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Abstract
For Bernoulli trials, simple upper and lower bounds for tail probabilities of

logarithmic likelihood ratio statistic are given. The bounds are exact up to
a factor of 2. A problem of generalization of the results to the multinomial
distribution is briefly discussed.

1 Introduction

Let y = (y1, . . . , yn) be a random vector having the multinomial distribution

y ∼ Multinomialn(N,p), p = (p1, . . . , pn).

For n = 2, y1 ∼ Binomial(N, p1). The maximum likelihood estimator of the unknown
probabilities p is given by

p̂ = p̂N := N−1y.

Define scaled (logarithmic) likelihood ratio statistic

ℓn(p̂,p) :=
n∑

i=1

p̂i log

(
p̂i
pi

)
.

Note that for n = 2,

ℓ(p̂1, p1) := p̂1 log

(
p̂1
p1

)
+ (1− p̂1) log

(
1− p̂1
1− p1

)
= ℓ2(p̂,p). (1)

Hoeffding (1965) proved the following inequality (see also Kallenberg, 1985): for
n = 2,

P{ℓn(p̂N ,p) ≥ x} ≤ 2e−Nx, x > 0. (2)

It is important to stress that (2) is universal: it holds for all x > 0, all p1 ∈ [0, 1]
and all N = 1, 2, . . .. It is also tight, i.e. it cannot be improved without imposing some
additional conditions.

The problem is to generalize this inequality to the case n > 2.

Generalizations of (2) to the case n > 2 have been obtained by Hoeffding himself
(1965) and W.C.M. Kallenberg (1985). The inequality established by W.C.M. Kallen-
berg is tight up to a constant. However it holds only for x ≤ 0.15 and impose some
boundedness from below restriction on probabilities p. Known universal bounds (i.e.
bounds that are independent of p) are loose and impractical for large n (W.C.M. Kallen-
berg, 1985, inequality (2.6)). The upper bound typically exceeds the corresponding
lower bound by a factor of order

√
xN (see W.C.M. Kallenberg, 1985, Theorem 2.1 on

p. 1557). This applies to 2) as well.
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2 Notation

Define the signed logarithmic likelihood ratio statistic for the binomial distribution

sq(u) := sign(u− q) ℓ(u, q), (u, q) ∈ (0, 1)× (0, 1).

The logarithmic likelihood ratio statistic for the binomial distribution is defined in (1).
The function sq(u) is strictly increasing and continuous with respect to u ∈ (0, 1). Let
s̄q denote the inverse function of sq: s̄q(sq(u)) ≡ u. In what follows, we reserve notation
χ2
m for a random variable which has χ2 distribution with m degrees of freedom.
Let

b(t) = b(t;N, q) :=
Γ(N + 1)

Γ(t+ 1)Γ(N − t+ 1)
qt(1− q)N−t, t ∈ [0, N ].

Note that
b(k;N, q) = Ck

Nq
k(1− q)N−k, k = 0, 1, . . . , N,

is the binomial probability density (mass) function.

3 Results

The proposition below gives upper and lower bounds (exact up to a factor of 2) for the
tail probabilities of the logarithmic likelihood ratio statistic. In contrast to (2), they
depend on the success probability of the binomial distribution.

Proposition 1. Let p̂N := N−1y, y ∼ Binomial(N, p). Then

P{ℓ(p̂N , p) ≥ x} ≤ P{χ2
1 ≥ 2xN}

+ b(Ns̄p(−x);N, p) + b(Ns̄p(x);N, p) (3)

≤ 2 P{ℓ(p̂N , p) ≥ x}.

The inequalities for the upper tail probability presented below are more apprehen-
sible than (3). Let xk := sp(k/N) with k/N > p. Then

max(2−1P{χ2
1 ≥ 2xkN}, b(k;N, p)) ≤ P{sp(p̂N) ≥ xk}

≤ 2−1P{χ2
1 ≥ 2xkN}+ b(k;N, p). (4)

Note that the first term in the right-hand side of (4) is just the tail probability of the
asymptotic distribution of the logarithmic likelihood ratio statistic.

The inequalities (4) as well as the Proposition 1 are simple corollaries of results by
Zubkov and Serov [4].

Remark. We expect that, for arbitrary n > 2, exact (up to a constant factor) upper
bounds for tail probabilities of logarithmic likelihood ratio statistic can be obtained by
making use of the Proposition 1 and induction with respect to n.
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