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Abstract

We address the definition of symbolic variance and covariance for random
interval-valued variables, and present four known symbolic principal component
estimation methods using a common insightful framework. In addition, we pro-
vide a simple explicit formula for the scores of the symbolic principal compo-
nents, equivalent to the representation by Maximum Covering Area Rectangle.
Furthermore, the analysis of a real dataset leads to a meaningful characterization
of Internet traffic applications.

1 Introduction

The low cost of information storage combined with recent advances in search and
retrieval technologies has made huge amounts of data available, the so-called big data
explosion. New statistical analysis techniques are now required to deal with the volume
and complexity of this data. One promising technique is Symbolic Data Analysis
(SDA), introduced in the late 1980s by Edwin Diday.

In conventional data analysis, the variables that characterize an object can only take
single values. SDA introduces symbolic random variables which can take values over
complex data structures like lists, intervals, histograms or even distributions. Symbolic
data may exist on their own right or may result from the aggregation of a base dataset
according to the researchers interest.

For example, suppose that our goal is to characterize the ages of university teachers.
The variable that records the teachers’ age will have as many observations as teachers,
and these can differ among universities. Let us assume that a given university has 1000
teachers, and the values ω1, . . . , ω1000 are the teachers’ ages. SDA calls these values
micro-data. In conventional statistical analysis, the universities would have to be char-
acterized by single-valued variables, e.g. the mean teachers’ age. SDA can deal with
more complex data structures, calledmacro-data. For example, the teachers’ age can be
aggregated into one interval or various intervals. Our main interest in this paper is on
interval-valued data, where macro-data corresponds to the interval between minimum
and maximum of micro-data values: [a, b] = [min {ω1, . . . , ω1000},max {ω1, . . . , ω1000}].
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The paper is organized as follows. Section 2 presents basic descriptive statistics,
including symbolic variances and covariances, for interval-valued data. Section 3 intro-
duces Symbolic Principal Component Analysis (SPCA) for interval-valued data. Sec-
tion 4 uses SPCA on the analysis of Internet data produced by six different Internet
applications. Finally, some conclusions are drawn in Section 5.

2 Basic descriptive statistics

There have been several proposals for definitions of symbolic versions of sample mean,
variance, covariance, and correlation, according to various types of symbolic data and
including interval-valued data [1].

We assume that the collected interval-valued data are realizations of random vec-
tors. As such, we consider a random interval-valued vector X = (X1, . . . , Xp)

t, where
Xj = [Aj, Bj], with Aj and Bj being random variables verifying P (Aj ≤ Bj) = 1, de-
notes the j-th random interval-valued variable of X. Even though this is the common
representation of random interval-valued variables, we follow the approach of [2, 3, 6]
and write the intervals Xj in terms of their centers, Cj = (Aj + Bj)/2, and their
ranges, Rj = Bj − Aj. This choice leads to a clear interpretation of an interval in
terms of its “location” on the real line along with its length; moreover it enables for
the unification of several results in the literature (cf. [2, 3, 6] and references therein).
Likewise, the random vector X is equivalently represented by the random vector of
centers, C = (C1, . . . , Cp)

t, and the random vector of ranges, R = (R1, . . . , Rp)
t.

Let (C1, . . . ,Cn)
t and (R1, . . . ,Rn)

t denote the vectors of centers and ranges ob-
tained from a random sample of size n from X, where Ci = (Ci1, . . . , Cip)

t and
Ri = (Ri1, . . . , Rip)

t characterizes the i-th entity or object of the sample. In this
setting, a natural proposal for sample symbolic mean of the interval-valued variable Xj

is to use the traditional sample mean of the centers, Xj = Cj with Cj =
∑n

i=1Cij/n.
As concerns the sample symbolic variance of the interval-valued variable Xj, we

express the proposals available in the literature as the sum of two components, the
first accounting for the variability of the associated centers and the second for the size
of the associated ranges, in the form

S (α)

jj =
n∑

i=1

(
Cij − Cj

)2
n

+ α

n∑
i=1

R2
ij

n
, (1)

with the nonnegative weight α accounting for the relevance given to the ranges. In
particular, we address three cases, with respective values 0, 1/4, 1/12 for the weight
α. The first case (α = 0) ignores the values of the ranges, simply turning the symbolic
variance into the variance of the centers. Concerning the second case (α = 1/4), we note
that as Rij/2 represents the radius of the interval associated with i-th entity, measured
on the j-th random interval-valued variable,

