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I. A general method of calculation for the stationary
states of any molecular system

By §. F. Bovs, Theoretical Chemistry Department, University of Cambridge*
(Commaunicated by Sir Alfred Egerton, F.R.S.—Received 31 August 1949)

This unication deals with the general theory of obtaining numerical electronic wave

functions for the stationary states of atoms and molecules. It is shown that by taking

Ganssian functions, and fanctions derived from these by difforentiation with rospoct to the
ted

ly ion of wave
functions of any required d uracy is the labour of computation. A modification
of the guneral method spplioasle i iol g e
prwﬁlclbl

1. INTRODUOTION

In this communication is described the first of & series of investigations undertaken
with the general sim of developing better methods of evaluating eleotronic wave
functions and of using these to obtain new and m d
molecular structure. It is well known tha.(; if the eleobl‘omc stationary state wave
functions can be evaluated for the various configurations of a system of atomic
nuclei, then most of the specml S hsiitia) i physical properties of the corre-
sponding system of atoms can be caloulated. This is true when the atoms form a
stable molecule, or when the system consists of & single atom, or when the system
corresponds to an unstable eonﬁgumion of atoms such as oocur in the intermediate
stages of a chemical reaction. e this general problem includes in principle a
Jarge number of the probloms of thearehce.l chetmstry, and a converging method of
solution would effectively solve these problems
The first purpose of this communication is i e il oo ooy
approximation by which this stationary state electronic wave function for any
configuration of atoms can be caloulated to any desired degree of acouracy by
inclusion of sufficient terms. This method does not depend on any numerical in-
tegration processes. Such a method has not been previously reported. The new
‘mathematical analysis which has been carried out to make this possible consists
essentially of the evaluation of the Sehridinger integrals between Gaussian pro-
bability functions. The most complicated integral which is required is that of the
electronic interaction between one product of two Gaussians on different centres
with another product of two other Gaussians. These integrals and the simpler ones
required are all evaluated explicitly. These integrals also provide the bases for the
* Formerly I1.C.I. Research Fellow, Imperial College, London.
[542]




[image: image2.jpg]Electronic wave functions. I 543

evaluation of au integrals derived from these by first multiplying the Gaussians by
any polynomi:

The actusal procedum in W}uoh it is proposed that the Gsussian functions should
be used consists of of many Sla these and the
use of these debermmants i the Rita variational method. The type of procedure
considered most: promising has been called the variational selection procedure. Tt
corresponds in some degree to previous calculations, but it has not been formulated
or discussed previously. Since this method is applicable to other sets of functions if
the integrals for these can be evaluated, the genars.l discussion of this may be
regarded as a second purpose of this comm ion.

‘A third topic which it is convenient to d.iscuss here is the fact that it is possible
to use the variational selection method applied to Slater determinants constructed
from simple exponential functions for atoms, and that this appears the most
promising method for calculating the wave functions of complex atoms with con-
verging accuracy. Several applications of this will be reported in subsequent
papers.

Finally, the mathematical analysis on Gaussian functions may be regarded as
fu].ﬁ].l.\ng another purpose. Several approx:lmn.te and non-converging methods of
evaluating wa: een widely used for making deductions
on the geneml nature of molecules. The bess known of these are the molecular
orbital and the localized bond methods. It has, however, never been possible to

a priori predictions by such procedures in cases other than the very simplest,
since the requisite integrals could not be evaluated and had to be estimated em-
pirically. However, if the orbitals used in any of these cases were taken to be linear
combinations of functions derived from Gaussian functions all the required integrals
could be evaluated explicitly. The analysis derived here does, therefore, provide for
tho first time a method of applying quantitatively, and in a fundamental way, the

te methods of the mol orbital and localized bond types
The provious state of affairs in the calulation of atomio and molecu]ax' energies
and wave functions is that converging methods ave

Dbeen developed for two-electron problems such as He (Hylleraas 1929) and H,
(James & Coolidge 1933), but no converging methods are available for more general
moleoules. The only method which is converging in principle for general atoms is
the superposition of configurations’ method (Hartree, Hartree & Swirles 1939) but

this does not appear practicable for use with more than two or three term:
depends on laborious numerical integrations.

