant differences be-
tween DNA sequences isolated from drug-resistant (cases) and drug-susceptible (con-
trols) organisms. Here we first focused on 24 candidate genes and their promoter
regions selected based on extensive literature mining. To characterize every reported
SNP, we showed how many true positives, true negatives, false positives and false neg-
atives occurred for each drug, assuming that the ideally discriminating SNP would be
found in 100% of resistant genomes and 0% of sensitive genomes (or vice versa).

We applied a series of tests from multifactor statistical analysis to investigate signif-
icant SNPs in the whole genomes: regularized logistic regression [5], linear mixed model
(LMM) [6] and mode-oriented stochastic search (MOSS) [7]. Elastic net regularization
showed most relevant results in logistic regression approach encouraging a grouping
effect, when strongly correlated predictors tend to occur together in a produced sparse
model. LMM allowed correction for population structure due to the random effect of
the linear mixed model that was calculated based on kinship/relatedness matrix. The
MOSS algorithm, which is a Bayesian variable selection procedure, identified combi-
nations of the best predictive SNPs associated with the response after searching for
the best hierarchical log-linear models with the number of factors k ∈ [2, 5]. We used
cross-validation (CV) procedure for parameter tuning and calculating generally ac-
cepted metrics to evaluate the quality of predictions: precision, recall, F-measure (the
weighted harmonic mean of precision and recall) and accuracy.

However, results of drug-association tests may include pairs of correlated mutations
with high and low association scores within the same pair. We used feature relevance
network (FRN) [8] to take into account correlations between mutated sites so that any
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highly correlated mutations should be either significant or not significant. Pearson
coefficients of correlation were used to estimate linkages between loci. The algorithm
searches for a minimum cut in a graph of a special structure that reflects relationships
in data. Eventually this graph cut splits SNPs into subsets of significant and non-
significant. We used F-measure within a validation procedure to measure accuracy of
classification after FRN correction.

3 Results

Genotype/phenotype association tests have resulted in the lists of high-confidence mu-
tations associated with drug resistance. Mutations were ordered according to their
significance score for each drug and annotated using NCBI database. MOSS and LMM
methods provided the smallest number of significant variations with sufficiently good
classification quality. Regularized logistic regression showed the best results but pro-
duced much larger lists of drug-associated SNPs, even after the second run on the
reduced SNP lists, which might indicate inclusion of noise characteristics in the re-
sulting sets. However, most methods agreed in assigning the highest scores to the
genetic markers probed by the Genotype MTBDRplus, MTBDRsl (HAIN Lifesciences,
Germany) line-probe assays (Table 1). After FRN-based selection procedure, long mu-
tation lists were halved for most genotype/phenotype association tests without serious
loss in F-measure of classification.

Table 1: Top significant drug-resistance mutations according to each method

Drug SNP
position

RFN-
supported

MOSS:
inclu-
sion

proba-
bility

LMM:
Bonferroni
corrected
p-value

Logistic
regression:
normalized
coefficient

Annotation

INH 1673431 + - 3.72× 10−3 0.09 inhA promoter
INH,
RIF

2155175 + 1.00 5.84×10−15 1.00 katG

RIF,
INH

761158 + - 1.28×10−18 0.52 rpoB

INH,
RIF

3842469,
3842475

+ - 1.29× 10−2 0.84 PPE family
protein PPE57

FLQ 7570 + 1.00 3.73× 10−1 0.83 gyrA
FLQ 7582 + 1.00 4.0× 10−3 1.00 gyrA
AMIK 1473252 + 1.00 1.4× 10−18 1.00 rrs
CAPR 1473252 + 1.00 3.67×10−10 1.00 rrs

We have run the association tests for the second time for each drug where known
high-confidence resistance mutations were excluded from the analysis. This approach
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was intended to determine more robust scores for mutations which appeared not very
significant but correlated to the most significant SNPs. We showed that the exclusion of
a few significant SNPs did not change the other scores dramatically. For example, the
MOSS algorithm populated resulting sets of most promising log-linear models with a
bulk of middle-quality models and lower SNP-inclusion probabilities. Correction of the
significance scores using feature relevance network after the second run demonstrated
a notable loss in predictive power of the remained SNPs in comparison to the first run.

