GENERAL PARAMETRIC SCHEME FOR THE UNIFORM SCHEDULING PROBLEM WITH TWO DIFFERENT SPEEDS

A. Dolgui1, V. Kotov2, A. Quilliot3, A. Nekrashevich2

1Ecole des Mines de Nantes IRCCYN
Nantes, France

2Belarusian State University
Minsk, Belarus

3LIMOS, UMR CNRS 6158, ISIMA
Aubiere, France

e-mail: alexandre.dolgui@mines-nantes.fr, quilliot@isima.fr, kotovvm@bsu.by, nekrald@gmail.com

We consider the Online Uniform Machine Scheduling problem on m machines in the case when speed $s_i = 1$ for $i = m - k + 1, \ldots, m$ and $s_i = s$, $s > 1$, for $i = 1, 2, \ldots, k$. We propose a parametric scheme with worst-case behavior 2,618 when $1 < s \leq 2$ and with asymptotic worst case behavior $(1 + s + \sqrt{5 - 2s + s \ast s})/2$ for all s when ratio m/k tends to infinity. Moreover, some computation approaches are studied.

Keywords: online algorithm; uniform machine scheduling; worst-case behavior.
INTRODUCTION

In this paper, we study the classic problem of scheduling jobs online on \(m \) uniform machines \((M_1, M_2, \ldots, M_m) \) with speeds \((s_1, s_2, \ldots, s_m) \) without preemption: jobs arrive one at a time, according to a linear ordering (a list) \(\sigma \), with known processing times and must immediately be scheduled on one of the machines.

In the case of uniform machines Cho and Sahni [1] proved that the LS algorithm has a worst-case bound of \((3m-1)/(m+1) \) for \(m \geq 3 \). When \(s_i = 1 \) (\(i = 1, \ldots, m-1 \)) and \(s_m = s > 1 \), Cho and Sahni also showed that the LS algorithm has a worst-case bound \(c \) of \(1 + \left(\frac{m-1}{\min(2, s)(m + s - 1)} \right) \leq 3 - 4/(m+1) \), and the bound \(3 - 4/(m+1) \) is achieved when \(s = 2 \).

Li and Shi [3] proved that the LS algorithm is the best possible one for \(m \leq 3 \), and proposed an algorithm that is significantly better than the LS algorithm when \(s_i = 1 \) (\(i = 1, \ldots, m-1 \)) and \(s_m = 2 \), \(m \geq 4 \). The algorithm has a worst-case bound of \(2^{8795} \) for a big \(m \). Some results in case of fixed number of machines can be found in [4–6]. The worst-case behavior of all previous algorithms occurs when \(m \) tends to infinity.

A PARAMETRIC SCHEME

We denote by \(J_j \) the \(j \)th job in the list \(\sigma \), and say that job \(J_j \) arrives at step \(j \) according to \(\sigma \). We denote by \(p_j \) the processing requirement time of job \(J_j \). If job \(J_j \) is assigned to machine \(M_i \), then \(p_j/s \) time units are required to process this job.

We introduce the notation:
- \(m \) denotes the total number of machines;
- \(k \) denotes the number of machines with a speed \(1 < s \leq 2 \), \(k \) is a constant;
- \(L_{ij} \) the current load of machine \(i \) before assigning job \(J_j \);
- \(L^*_{ij} \) the current load of machine \(i \) after assigning job \(J_j \);
- \(V_j \) the theoretical optimal makespan for jobs \(J_1, \ldots, J_j \) (set \(J(j) \)).

It is easy to check that, if we denote by \(q_1, \ldots, q_j \) the processing time of the jobs of \(J(j) \), sorted in decreasing order \(q_1 \geq q_2 \geq \ldots \geq q_j \), then we may state:

Property 1. The following inequalities hold:
- \(V_j \geq (q_1 + q_2 + \ldots + q_j)/(m-k+s\cdot k) \);
- \(V_j \geq q_1/s \);
- \(V_j \geq \min \{ q_{(z-1)k+1}, q_{(z-2)k+1} \ldots, q_{(z-1)k+s} \}/s \).

