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AMJIED ABO-1ZREIK, AZMI K. AL-MADI (lordan)

ON TRANSILATIVITY OF ABSOLUTE ROGOSINSKY-BERNSTEIN
METHODS OF DIFFERENT ORDER*

B cratee «O mipeobpazoBaHM aOCOMOTHBIX MeTONOB Poro3utckoro - bepHinrreiiHa pa3mmaHo-
IO TOpsIIKa» PacCMOTpeHa IMpobiieMa Tpeodpa3oBaHmsi adCOMIOTHOIO MeTona cymMmupyemocTu Po-
ros3uHcKoro - bepHiureiina (B, ) pa3IMYHBIX TTIOPSIIKOB /A, 1,

h-re[1/2, 1]. YcraHoBineHo, 4TO KO-
rma 1/2<h-r<1 u h—r=1/2, 10 |B}, ,| MOXeT GBITH TTPEOOPA3OBAHO.

A series avtai+a.+ ... of real or complex terms a. with its partial sums

n

S
method (B, ;) of order 4 and r; h—re [0, 1], if t,—t as n—oo, where

1 (k+ rm
(B, , t, = cos——— | a,. 1
hr) g{ 2(n+h)} ! (1

The series is evaluable to M by the Ceasa'ro mean of (C, 1), if M,—M as n—eo,
where

1 1
1y M=—>3S,. 2
C D M=—o Z . 2)
The series is evaluable to g by the method (IV), if g,—g as n—eo, where

™) g= So+ S, +.+s, P 3)
n+l 2 (n +1)

The series is absolutely summable (B, ;) or summable |By, | if the sequence {#.} is of
bounded variation; that is to say, if

Pt ~ta| = 0(1); 1,2 =0. )

n=0
Similar definition for the series being absolutely summable (C, 1) or (IV).

A sequence-to-sequence method (A) is called translative to the left, if the
limitability of si, s2 . s, implies the limitability of 0, s, ..., s.1, to the same limit,
it is translative to the right, if the converse holds. (A) is translative if and only if,
(A) is translative to the left and right.

On translativity much work have been done already; see [2, 3, 6, 8, 12, 13]. The
special case in which =0, the method given in (1) reduces to a well-known method
(B:) which had been the subject of the papers published in [1, 9-11, 16], and on
absolute method of (B:) was the subject of the papers by Azmi Al-Madi; see [4-6].

* TekcT cTaTbyl IMyOJIMKYETCsl B aBTOPCKOM peIaKIInm.
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1. Object of the paper
In [8; Theorem (4.1)], Al-Madi investigated the translativity of |(By)|; 1/2< h <I.
In this paper we will prove analogous result to Al-Madi [8] for [By, .|; 1/2<h—r<1.
These results will be more general than that done by Al-Madi [8].
2. Subsidiary results
This section is devoted to results that are necessary for our proposes:
Theorem 2.1 ([7, Theorem (3.2)]). Ifh-r>1/2, then |By, | and |C, 1| are equivalent.
Theorem 2.2 (Mears [14]). The sequence-to-sequence transformation

tn = Z‘An.k Sk (5)
k=0

is absolutely regular if and only if
2‘47:, . converges for every n, (6)

k=0

and

o

2 iA"vl‘ _iArHI.u':Ou)' (7)

n=0|u=k u=k
Theorem 2.3 (Parameswaran [15, Theorem (4)]). If the sequence-to-sequence
transformation given by (5) is regular and absolutely regular, and if

k
2 Ak,i - An—Li

i=n

oo

A= 3

k=n+1

>A>0, (8)

Soralln; n=0, 1, 2,.... then the transformation given in (5) is equivalent to absolutely
ineffective.
3. Main results
In this section we present and prove our main results:
Theorem 3.1 If1/2<h-r<1, thds, ) istranslative.
Theorem 3.2 If h-r=1/2, #Ben,| istranslative.
Proof of theorem 3.1. Let {M.}, {M n} be respectively the (C, 1) transforms of

{8}, {S,-1}. Using (2) to find M .. in terms of M,. The result is

n+l

M}Hl = Zan,kMk > (9)
k=0
where
n+1
= , 10
mop42 (10
oy, 1=0 otherwise. (11)

Using (10) and (11), one can easily checked that (6) - (8) are all satisfied, and theo-
rems (2.2) and (2.3) imply that |C, 1| is translative, and theorem (2.1) implies result.

Proof of theorem 3.2. To obtain the result, it is enough to show that || is transla-
tive and that when 4-r=\[2, then |B), ,| and |N| are equivalent.