4 Conclusion

We discovered methods for genome-wide association studies and developed an approach
that allows identifying drug-resistance mutations in microorganisms. We analysed 136
tuberculosis whole-genomes from Belarus to investigate SNPs asociated with resistance
to the most important drugs. This approach is used in the current research project to
establish the Belarus tuberculosis portal (http://tuberculosis.by) and conduct compre-
hensive study of the obtained MDR and XDR TB strains. Prototype of the genomic
portal for processing tuberculosis data is available at http://tb-portal.esy.es.
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1 Introduction

Biological cells are open, dynamic self-organizing microsystems that exchange matter,
energy and information with their environment. Performing their physiological func-
tions, the biological cells interact with other cells, vessel walls and macromolecular
complexes when as a rule they are subjected to mechanical stress.

The cell surface properties including its structural and mechanical properties are im-
portant parameters of cell state and functioning. Because the change of the cell surface
properties occurs during the pathological processes, the qualitative and quantitative
cell surface characteristics can be markers of cell health and pathology.

Atomic force microscopy (AFM) is one of the modern methods for studying solid
surface structure and properties. AFM has tremendous advantages over electron mi-
croscopy (including scanning electron microscopy), as it allows working with objects
directly both on air and in various fluids. Atomic force microscopes are widely used
in many fields of science and technology: biophysics, biochemistry, materials science,
pharmaceutics, surface physics, electronics and others. Nowadays AFM is used in
studying the biological cells and tissues as well.

AFM provides the images of topography (topography scan mode) and spatial distri-
bution of local physical and mechanical properties (torsion scan mode) of the studied
surface with nanometer resolution (Figure 1).

AFM-image of a cell surface is a set of points with three coordinates (x, y, z) that
represents either a topography map (in this case x, y and z are positions of the surface
points) or map of local physical and mechanical properties (in this case x, y are positions
of the surface points and z is a force value in the certain point).

The dimension is an important parameter of the surface of objects. Real surfaces are
characterized by fractal (fractional) dimension. There are various methods to calculate
the fractal dimension: box-counting method, power spectrum method, hand and drives
method and others [1]. Each method has its own features that limit its usage.

The work aims at studying the relationship between the fractal dimension and
geometrical parameters of AFM images of real biological cells and model surfaces.
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Figure 1: AFM images (a, b) and profiles (c, d) of 549 cancer cell surface (scan size is
2.5µm× 2.5µm).

2 Methods

The main method we used to calculate the fractal dimension is box-counting method
[2,3]. It based on the following formula:

DF = − lim
ε→0

logεN(ε), (1)

where N(ε) is minimal number of cubes with edge ε that cover together the required
surface.

To find the fractal dimension (DF ) the system of equations had to be solved:

lnN(ε) = lnC +DF ln ε, (2)

where the number of equations is larger than the number of unknown variables. The
system often has no exact solution and, therefore, is solved numerically.

In the present work, the mentioned above method was realized on C++ program-
ming language using Borland C++ Builder IDE and STL library.

The implementation of the algorithm included the following steps. The spatial
region with the studied surface was divided by the cubic lattice with cube edge ε
(initially set as a half of the studied region size). Then the number of cubes N(ε) that
included at least one point of the surface was calculated. The cube edge ε was reduced
by two and the process repeated in loop until cube edge became less than a constant
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depending on AFM scanning step. At each step of loop pairs lnN(ε) and ln ε were
added to resultant array. The plot lnN(ε) against ln ε was approximated with a line
which slope was equal to surface fractal dimension DF .

We used also the modified box-counting algorithm. The surface was divided into a
few (from 2 to 8) equal fragments and the fractal dimensions were calculated for each
fragment using box-counting algorithm. Then the fractal dimension for the whole sur-
face was calculated using the sample of DF and represented as the mean and confidence
interval limits.

3 Results

We analyzed the change of fractal dimension with the change of the scale factor for
axis Z (Z-scaling). The problem of the change of the object dimension during scaling
has been recently reviewed by Simon Villerton in two-dimensional case [4]. In the
present work, the analysis of the dependence of the fractal dimension on Z-scaling was
performed in the following way: the data along axes X and Y were not changed but
the data of axis Z was multiplied by factor t changed over a broad range of values. DF

of the whole surface was calculated for each value of factor t (scaling factor for axis Z):

DF = φ(t). (3)

Various modeling surfaces have been generated for the qualitative analysis of the
dependencies: plane surface, plane surface with a finite number of Gaussian peaks,
wave surfaces Z = H sin(ω

√
x2 + y2) and Z = H| sin(ω

√
x2 + y2)|. The changes in

DF = φ(t) with the changes of frequency, amplitude and other surface parameters were
found and analyzed.

