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Abstract

In this paper we introduce a measure of closeness of partial rankings based
on a metric on permutations, and we analyze some of its properties.

1 Introduction

In many situations, there are different methods for analyzing the same data. For
example, several methods exist for finding differentially expressed genes using RNA-seq
data. They tend to produce similar, but not identical significant genes and rankings
of the gene list. When comparing different methods applied to the same data, we
are interested in how close are their outputs. The main idea is to define appropriate
distance of the sample space. Further, the interpretation of the rough distance between
two rankings should be made on the basis of its statistical significance. That means we
need to know the distribution of the distance under some common hypotheses about a
sample of rankings. In recent years, many new applications appear in different areas
including bioinformatics pattern recognition, information retrivial [7], [6], [1], [4], [5],
etc.

In this paper we define an appropriate mathematical framework that include special
cases of partially ranked lists of genes. Any ranked list can be complete, which means
all n genes are ranked, or incomplete, which means some genes are not ranked. The
incomplete ranking include the case where the most significant k genes are ranked,
with group k + 1 consisting of the remaining genes. Any ranking of n items corre-
sponds a permutation ⟨α(1), . . . , α(n)⟩ from the set of all permutations Sn. We define
appropriate distance measures on Sn in order to compare full or incomplete rankings
or rankings of different types. The distance can be thought of as a measure of the
similarity of the two rankings.

Let α and β be two permutations from Sn corresponding to two rankings and let d
be a metric on the permutation group Sn. Then d : Sn×Sn → [0,∞) satisfies the usual
axioms: d(α, β) ≥ 0 ∀α, β ∈ Sn, d(α, β) = 0 ⇔ α = β; d(α, β) = d(β, α) ∀α, β ∈
Sn; and the triangle inequality d(α, β) ≤ d(α, γ) + d(γ, β) ∀α, β, γ ∈ Sn.

Invariance is natural in many problems. Right-invariance means that the distance
does not depend on arbitrary labeling or reordering of the data:

d(α, β) = d(ατ, βτ).
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Here ατ is the product of two permutations α and τ and defined by ατ(i) = α(τ(i)).
Right-invariant property allows to compute the distance between two permutations α
and β through the the distance of αβ−1 to the identity permutation.

Further in our analysis we are using a popular statistical measure of similarity on
Sn called Spearman’s ρ. For α, β ∈ Sn it is defined by

R2(α, β) =
n∑

i=1

(α(i)− β(i))2.

Strictly speaking, Spearman’s ρ is not a metric in the above definition, however, its
square root is the Euclidean metric on permutations. It is easy to see that Spearman’s ρ
is right-invariant. By right-invariance of a distance it is sufficient to study its statistical
properties when one of the rankings is the identity permutation.

2 Complete or incomplete ranking

A ranking of n items is represented by an ordered n-tuple, which simply lists the items
in their ranked order. The most preferred item is listed first, and the least preferred
item appears in the n-th position. Any ranking corresponds to a permutation which is
an element of the set Sn of permutations. Given a set of rankings, the problem of their
comparison reduced to a problem of choosing appropriate measure of association on
the set of all rankings. There are several usefull distance measures on Sn thoroughly
discussed in statistical literature like Kendall’s τ , Spearman’s ρ, Spearman’s footrule.
Therefore, for two permutations α, β ∈ Sn the distance d(α, β) can be thought of as a
measure of similarity of the two rankings. Excellent references on statistical analysis
of rankings are the monographs by Diaconis [3], Critchlow [2], and Marden [8].

[Classification into r ordered categories.] Suppose the list of genes is splitted
into several groups, so that there is a ranking between the groups and not necessarily
within each group. It can be describe formally following Critchlow [2].

Let n1, . . . , nr be an ordered sequence of r strictly positive numbers summing to
n. Such an ordered partition corresponds to a partial ranking with n1 items in the
first group, n2 items in the second group and so on. No further information is con-
veyed about orderings within each group. The special case of ranking the top k items
corresponds to n1 = · · · = nk = 1, nk+1 = k + 1.

Formally, denote N1, . . . , Nr are the following partition of {1, . . . , n}:

N1 = {1, . . . , n1}
N2 = {n1 + 1, . . . , n1 + n2}
. . . (1)

Nr = {n1 + · · ·+ nr−1 + 1, . . . , n}.

Let S denote the subgroup of all rankings which permute the first n1 items among
the first n1 ranks, and which permute the next n2 items among the next n2 ranks, and
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so on. The equivalence class [α], that assigns the same set of ranks to the items from
the each category as α, is the right coset Sα. There is a one-to-one correspondence
between the partitioning ”of type n1, . . . , nr” and the right cosets of S.