∑n
i=1R

2
ij/(4n) may be interpreted as the

sample second order moment of the radius of the j-th random interval-valued variable.
The third case (α = 1/12) corresponds to choosing the weight derived in [2] assuming
that micro-data are uniformly distributed on the random intervals.
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In the same manner, we consider proposals for the sample symbolic covariance
between two interval-valued variables Xj and Xl that express it as the sum of two
components, the first accounting for the sample covariance of the associated centers
and the second for the size of the associated ranges, in the form

S (β)

jl =
n∑

i=1

(Cij − Cj)(Cil − C l)

n
+ β

n∑
i=1

RijRil

n
, (2)

with the nonnegative weight β accounting for the relevance given to the ranges associ-
ated to the interval-valued variables Xj and Xl.

In sequence, we may use (1)-(2) to construct a sample symbolic covariance matrix
S (α,β) having on the diagonal the sample symbolic variances S (α)

jj , given in (1), and

outside the diagonal the sample symbolic covariances S (β)

jl , j ̸= l, given in (2), leading
to

S (α,β) = SCC + (α− β)Diag

(
RtR
n

)
+ β

RtR
n

, (3)

with SCC denoting the sample covariance matrix of the centers and R = [Rij] the
(n × p) matrix of observed ranges. Particular cases of sample symbolic covariance
matrices, S (α,β), with α ∈ {0, 1/4, 1/12} and β = α or β = 0, have been introduced
in the literature ( [2, 6] and references therein). Details about the links between these
sample symbolic covariance matrices and SPCA for interval-valued data are discussed
in the next section.

3 Symbolic Principal Component Analysis

Principal component analysis (PCA) is one of the most popular statistical methods
to analyse real data. There have been several proposals to extend this methodology
to the symbolic data analysis framework, in particular to interval-valued data. The
majority of the available methods rely on a strategy called symbolic-conventional-
symbolic, meaning that: (i) input data is symbolic (interval-valued, in here), (ii) the
data is converted into conventional, to which the conventional PCA method is applied,
and (iii) at the end, the PCA results are turned into symbolic, usually by a method
called Maximum Covering Area Rectangle (MCAR), see [3, 6] and references therein
for details.

We study four SPCA methods: CPCA, VPCA, CIPCA, and SymCovPCA. CPCA
and VPCA corresponds to the first SPCA methods proposed in the literature and the
last two are among the most recent alternatives. All these four methods rely on the
symbolic-conventional-symbolic strategy, which can be specified as follows: (i) compute
the associated (p× p) sample symbolic covariance matrix S (α,β) (see Table 1 and [3]);
(ii) obtain the spectral decomposition of S (α,β), as in the conventional PCA, and (iii)
transform the conventional scores into symbolic scores, e.g. using MCAR.

Note that S ( 14 ,0) and S ( 1
12 ,0) (see Table 1) are covariance matrices that use a defini-

tion of symbolic variance of an interval-valued variable that does not coincide with the
definition of symbolic covariance between the same interval-valued variable and itself.
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Table 1: Sample symbolic covariance matrices S (α,β), defined by the combination of
several proposals for symbolic variances and covariances along with the corresponding
SPCA method.

(α, β) S (α,β) SPCA Method

(0,0) SCC CPCA

(14 ,
1
4) SCC +

1

4

RtR
n

—

( 1
12 ,

1
12) SCC +

1

12

RtR
n

SymCovPCA

(14 , 0) SCC +
1

4
Diag

(
RtR
n

)
VPCA

( 1
12 , 0) SCC +

1

12
Diag

(
RtR
n

)
CIPCA

This violates a basic rule in the conventional framework, namely that the variance of
a variable equals the covariance of the variable with itself. In spite of this fact, the
CIPCA’s authors, who proposed S ( 1

12 ,0) [3], argue that this is an advantage of their
method.

Similarly to the conventional PCA, it may be interesting to define the SPCA based
on standardized interval-valued variables, and to do so we introduce the sample cor-

relation matrix as: P (α,β) = U−1
(α)S

(α,β)U−1
(α), where U (α) = Diag

(
S
(α)

11 , . . . , S
(α)
pp

)1/2
,

for S (α,β) = [S (α,β)

jl ], where S (α,β)

jj = S
(α)

jj and S (α,β)

jl = S
(β)
jl , for j ̸= l. Equivalently,

S (α,β) = U (α)P
(α,β)U (α). Thus, SPCA methods based on standardized interval-valued

variables just have to use P (α,β) instead of S (α,β).
The most common way to transform conventional objects into symbolic ones for

methods following the symbolic-conventional-symbolic strategy is the MCAR repre-
sentation. Following the same line of work as before, in [3] we deduced an explicit
formulation of the MCAR representation in terms of centers and ranges. Furthermore,
the sample scores of the i-th object on the j-th symbolic principal component (SPC),
according with MCAR, are:

