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Abstract: In this paper, we propose a method to remove 

noise in RGB-color (Red-Green-Blue) images. This meth-

od is based on a total variation of intensity function of 

images. We propose to remove a linear combination of 

Gaussian and Poisson noises. This type of noise can be 

used to well approximate real noises in raster images. 

Keywords: mixed Poisson-Gaussian noise, total variation, 

Euler-Lagrange equation, noise removal, denoising. 

1. INTRODUCTION  

In image processing, input image quality usually af-

fects to performance of tasks of image processing. An 

image quality can be considerably reduced by noise. 

The noise removal problem has attracted a lot of atten-

tion in recent years. Many researches denote that real 

noises can be usually well approximated by mixed Pois-

son-Gaussian noise [1-2].  

In practice, the mixed Poisson-Gaussian noise is usu-

ally their superposition. This is caused by natural physical 

process of image formation: Poisson noise is added into 

image first and Gaussian noise is added later. 

In order to remove this superposition of Poisson and 

Gaussian noises, Luisier et al. proposed the effective and 

theoretically strong PURE-LET method [3]. However, 

many parameters need to be evaluated in it. Hence, multi-

ple parameters increase complexity of this method and 

influence to the final quality of processing. 

We suppose that mixed Poisson-Gaussian noise is 

equivalent to a linear combination of Poisson and Gaussi-

an noises. Hence, we propose a method to remove this 

linear combination of noises. This method is simpler than 

the PURE-LET method and includes small number of 

parameters to be evaluated. 

In order to remove noise in grayscale images, we have 

proposed before a model based on total variation of inten-

sity function of images [4-6]. This model is a linear com-

bination of the ROF [7] model to remove Gaussian noise 

and the modified ROF [8] model to remove Poisson noise. 

We use criteria like PSNR (Peak Signal-to-Noise Ra-

tio), MSE (Mean Square Error), SSIM (Structure SIMilari-

ty) for image quality evaluation after denoising [10-11]. 

Denoising results compared with different methods for 

grayscale images have been discussed previously in [4-6] 

and prove to be very good. 

In this paper, we extend the proposed model to re-

move noise in RGB-color images. Additionally, to re-

move noise in non RGB-color images, we can transform 

them into RGB-model [9]. This transformation can be 

done exactly without any errors or with very small ones. 

Hence, in this paper, we discuss RGB-color images only. 

In experiments, we use real RGB-color images with an 

artificial mixed noise for each channel separately. This 

mixed noise is a superposition of Poisson and Gaussian 

noises generated by the MATLAB built-in function im-

noise. 

However, this function usually changes properties of 

that mixed noise, because if the intensity value of a pixel 

after adding noise is out of the interval 0÷255, then the 

imnoise function sets it to 0 or 255.  

Nevertheless, in this case we consider values are to be 

the same with values of corresponding pixels of the origi-

nal image. Hence, we suppose that this mixed noise is 

unknown in general. 

In order to remove noise in color images, we remove 

it in every channel R, G and B separately. Then we com-

bine denoising results of all channels to reconstruct the 

original RGB-color image.  

We can do it because intensity values of every channel 

R, G or B are absolutely independent. Hence, the intensity 

values of pixels  ( , )i j , 
1 2

1... , 1...i N j N   of a color 

image are vectors of three components ( , , )
R G B

ij ij ij ij
u u uu . 

The image quality after denoising is compared with 

the ROF model, the modified ROF model, and the PURE-

LET method only.  

Because the denoising process is implemented for 

every channel separately, we use same notations as in 

previous works for each color channel. In this paper, we 

consider our proposed method to remove noise in a single 

channel (R or G or B).  

Comparison of results is also performed for every 

channel separately by PSNR, MSE, SSIM.  

2. NOISE REMOVAL FOR A SINGLE CHANNEL 

Let a bounded domain 2
  R  be given and functions 

( , )u x y R  and ( , )v x y R  be, respectively, intensity 

values of pixels of a single channel of the original and the 

observed images, where ( , )x y  .  