2.1 Distances on partial rankings

In the above algebraic structure the problem of comparing of partial rankings is reduced
to a problem of extending the metrics on the permutation group Sn to metrics on
the corresponding coset space. We discuss an extension of the above metrics for the
cases of partial rankings. One natural way of extending it is to construct the induced
Hausdorff metrics. Its particular benefit is that it keeps the metric properties of the
original distance.

Let the two partial rankings be of types n1, . . . , nr. Denote nij the number of
elements in the set {α−1(Ni) ∩ β−1(Nj)}. Then the function

Rfv(α, β) =
r∑

i=1

r∑
j=1

|ci − cj|2nij.

is a right-invariant metric on partial rankings induced by Spearman’s ρ. Here ci =
n1 + · · ·+ ni−1 +

ni+1
2

is the average of the ni numbers in the set Ni defined by (1).
The interpretation of this function is that it computes Spearman’s ρ distance be-

tween the two rankings using the “pseudo-ranks” ci and cj instead the ordinary ranks
to those items in {α−1(Ni)∩β−1(Nj)}. The function is called the “fixed vector” metric
on Sn/S induced by Spearman’s ρ. Its main advantage is that it preserves the distance
properties and the right invariance as well [9]. Additionally, some useful statistical
properties are known in the literature.

2.2 Comparing partial rankings of different types

We consider the most general case of comparing partial rankings of different types. Let
the two partial rankings be of types n1, . . . , nr and n

′
1, . . . , n

′
r′ respectively.

Let N1, . . . , Nr be as defined in (1) and let N ′
1, . . . , N

′
r be a second partition of

{1, . . . , n}:

N ′
1 = {1, . . . , n′

1}
N ′

2 = {n′
1 + 1, . . . , n′

1 + n′
2}

. . .

N ′
r′ = {n′

1 + · · ·+ nr′−1 + 1, . . . , n}.

Let nij be the number of elements in the set {α−1(Ni) ∩ β−1(N ′
j)}. Then

R∗(α, β) =
r∑

i=1

r′∑
j=1

|ci − c′j|2nij.

is a right-invariant metric on partial rankings. Here c′j = n′
1 + · · ·+ n′

j−1 +
n′
j+1

2
is the

average of the n′
j numbers in the set N ′

j defined by (2).
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3 Large sample approximation of a distance distri-

bution

Now, we estimate the mean and the variance of R2∗ and find approximations of its
distribution.

Definition 1. The metric d∗ on Sn/S is asymptotically normally distributed if for
partial rankings α∗ and β∗ the following limit distribution is valid

lim
n→∞

P

(
d∗(α∗, β∗)− E d∗(α∗, β∗)√

var(d∗(α∗, β∗))
≤ x

)
= Φ(x)

for all real numbers x, where Φ, is the standard normal cumulative distribution func-
tion.

The significance of the distance is useful to estimate the similarity between the two
partial rankings. For this one needs to calculate the probability that d∗ is less than
or equal to the observed value d∗(α∗, β∗). This probability is the p-value for α∗ and
β∗. Smaller values of p indicate stronger evidence that α∗ and β∗ are ”similar”. To
compute the p-value, Critchlow [2] finds the probability distribution of some popular
metrics on permutations under the appropriate uniformity assumption.

The mean and the variance of R2∗ are given by [2]:

E(R2∗) =
r∑

i=1

r∑
j=1

|ci − cj|2
ninj

n

var(R2∗) =
1

n2(n− 1)

r∑
i=1

r∑
j=1

r∑
k=1

r∑
l=1

ninjnknl(|ci − cj|2 + |ck − cl|2 − 2|ck − cj|2),

where ci = n1 + · · · + ni−1 +
ni+1
2

is the average of the ni numbers in the set Ni =
{n1 + · · ·+ ni−1 + 1, . . . , n1 + · · ·+ ni−1 + ni}.

For equal partition sizes these reduce to

E(R2∗) = n3 (r
2 − 1)

6r2

var(R2∗) =
n6

n− 1

(r2 − 1)2

6r5
.

Normal approximation is valid for the distance distribution under the assumption
that they were generated, independently, from a uniform distribution on all possible
partial rankings. For equal partition sizes Gamma distribution with shape parameter
= µ2/σ2 = n− 1 gives better approximation.

Example (Palejev & Stoimenova [10]). A simulation study is based on one million
repetitions of gene sequences of size 13932. Each of them contains data for the sig-
nificance of gene expression. Further, the genes are splitted into six groups by values
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according the size of the p-values. Intervals reasonable for application are determined
by 0, 10−4, 10−3, 10−2, 0.05, 10−1, 1. For this unbalance case the distances between any
two of the partial rankings are calculated. The distributions of the distances is shown
on Figure 1. Gamma distribution approximation is also suitable for this case.
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Figure 1: Distribution of distances between 2 random permutations
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