Figure 2: Dependence DF = φ(t) for torsion and topography scans of erythrocyte
surface.
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For the erythrocyte surface (Figure 2)DF at the smaller values of t tends to 2 (plane
surface) and at the larger values of t tends to 1 (line). In the intermediate range of t,
function DF = φ(t) has some maxima. The results of the performed analysis has shown
that the parameters of dependence DF = φ(t) was qualitatively related to the type of
elements of the surface. For example, if the first peak in curve DF = φ(t) was higher
than the second peak, the studied surface had the frequent small-scale heterogeneities,
and if the second peak was higher than the first peak, the surface was relatively smooth
with a few large-scale heterogeneities.

4 Conclusion

Dependence DF = φ(t) is a characteristic of AFM images of surfaces (including the
surfaces of biological cells), which describes the surface features better than a single
value DF .
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Abstract

The technology of knowledge representation based on mivar network and
its matrix representation are considered. The mechanism that allows to design
computational algorithms of solutions of assigned tasks on the basis of data from
mivar networks is described.

1 Introduction

Development of artificial intelligence (AI) systems is an important and quite a topical
task of today. Such system types as expert systems, text meaning understanding,
image recognition, robotic systems aim to change the life of a modern man. However,
it should be noted that currently available intelligent systems are designed to support
regular user groups to solve highly specialized tasks. Thus, design of theory, methods
and technologies of AI remains an urgent task for development of intelligent systems.
Moreover, it becomes increasingly important [3].

As mentioned above, available intelligent systems aim to solve highly specialized
tasks, since building and using knowledge bases that provide the foundation for such
systems requires costly human and material resources. Thus, the developers of intel-
ligent systems face a wide range of difficulties. Knowledge representation and search
are the two fundamental problems that still occupy developers of intelligent systems.

Knowledge representation models should provide a simple mechanism of data de-
scription and development of the knowledge bases which are required to implement
intelligent behavior of such systems. On the one hand, representation method should
make the knowledge understandable for machine, on the other hand it should ensure
easy description of knowledge structure for its developer. Therefore, in the process of
development different knowledge representation models, two aims are pursued: expres-
siveness and efficiency. Moreover, such systems should ensure the most natural way of
knowledge representation. Nowadays, there is a large number of approaches to data
representation: predicate description, semantic networks, production rules, as well as
neural-networking, evolutionary, agent-oriented and stochastic approaches to represen-
tation, and many others [2]. All these approaches aim to reach a fair compromise
between efficiency and expressiveness of representation.

In this paper mivar-based technology of knowledge representation is considered. It
is aimed to simplify knowledge acquisition and accumulation since there is no necessity
in experts involvement and logical inference methods changing [1, 4]. More than that,
mivar-based technology of data processing is proposed, which aims to increase the

308



speed and quality of acquiring results. Since the problems of knowledge representation
and search are interconnected, an intelligent system should not only be aware of the
subject, but also be able to solve tasks set in the subject domain.

Mivar technologies were used in development of such AI systems as: text meaning
understanding, image recognition, robotic systems and expert systems.

2 Mivar knowledge representation technologies

The concept of mivar network is one of the basic concepts of the proposed mivar-based
approach to data representation. It is mivar network that ensures formalization and
representation of human knowledge. Let us consider a subject domain M .

Mivar network - the method of representing objects of the subject domain and rules
of their processing in the form of a bipartite directed graph consisting of objects (P )
and rules (R). These objects and rules together form the model of the subject domain.

Mivar network has the following significant properties:

1. The network consists of the elements of two types (two partitions of the graph):
the nodes – objects (P ) and the arcs – rules (R).

2. For each variable all the information is stored in explicit form about all the rules
R, for which it is an input variable X or an output variable Y with the indication
of that;

3. For each rule R information about all its input and output variables P is stored
in explicit form, including the information about the number of input (X) and
output (Y ) variables;

4. The storage of all the necessary information of such a network is organized on
the basis of database technologies adapted to operate with mivar networks;

5. In each element of the mivar network, being node or arc, all the adjacent arcs
and nodes are determined coherently and completely. Being in any place of mivar
network, it is always obvious from where can we move to it and to where we can
move from it, which eliminates brute forcing while searching for logical inference
on the mivar network.

Bipartite graph of mivar network can be represented in the form of two-dimensional
matrix (P )×(R), where n is the number of parameters (objects) of the subject domain,
m is the number of rules connecting objects (see Table 1).