ŜPCij =
[
γ̂t
j(Ci − µ̂C)−

1

2
|γ̂j|tRi, γ̂

t
j(Ci − µ̂C) +

1

2
|γ̂j|tRi

]
, (4)

where γ̂j is the j-th eigenvector of S (α,β), the sample symbolic covariance matrix under
consideration, |γ̂j| = (|γ̂1j|, . . . , |γ̂pj|)t, and µ̂C is the vector of center sample means.

As a direct consequence of (4), the centers of the scores, γ̂t
j(Ci − µ̂C), are a linear

combination of the centers of the original interval-valued variables, whose weights are
given by the eigenvectors of the corresponding symbolic covariance matrix. Addition-
ally, the scores ranges, |γ̂j|tRi, are also a linear combination of the original ranges,
whose weights have the same magnitude as the centers but are all positive. This for-
mulation makes clear that MCAR’ score ranges are never negative.
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4 Analysis of Internet Data

In this section we illustrate the use of SPCA through a dataset of Internet traffic,
typically observed in backbone networks, and measured during July 2014. Specifically,
the dataset contains traffic produced by six different Internet applications, namely
Web browsing (produced by HTTP), file sharing (produced by Torrent), streaming,
video (YouTube), port scans (produced by NMAP), and snapshots. The first four
applications correspond to regular traffic and the last two to Internet attacks. The
analysis usually aims at detecting the various Internet applications within a traffic
aggregate and/or the separation between regular and illicit traffic.

The dataset comprises 917 traffic objects, corresponding to packet flows of specific
applications, which we call datastreams. For each datastream, we registered five dif-
ferent traffic characteristics observed in 0.1 seconds intervals, during 5 minutes. The
traffic characteristics registered were the following: number of upstream packets (PUp),
number of downstream packets (PDw), number of upstream bytes (BUp), number of
downstream bytes (BDw), and number of active TCP sessions (Ses). Thus, each ob-
ject is characterized by a total of 3000 observations per traffic characteristic, which
constitutes our micro-data.

The conventional approach to analyse this data is based on summary statistics of
each traffic characteristic. In particular, [4, 5] used 8 summary statistics (minimum,
1st quartile, median, mean, 3rd quartile, maximum, standard deviation, and median
absolute deviation) for the above five traffic characteristics, giving a total of 40 variables
to describe the datastreams. This approach usually requires a pre-processing step to
remove irrelevant and redundant variables; Pascoal [5] used a robust feature selection
method based on mutual information for that purpose.

This dataset is naturally symbolic, since each traffic characteristic is multi-valued.
SDA takes into consideration the complex structure of these data, and may lead to
clearer interpretation and new insights. In our case, we will use interval-valued variables
for each traffic characteristic (our macro-data), instead of the 8 summary statistics
listed above.

Given the nature of the data and the existence of potential atypical observations
among the micro-data, we decided to trim 1% of the lower and 1% of the higher
values. This was only done for the regular applications given that illicit ones have
few datastreams and small variability and would be completely eliminated from the
dataset, even for such small trimming percentiles. Apart from that, and following
the recommendations in [4, 5], data was smoothed using a logarithm transformation
(ln(x + 1), to overcome the existence of zeros). SPCs were estimated using the four
methods under study. The conventional analysis of the eigenvalues of the various
sample symbolic covariance matrices (not shown here, see [3] for details) suggests to
retain two principal components, which explain between 80.3% (CIPCA) and 95.6%
(SymCovPCA) of the total sample variance associated with S (α,β).

The results obtained with CPCA and SymCovPCA are similar, and so are the
results obtained with VPCA and CIPCA. Moreover, these similarities are easily ex-
plained by the expressions of Table 1. For these reasons, only the estimates associated
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Table 2: Eigenvectors of the sample symbolic covariance matrices for each estimation
method, called loadings.