Write (3) in the form

gnzan,kSk’ (12)

k=0
p— (13)

S 2(n+1)’
where |

B,,=— 0<k<n-1 (14)

' n+1
and B,.:=0 otherwise. (15)
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One can easily checked (6) and (7) are satisfied and theorem (2.2) implies that (V) is
absolutely regular. Next, assume that {g.} and {E,,}be respectively the (N) trans-

forms of {S.} and {S,_;}. Using (3), we have

o = Dbk i (16)
k=0
where
n+l
= , 17
R 7 ) 17
b, 1=0; k#n, (18)

condition (8) follows at once from (17) and (18), and theorem (2.3) implies that |N] is
translative.
Finally, to show that when A-r=1/2, |B, | and IN| are equivalent, we write

a, =S, =S, (k+l)M —2kMk,+(k—1)Mk2, (19)
where
Sj=Mj=0; Jj==1,=2,.., (20)
1
=—— oM _ +(n+1)M |, 21
gu 2(”+1)|:I’l n-1 (n ) n:| ( )
and T ~9 22)
4(n+h)

to put (1) in the form i
2 nk gk’ (23)

k=0
wn =2(n+1)sin0,, 24)
where F,,=-4(k+1)sec, sin’ 6, cos(2k +2r+1)0,; 0<k<n-1,  (25)
F, ., =0 otherwise. (26)

The result would follow from theorem (2.2), (26) and theorem (2.3) if we show
that the condmons (6) (8) are all satisfied.
F, . =-2cos2r0, secO, sin’ 0, {dein (2k +1)6, +cos(2k +1)0, } +

’ 27
+2sin 270, secO, sin’ 0, l:—%cos(ﬂc +1)0, +sin(2k +1)0, },

n

and using the facts that Zsm 2k + 1) 0, sm “no, 28)
k=0 sin@,
sm 2n0,
cos(2k +1 29
2 ( )®. " 2sin 9,1 @9
and _ cos0, 30)
2sin@, ’

it follows from (24) - (30) that
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1 . £ .2 e
Y F,, =2(n+1)sin0, —2sec, sin’0, {cos2r9, —4—31.11 0, + CO_S |+
k=0 df, sinf, 2sin0,

(31)

: d cos®  sin’n@

+8in2r 0, | ————Lm . |},

do, 2sin®,  sin6,

3 F,,—1asn—e (32
k=0
and condition (6) is satisfied.
As for (7) use (24) - (26), we see that the left hand side of (7) is equal to

Yk+ 2 Dn.k_Dn-H,k’ (33)

n=k+l1

where ¥, is bounded for all &, and

n n k=1
Du,k :2E1,Ll :21:)1,“ _Z‘Fn,u = (34)
u=k u=0 u=0
=1+(2k +1)secO, cos2kr 8, sin®, sin2k 6, —2cos2kr 0, sin’k 6, = (35)

= £ (8,), say. (36)

This shows that D., « is of bounded variation in k, uniformly in n2k+1, and thus (7) is
satisfied.
Finally, using (24) and (36), we see that the left hand side of (8) is equal to

2(n+1)sing, - 3 |£,(0,)- 1, (0,..)- 37)

k=n+l1

Differentiate, and use the mean value theorem, we see that f,(0,) is a decreasing
function when « increases for all k2n+1. Therefore (37) reduces to
2(n+1)sin®, + £,(0,)£,(8,); j>n’. (38)
which by (35) reduces to
2(n+1)sin®, +(2n+1)sec8, cos2nrf; sinH, sin2n0, -

~2cos2nrf;sin’ n6; — (2n +1)sech, cos2nrd, sin6, sin2nh, + (39)

+2cos2nrd,sin’ nb,;  j>n’,
S 1-Z s> 0, (40)
2 2 2

for every value of , and (8) is satisfied. This completes the proof.
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[Moctynuna B penakimio 10.03.05.

Amnced Abo-Hzpeux - noueHT Kadenpbl MaTeMaTMKM (haky/bTeTa eCTECTBEHHBIX HAyK YHMBEPCH-
Teta An-3aittyHax (Amman, Mopnanus).

Asmu K. Atv-Madu - nonieHT Kadenpbl MaTeMaTUKY (aky/IbTeTa eCTeCTBEHHBIX HayK YHIBEPCUTETA
An-3aiitynax (Amman, Mopranusi).

Pf(x,0) = [ p(x, 3, DF () du(y)

T.(x,)={(x.0e Xx(0,1]:d(x, x,) <€(t)}. (1)

e(t)=t
Rnﬂ

R"
lim ¢/e(t)
t—+)

W(B(x, 0)=t'(y>0),

d: Xx X—[0, o)

d(x,y)=0&=x=y, d(x, y)=d(y, x),
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