Mivar network is constructed by binding aggregates of different types according
to the following: ”object-rule” and ”rule-object” . Interconnection such as ”object-
object” and ”rule-rule” are forbidden. In general form the interconnection is as fol-
lows: ”object(s)-rule-object(s)” . The element from which the interconnection goes is
indicated first. The element to which the interconnection moves is indicated second. It
allows us to determine direction of the graph and exclude possibilities of misinterpret-
ing or converting objects through backtracking. Designed in such a way, mivar network
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Table 1: Matrix representation of mivar network

Rules
Parameters

1 2 3 4 5 . . . n−2 n−1 n

1 X X X Y Y

2 X Y Y X X

. . . . . .

m X X X Y

is scalable, as at any time it is possible to add elements of aggregates of any types avail-
able without the necessity to change processing methods. Moreover, describing mivar
network does not require the involvement of an expert. In most cases it is sufficient to
move objectively existing objects and connections (rules) in the mivar form.

As an example let us consider the subject domain ”Geometry. Triangles” . Here as
variables are any sides, angles, segments of the triangle. Rules are different intercon-
nections between these variables such as definitions, theorems, axioms, etc. The part
of mivar network of the considered subject domain is represented in the form of the
matrix M (see Table 2).

Table 2: Part of the mivar network. Geometry

Rules
Parameters side

AB
side
BC

side
AC

Perimeter . . .
AB is ..
greater
than BC

AC is ..
greater
than BC

The perimeter of the tri-
angle (using the lengths
of three sides)

X X X Y

The side BC (using the
perimeter and the ratios
of the sides)

Y X X X

The side AC (using the
ratio of the sides)

X Y X

The side AB (using the
ratio of the sides)

Y X X

3 Reasoning

On the basis of subject domain representation described above it is possible to design
an algorithm allowing us to implement information search inside the mivar network,
set open and hidden interconnections between data inside mivar network, construct
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computational algorithms of the set task in corresponding subject domain on the basis
of data from mivar network. Such a methodology for searching logical inference path
allows us to avoid brute forcing of all possible rules on each step. This algorithm
includes forming aggregates of known parameters and setting one or more required
parameters, then the processing for each known parameter (which was not processed
before) is carried out to find required parameters. This processing involves the following
stages:

– determines rules (which were not launched before) in which, firstly, known pa-
rameter serves as the input variable and secondly, all other variables are known;

– launch these found rules and add output variables of launched rules to the ag-
gregate of known parameters; moreover, if all the required parameters are found, the
processing is stopped;

– design the sequence of launched rules in the order of launching, thus, the designed
sequence is logical inference path.

Let us illustrate the basic variant of the scheme described above using a simple
example from the subject domain ”Geometry. Triangles” . To do this are given steps
of the solution of the following task from this subject domain: It is needed to find the
lengths of the sides AB and AC of the triangle ABC, if the perimeter of triangle is 28
cm, the side BC is 4 cm less than AB and 9 cm less than AC. It should be noted that
in the task described above input parameters (Z) are the perimeter of the triangle and
the ratios between the sides of the triangle. It is required to find (W ) – the sides AB
and AC of the triangle ABC. This information can be presented in the matrix M – to
do this let us add an additional service row and a service column to the matrix. The
row is designed to track the changes in known data. The column is designed to track
the rules used. The result of the first step of working with mivar matrix is represented
in Table 3.

Table 3: The mivar matrix after first step.

Rules
Param. side

AB
side
BC

side
AC

Peri-
me-
ter

. . .
AB is ..
greater
than BC

AC is ..
greater
than BC

service
col-
umn

Perimeter of triangle
(using lengths of three
sides)

X X X Y

Side BC (using
perimeter and ratios
of sides)

Y X X X

Side AC (using ratio
of sides)

X Y X

Side AB (using ratio
of sides)

Y X X

Service row W W Z Z Z
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According to the mechanism described above, on the second step the rule ”The
side BC using the perimeter and the ratios of the sides” can be launched, which is
indicated in the corresponding cell of the service column. Output of the rule after
launching indicated as known variable Z. The results of this step are represented in
Table 4.

Table 4: The mivar matrix after second step.

Rules
Param. side

AB
side
BC

side
AC

Peri-
me-
ter

. . .
AB is ..
greater
than BC

AC is ..
greater
than BC

service
col-
umn

Perimeter of triangle
(using lengths of three
sides)

X X X Y

Side BC (using
perimeter and ratios
of sides)

Y X X X X

Side AC (using ratio
of sides)

X Y X

Side AB (using ratio
of sides)

Y X X

Service row W Z W Z Z Z

In another words, by doing corresponding actions, we obtain the following algorithm
to solve the set task: ”The side BC using the perimeter and the ratios of the sides”
−→ ”The side AC using the ratio of the sides” −→ ”The side AB using the ratio of
the sides” .

The described mechanisms of information representation and information processing
allow us to reduce the number of experts involved to develop AI systems and simplify
subject domain descriptions, which allows to describe them more fully.
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