If the function u  is smooth, then its total variation is 

defined by 

[ ] | |
T

V u u dxdy


  , 

where ( , )
x y

u u u   is a gradient, /
x

u u x   , 

/
y

u u y   , 2 2
| |

x y
u u u   . In this paper, we consider 

that [ ]
T

V u   . 

Many researches denote that the total variation of an 

image intensity function characterizes image smoothness. 

The total variation of a noisy image is always greater than 

the total variation of the corresponding smooth image 

[7, 8, 12]. 

In order to build a model that can remove the combi-

nation of Poisson-Gaussian noises, we solve the optimiza-

tion problem [ ] min
T

V u   with a condition: for a given 

noisy image, we consider the noise variance is unchange-

able (Poisson noise is not changed and Gaussian noise is 

only depends on noise variance): 

ln( ( | ))p v u dxdy const


 , (1) 
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where ( | )p v u  is a conditional probability of observation 

of the real image v  with given the ideal image u . 

The probability density function of Gaussian noise 

with variance 2
  is defined by 

 2 2

1
( | ) exp ( ) 2 ( 2 )p v u v u      , 

and the discrete probability function of Poisson noise is  

2
( | ) exp( ) !

v
p v u u u v  . 

In order to combine Gaussian and Poisson noises, we 

consider the following linear combination 

1 1 2 2
ln( ( | )) ln( ( | )) ln( ( | ))p v u p v u p v u    ,  

1
0  , 

2
0  , 

1 2
1    . 

According to (1), we obtain the denoising problem for 

a single channel: 

*

21

22

arg min | |

( ) ( ln( )) ,
2

u

u u dxdy

v u u v u dxdy





  


  
       

  




  

where   is a constant value. 

We rewrite this problem in another form by using La-

grange functional 
* *

,

( , ) arg min ( , )
u

u L u


   , (2) 

21

2
( , ) | | ( )

2
L u u dxdy v u dxdy

 

 
      


 

2
( ln( ))u v u dxdy




   


 , 

where 0   is Lagrange multiplier. 

3. NUMERICAL SOLUTION OF A MODEL   

In this paper, we use the following result to solve the 

problem (2) [12]. 

Let a function ( , )f x y  be defined in a limited domain  
2

  R  and be second-order continuously differentiated 

by x  and y , where ( , )x y  . 

Let ( , , , , )
x y

F x y f f f  be a convex functional, where 

/
x

f f x   , /
y

f f y   . Then the solution of the fol-

lowing optimization problem 

( , , , , ) min
x y

F x y f f f dxdy


  

satisfies the following Euler-Lagrange equation  

( , , , , ) ( , , , , )
xf x y f x y

F x y f f f F x y f f f
x


 


 

( , , , , ) 0
yf x y

F x y f f f
y





, 

where /
f

F F f   , /
xf x

F F f   , /
yf y

F F f   . 

The solution of the problem (2) satisfies the following 

Euler-Lagrange equation 

 1

22
1

v
v u

u

  
      
  

 

2 2 2 2
0,

yx

x y x y

uu

x yu u u u

   
       
     
   

 

(3) 

where 1/   . We rewrite equation (3) in the form 

 1

22
1

v
v u

u

  
     

  
2 2

2 2 3/ 2

2
0

( )

xx y x y xy x yy

x y

u u u u u u u

u u

 
 


, 

(4) 

where 
2

2xx

u
u

x





, 
2

2yy

u
u

y





,  

xy yx

u u
u u

x y y x

     
     
     

. 

In order to obtain the discrete form of the model (4), 

we use the similar idea that Rudin et al. used [7]. We add 

an artificial time parameter and consider the function 

( , , )u u x y t . The equation (4) corresponds to the follow-

ing diffusion equation 

 
1

22
1

t

u v
u v u

t u

  
       
   

 

2 2

2 2 3/ 2

2

( )

xx y x y xy x yy

x y

u u u u u u u

u u

 



. 