SymCovPCA CIPCA
γ̂1 γ̂2 γ̂1 γ̂2

ln(PDw + 1) -0.264 -0.171 -0.125 -0.059
ln(BDw + 1) -0.730 -0.043 -0.932 0.337
ln(PUp + 1) -0.255 -0.168 -0.113 -0.070
ln(BUp + 1) -0.571 0.075 -0.318 -0.937
ln(Ses + 1) -0.079 0.967 -0.029 -0.027

with the most recent methods (SymCovPCA and CIPCA) are shown in this paper.
Table 2 shows the loadings of the first and second SPC, obtained with SymCovPCA

and CIPCA. In the case of SymCovPCA, the number of upstream and downstream
bytes (BUp, BDw) have the highest loading (on absolute value) in the definition of
the first SPC. Thus, the center and range of the first SPC can be interpreted as a
weighted sum of the number of upstream and downstream bytes. The number of bytes
is sometimes referred to as the traffic volume. For the center, the negative coefficients
indicate that datastreams with high (low) number of bytes in both directions have
low (high) center values on the first SPC. For the range, the coefficients are taken in
absolute value, so datastreams with high (low) number of bytes in both directions have
high (low) range values on the first SPC. Recall that the range expresses the inner
variability of micro-data. As for the second SPC, the loading associated with number
of sessions stands out. Thus, datastreams characterized by an high (low) number of
sessions have high (low) center and range values on the second SPC.

The SymCovPCA scores are shown in Figure 1(a). Each datastream is represented
by a rectangle, defined by the centers and ranges of the first two SPC. It can be said
that the various Internet applications are, in general, well identified, since the datas-
treams show similar patterns for the same application. Most datastreams have a small
minimum traffic volume (number of bytes), with the corresponding rectangles leaning
to the right side. HTTP shows no distinctive characteristic, since the datastreams
spread over all score ranges. This can be explained by the heterogeneity of user be-
haviours and accessed Web pages, typical of Web browsing. Torrent is concentrated
on the upper part of the graph, due to its high number of sessions. The high number
of sessions and large variability of the traffic volume is mostly explained by the vari-
ation on the number of available peers during traffic sharing sessions. The graph also
suggests the existence of several Torrent groups, but this pattern will become clearer
with the CIPCA method. The behaviour of video related with the second SPC con-
trasts with that of Torrent: it is concentrated in the lower part of the graph, due to
its low number of sessions. Moreover, video is the application with the highest traffic
volume. We may say that video datastreams are characterized by a low number of high
volume sessions, and Torrent by a high number of high volume sessions. Streaming
has a behaviour similar to video, but with higher number of sessions and lower traffic
volume. NMAP is the application with smallest volume and variability, and has also
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a relatively low number of sessions. Finally, the behaviour of snapshot is in-between
video and streaming, both in terms of volume and number of sessions. Snapshot has
two clear groups, that differ on the peak traffic volume, and correspond to full desktop
and partial desktop uploads, respectively.

Table 2 shows that the loadings obtained with CIPCA are much higher (in absolute
value) for BDw (first component) and BUp (second component). Thus, the first SPC
can be interpreted as the number of bytes down (BDw) and the second one as the
number of bytes up (BUp). The CIPCA scores are shown in Figure 1(b). Snapshot
has the highest upstream peak traffic volume, and is now better separated from video
and streaming. NMAP is again the application with smaller rectangles. However, it is
now better separated from HTTP, since most HTTP datastreams have higher traffic
volume range simultaneously in the upstream and downstream directions. Video and
streaming are also well separated, since video datastreams have consistently higher
traffic volume ranges simultaneously in both directions. Regarding Torrent, it is now
possible to distinguish among three groups: the group centers occur at approximately
the same upstream traffic volume; one group has small traffic range in both directions
(small rectangles) and high downstream volume, another has high traffic ranges in
the downstream direction but small in the upstream direction, and a third one has
small downstream volumes but high upstream traffic ranges. These groups emerge
from differences on the relative location of peers and the quality/stability of links. The
first group corresponds to closer peers from which it is possible to download at higher
speeds, the third to farther peers for which the links are less stable and unable to
download at high speeds, and the third group is a mixture of the two previous ones.
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(a) SymCovPCA.
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Figure 1: Symbolic scores, estimated by MCAR method.

5 Conclusion

Starting from the definition of symbolic variance and covariance for random interval-
valued variables, we have used a common insightful framework to present four symbolic
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principal component estimation methods that rely on a symbolic-conventional-symbolic
strategy: CPCA, VPCA, CIPCA, and SymCovPCA.

The analysis of a symbolic dataset containing Internet traffic lead to a clear interpre-
tation of the underlying Internet applications (Web browsing, file sharing, streaming,
video, port scans, and snapshots). The analysis highlighted the difficulties in sepa-
rating illicit traffic from regular one, suggesting the need to develop outlier detection
methods for symbolic data.

.
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