\(LB_j \) is a lower bound for the optimal makespan and \(LB_{j-1} \leq LB_j \)

THE ONLINE ALGORITHM ASSIGN

We suppose now that some positive number \(\alpha \) is given together with three integral numbers \(R, m_1 \) and \(m_2 \) in such a way that:

\[
\begin{align*}
(B-1)s\cdot k + (1-\varphi) s \cdot m_1 & \geq s \cdot k + m_1 + m_2, \\
k + m_1 + m_2 & = m, \\
m_2 & = R \cdot (z-1) \cdot k, \\
(1-\varphi) \cdot B & \leq (\varphi \cdot B)^R \cdot (B-s)
\end{align*}
\]
\[z - 1 < s \leq z, \]
(5)\[
\phi \in [0,1], k, m_1, m_2, R, z \in \mathbb{N}. \]
(6)

We split the machine set into three classes:
machines with speed \(s \) are called \textit{Fast};
we pick up \(m_2 \) machines among the \(m - k \) machines with speed 1 and call them \textit{Normal};
the \(m_2 \) remaining machines with speed 1 are called \textit{Reserved}.

By the same way, we say that job \(J_j \), which arrives at step \(j \) is:
\textit{Small} if its processing time \(p_j \) is no greater than \(\phi \cdot B \cdot LB_j \);
\textit{Large} otherwise.

We say that job \(J_j \) fits with machine \(M_i \), \(i = 1, \ldots, m \), if
\[L_{i,j} + p_j/s_i \leq B \cdot LB_j. \]

For the purpose of algorithm description we would separate \(m_2 \) processors onto the groups \(G_1, \ldots, G_{m_2} \). Every group consists of \((z - 1)k \) processors. The processors are numbered from 1 to \((z - 1)k \) within the group.

The main idea of the algorithm is to guarantee the following property: in case when big job does not fit any of the machines from classes \textit{Big} and \textit{Normal}, it would fit to one of the machines from class \textit{Reserved}.

Algorithm is build on the basis of any solution for the system (1–6). Initialize \(u = 1 \). Then do the following steps for each new job \(j \):

1. Recalculate lower bound \(LB_j \) for the job \(j \) according to 1.
2. If the job \(j \) fits into one of the processors in classes \textit{Fast} or \textit{Normal}, then assign it there and go to the next job.
3. This instructions are executed only if \(u \leq (z - 1)k \). Assign the current job onto machine with number \(u \) in \(G_1 \); denote this processor by \(g_u \). Denote by \(i \) the machine from class \textit{Normal} with minimal current load. Switch classes for processors \(g_u \) and \(i \), i. e. machine \(i \) substitutes in the group \(G_1 \) machine \(g_u \) with the number \(u \) within the group, and moved to the class \textit{Reserved}. Correspondingly, \(g_u \) moves to the class \textit{Normal}. After that increment \(u \) with \(u := u + 1 \).
4. In case we have \(u > (z - 1)k \) after the previous step, move group numeration \(G_1, \ldots, G_{m_2} \) cyclically left onto 1. I. e. the group \(G_r \) becomes \(G_{r-1} \) if \(r > 1 \), and group \(G_1 \) becomes \(G_{m_2} \). Afterwards set \(u := 1 \).
5. Move to the next iteration and the next job, if there is any.

\textbf{Property 2.} If big job does not fit onto the processor \(i \) from class \textit{Fast}, then \(L_{i,j} \) is strictly greater than \((B - 1) \cdot LB_j \).

\textbf{Lemma 1.} For each step \(j \) of the algorithm either exists Fast processor \(i \) with load \(L_{i,j} \leq (B - 1) \cdot LB_j \), or Normal processor \(i \) with load at most \((1 - \phi) \cdot B \cdot LB_j \).

\textbf{Property 3.} The system (1–6) have always a feasible solution with fixed \(k, m, s \).

\textbf{Theorem 1.} For any fixed \(m, k, s \) the system (1–6) has at least one solution \((B, m_1, m_2, z, R) \). For any solution of the system the algorithm built upon it is \(B \)-competitive.

\textbf{LITERATURE}