(5) 

Then the discrete form of the equation (5) is 

 11

2

k k k

i j i j i j i j
u u v u




    


2
1

i j k

i jk

i j

v

u

 
    

  
  

, 

(6) 

2

2 2 3/ 2

( )( ( ))

(( ( )) ( ( )) )

k k

xx ij y ijk

i j k k

x ij y ij

u u

u u

 
  

  
 

2

2 2 3/ 2

2 ( ) ( ) ( ) ( ( )) ( )

(( ( )) ( ( )) )

k k k k k

x ij y ij xy ij x ij yy ij

k k

x ij y ij

u u u u u

u u

      

  
, 

1, 1,
( )

2

k k

i j i jk

x ij

u u
u

x

 


 


, 

, 1 , 1
( )

2

k k

i j i jk

y ij

u u
u

y

 


 


,
1, 1,

2

2
( )

( )

k k k

i j ij i jk

xx ij

u u u
u

x

 
 

 


, 

, 1 , 1

2

2
( )

( )

k k k

i j ij i jk

yy ij

u u u
u

y

 
 

 


,

1, 1 1, 1 1, 1 1, 1
( )

4

k k k k

i j i j i j i jk

xy ij

u u u u
u

x y

       
  

 
 

, 

1 1 2 20 1 1, , 0 1 , 1 ,
; ; ; ;

k k k k k k k k

j j N j N j i i i N i N
u u u u u u u u

 
     

1 2
1,..., ; 1,..., ;i N j N 

0,1,..., ; 1; 0 1k K x y        , where  

K  is enough great number, 500K  . 

4. PARAMETER OPTIMIZATION  

The procedure (6) removes noise in image for given 

values of parameters 
1 2
, , ,    . To process the real im-

ages with unknown noise, we need to define them. Then 

we have to change 
1 2
, ,    in procedure (6) into 

1 2
, ,

k k k
    on every k -step.  

In the new procedure, these parameters are calculated 

on every iteration step. 
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Optimal λ1 and λ2. If ( , )u   is a solution of the prob-

lem (2), then we obtain the following condition 

( , )
0

L u

u

 



. 

We can use this condition to find optimal parameters 

 
1

2

1

1
1

v
dxdy

u

v
v u dxdy dxdy

u



 

 
 

 
 

 
   

  



 

, 
2 1

1    . 

Its discrete form is 

1 2

1 2

1 1

1

2
1 1

1

1

N N
ij

k
i j ijk

kN N
ij ij ij

k
i j ij

v

u

v u v

u

 

 

 
 

 
 

 
 

  
  





, 
2 1

1
k k

    , 

where 0,1,...,k K . 

Optimal μ. In order to find the optimal parameter  , 

we multiply (3) by ( )v u  and integrate by parts over 

domain  . Finally, we obtain the optimal parameter 
2

21

22

2 2

2 2

( )
( )

x x y y

x y

x y

v u
v u dxdy

u

u v u v
u u dxdy

u u





  
    
 

 
 
  
 
 





. 

Its discrete form is 

1 2

1 2

2

21

22
1 1

1 1

( )
( )

kN N k
ij ijk k

ij ij k
i j ijk

N N

k

ij

i j

v u
v u

u 

 

 
    
  

 





, 

where 

2 2
( ( )) ( ( ))

k k k

ij x ij y ij
u u     

2 2

( ) ( ) ( ) ( )

( ( )) ( ( ))

k k

x ij x ij y ij y ij

k k

x ij y ij

u v u v

u u

   

  
, 

1, 1,
( )

2

k k

i j i jk

x ij

u u
u

x

 


 


, 
, 1 , 1

( )
2

k k

i j i jk

y ij

u u
u

y

 


 


, 

1, 1,
( )

2

k k

i j i jk

x ij

v v
v v

x

 


 


, 
, 1 , 1

( )
2

k k

i j i jk

y ij

v v
v

y

 


 


, 

1 1 2 20 1 1, , 0 1 , 1 ,
; ; ; ;

k k k k k k k k

j j N j N j i i i N i N
u u u u u u u u

 
     

1 1 2 20 1 1, 0 1 , 1 ,
; ; ; ;

j j N j N j i i i N i N
v v v v v v v v

 
     

1 2
1,..., ; 1,..., ;i N j N  0,1,..., ; 1k K x y     . 

Optimal σ. For the parameter  , we use the result of 

Immerker [13]: 

1 2

1 11 2

/ 2
| * |

6( 2)( 2)

N N

ij

i j

u
N N  


  

 
 , where 

1 2 1

2 4 2

1 2 1

 
 

    
  

 is the mask of an image. 

Operator * is a convolution, where 

1, 1 33 , 1 32 1, 1 31 1, 23
*

ij i j i j i j i j
u u u u u

     
           

22 1, 21 1, 1 13 , 1 12 1, 1 11ij i j i j i j i j
u u u u u

     
         , 

1 2
1,..., ; 1,..., ;i N j N   

0
ij

u  , if 0i  , or 0j  , or 
1

1i N  , or 
2

1j N  . 

Parameter   is calculated at the first step of iteration. 

5. IMAGE QUALITY EVALUATION 

In order to evaluate an image quality after denoising, 

we use criteria PSNR, MSE and SSIM: 

1 2

2

1 11 2

1
( )

N N

MSE ij ij

i j

Q v u
N N  

  ,
2

10 lg
PSNR

MSE

L
Q

Q

 
  

 
,  

1 2

2 2 2 2

1 2

(2 )(2 )

( )( )

uv

SSIM

u v

u v C C
Q

u v C C

  


     
, 

where 
1 2

1 11 2

1
N N

ij

i j

u u
N N  

  , 
1 2

1 11 2

1
N N

ij

i j

v v
N N  

  . 

1 2

2 2

1 11 2

1
( )

1

N N

u ij

i j

u u
N N  

  

 , 

1 2

2 2

1 11 2

1
( )

1

N N

v ij

i j

v v
N N  

  

 , 

1 2

1 11 2

1
( )( )

1

N N

uv ij ij

i j

u u v v
N N  

   

 , 

2 2

1 1 2 2 1 2
( ) , ( ) ; 1; 1C K L C K L K K    .  

For example, 6

1 2
10K K


  , L  is an image intensity 

with 8
2 1 255L     for 8-bits grayscale image. 

The lower the value of 
MSE

Q , the better the result of 

restoration. The greater the value of 
PSNR

Q , the better the 

image quality. The greater the value of 
SSIM

Q , the better 

the image quality. 

These criteria are just applied to the case, if the origi-

nal image is given. If the original image is not given, we 

need to use another criterion like BRISQUE (we have 

used it in previous work [6]). In this paper, we use origi-

nal images and generated noise. Hence, the criterion 

BRISQUE is not used. 

6. EXPERIMENTS 

In experiments, we use RGB-color images and gener-

ate artificial noise to include it into them. We use 

“kids.tif” and “pears.png” images from the database of 

MATLAB. We crop images to standard size of 256 256 

pixels for the PURE-LET method. In order to make the 

noisy image, we use the function imnoise of MATLAB. 

We add Poisson noise into the original image first and 

add the Gaussian noise into the Poisson noisy image. 

The function imnoise generates noise for every chan-

nel of the original color image ( , , )
R G B

u u uu  inde-

pendently. Hence, the noise in every channel R, G and B 

does not depend on noise of other channels. 

For the “kids.tif” image, the average variance of Pois-

son noise of channels R, G and B, respectively, 10.9899, 

9.3937, 8.1498. For the “pears.png” image the average 

variance of Poisson noise of channels R, G and B, respec-

tively, 12.9577, 12.4098, 9.6498. The variance of Gaussi-

an noise is two times greater than the average variance of 

Poisson noise in both cases. 
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We suppose that noise (superposition of Poisson and 

Gaussian noises) is unknown real noise. We also suppose 

this noise is equivalent to a linear combination of Gaussi-

an and Poisson noises with unknown parameters. Hence, 

we use the proposed method for each color channel with 

automatically defined parameters. 

In order to remove noise in these color images, we di-

vide intensity function of the observed color image 

( , , )
R G B

v v vv  into three channels , ,
R G B

v v v . The de-

noising process is implemented for every channel inde-

pendently to get denoised versions , ,
R G B

u u u . Finally, we 

combine values , ,
R G B

u u u  for every channel to recon-

struct the original color image u .  

Results of processing of RGB-color images are 

showed in Table 1 and Fig. 1. Parameter values of pro-

posed method are also showed in Table 1.  

In these experiments our results show that for given 

real RGB-color images with the unknown mixed Poisson-

Gaussian noise, our proposed method more effectively 

removes noise on every channel than other methods, such 

as the ROF model, the modified ROF model, and the 

PURE-LET method. 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Fig. 1. Noise removal in real images 

a) original image “kids.tif”, b) noisy image а), c) denoised image b), d) original image “pears.png”,  

e) noisy image d), f) denoised image e) 

 

7. CONCLUSION 

In this paper, we proposed a novel method that can 

effectively remove the real noise in RGB-color images.  

In proposed method, we consider the real noise is 

equivalent to unknown linear combination of Gaussian 

and Poisson noises. In particular, this method also ef-

fectively removes Gaussian noise or Poisson noise sep-

arately. This method is based on the total variation of 

intensity function of images. 

The denoising result for every channel (R, G or B) 

depends on values of coefficients of a linear combina-

tion 
1

  and 
2

 . These values can be set manually or 

can be defined automatically. The proposed method 

with automatically defined parameters is always used 

to remove the unknown real noise. 

The proposed method usually more effective re-

moves the superposition of Poisson and Gaussian nois-

es than the PURE-LET method. Although the PURE-

LET method is the special method to remove this 

noise, many parameters need to be evaluated in it. Such 

multiple parameters increase complexity of this method 

and influence to the quality of processing. 

Our proposed method includes significantly smaller 

number of parameters than the PURE-LET method. 

Hence, we usually get better results than the PURE-

LET method. 

Our method can be applied to remove noises not 

only in RGB-images, but also in images with other 

color models. Then we need to transform that color 

model to RGB-model and after denoising to original 

color model again. 
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Table 1. – Quality comparison of noise removal in RGB-color images. 

  
  Image “kid.tif” Image “pears.png” 

Channel R G B R G B 

Noisy 

QPSNR  21.2978 22.367 23.628 19.9164 20.0031 22.1598 

QMSE  482.284 377.0333 282.0215 662.8813 649.7824 395.457 

QSSIM 0.3874 0.3681 0.4581 0.2163 0.2202 0.2903 

ROF 

QPSNR 27.0423 28.4412 27.9435 29.8793 30.0688 30.1198 

QMSE 129.8466 101.6742 105.7622 93.6708 92.5037 90.7653 

QSSIM 0.6367 0.7215 0.6733 0.6949 0.7011 0.7223 

Modified ROF 

QPSNR 26.1688 26.8744 26.6617 28.4441 28.6805 28.877 

QMSE 137.9981 110.8799 115.8765 135.2315 133.1886 130.7961 

QSSIM 0.5466 0.6218 0.5633 0.6927 0.6811 0.6734 

PURE-LET 

QPSNR 27.0433 29.2241 28.1743 31.0377 31.0522 31.3566 

QMSE 129.2266 75.7599 99.7746 52.2663 52.4019 48.7322 

QSSIM 0.637 0.7328 0.6941 0.7812 0.7545 0.7452 

Proposed method 

QPSNR 27.0634 29.4706 28.2815 31.0398 31.0727 31.4719 

QMSE 127.8611 73.4546 96.5906 51.1801 50.794 46.3328 

QSSIM 0.6378 0.7336 0.6945 0.7837 0.7576 0.7464 

1
   

2
   

  

  

0.7655, 

0.2345, 

24.5496, 

0.2361. 

0.7287, 

0.2713, 

20.8020, 

0.2221. 

0.7194, 

0.2806, 

19.7068, 

0.2204. 

0.7918, 

0.2082, 

26.0736, 

0.2885. 

0.7868, 

0.2132, 

26.0343, 

0.2876. 

0.7322, 

0.2678, 

20.5315, 

0.2309. 
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