With regard to the practical application of the methods described here if is not
intended to apply the most general procedure immediately. Tt is intended first m
gain experience in the variational selection procedure wmh Slater determinant
using exponentials for atoms instead of Ganssian functions for moleoules. This w1].l
provide useful data for atoms, and it will also provide an opportunity to find simplifi-
cations of the numerical techniques. The direct computation for molecules of
interest would be very laborious, and it is hoped that either the numerical techniques
can be considerably shortened or that the present scheme might lead to a more
powerful method.
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In work of this kind Slater determinants built up from orthogonal normalized
single-particle functions ocour so frequently that it appears worth while to suggest
a short synthetic name for these. It is proposed that the word ‘detor’ be used to
describe the Slater determinant of the general type

AUnY S OPAED o)A 1) - Folt) B0, )
e [rosmar -2,

where v, represent the spin variables which can only take the values § and —4,
where the 4 oan each be either the c or £ function defined by

ah) =1, -4 = 0,} @
AR =0, p(-3=1
where the operators F, represent all the posslble permutations of the different sets
of four variables r;, v;, and where o, is +1 or — 1 according as the permutation is

even or odd. The suthor proposes using soch oxtensions a6 poly-detor to denote
linear combinations of detors where all the original functions are orthonormal. The
convenience of these definitions is that these are just the types of function for which
the integrals required in the variational problem can be reduced to a very simple
form. Also, as is well known and simple to prove, the detors made from an ortho-
normal set are themselves orthonormal.

he term ‘a complete system of funictions” will be used in its usual sense to mean
an ordered system {£,} for which m and the coefficients X, can always be chosen for
any given function ¥ of the domain under consideration, so that

S(F-?X,f,)*(l‘f,z:‘,x,f,)d-r<e, ®

where ¢ is any small positive number. The term ‘& complete class of functions” will
be used to mean a class of functions out of which it is possible to choose at least one
complete system.

‘e shall be concerned with th
states. We shall express it in atomic nmm and denote it as

Hy= {EK‘fZZ,VK+ gzM‘,}./, - By, @
i Ii i3
2 @
where K‘———{a %"Tz%}'

=1l ~ B+ e P+ (o= P, ®

Il — )+ (e y,‘)*+(trzf)’]
where &, ¥, %, v; are the space and spin variabl o the total number
of electrons, where Py, Py,, Py, are the positions of the nnclel, which are to be
regarded as fixed and with integral charges Z. ¥ is & function anti-symmetric
with respect to the different: sets of variables (z;, 4, 2, vy)-
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The notation (| |) will be used to d 5 over all the sp dinat
summation over all the spin variables of the contained functions, the complex
conjugate of th jion being taken. be used for many-

d single- Sl functions, and for funotions dependent on space and spin
variables or only on either space or spin variables. The integrals are independent of
the variables of integration and these will generally be omitted, thus

(! V;!f,)Ejdr(/y*(r) Afrfde)}t (8)

It is also convenient to define

[h | M 1fifd

In §2 we evaluate all the Schrodinger integrals between Gaussian functions
swhich are required to establish the general scheme. § 3 deals with the convergent
method of caleulating energies and wave functions in terms of linear combinations
of increasing numbers of detors. In § 4 are disoussed other modifications of the
general method and particulatly the calculations for atoms, and in § 5 the general
aspects of the methods are reviewed.

f dry dro f(r) fu(ra) (Lraa) f (ra) fulra)}- )

. THE EVALUATION OF ALL THE SCHRODINGER INTEGRALS FOR DETORS
(CONSTRUCTED FROM THE COMPLETE CLASS OF (FAUSSIAN FUNCTIONS

We define the complete class of Gaussian functions to consist of all fanctions,
and of all linear combinations of functions, of the type o y™ 2% exp (—ary), where
1, m, n, have any integral values, where a has any positive value, where we have
used the general notation

zy=w—A, ete., 14 =a+yi+2%, (®)

and where 4,, 4,, 4, have any real values. The fact that this class is complete in
the senso defined above follows immediately, sinco it contains the well-known
complete system of Hermitian functions around any point. It actually contains
an infinite number of complete systems. If any orthonormal set of these are taken
and detors constructed from them after multiplication by the o and § spin fanctions,
we wish to show that all Schrodinger integrals among these can be evaluated by
quite simple formulae. The only step of any difficulty is that of evaluating integrals
of the types

@ la) @|K|g), @ |Vila) [9.0,| |99 @)
when g,, g,, g ¢, are members of the complete class. If, however, we evaluate these
integrals when g,, g, g, 0, Te restrioted to belong to the subelass of functions of the
type exp (—ar%) we can easily derive the formulae for the general class by differ-
entiation with respect to the parameters in the integral formulae, followed by taking
the appropriate linear combinations; since we can obtain any function of the whole
olass from the functions of the subclass by this procedure. We shall, therefore, limit
our examination to deriving all the integrals for the subclass.
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The values of the first of thess integrals are obtained by simple direct integration;

we get
n ABab
(m|w)=(m) exp(— Hb) 0)
3ab 24BN ( w \b ABab
(“A]K‘w)=(m_ @+ o )(m) e"p(” a+h ) (i3
where ad=exp(—arh) and AB= T (4,- B, 12)
<l

To evaluate the remaining integrals we have
[ exp (—ertar,
- (471/1,_A)J:“ 13 exp(—ark)dry+ mr roq0xp (—ard,)dr,
I
= @njare) J. ;“exp (—art)drs, (13)
by tho wollimown traasformaton o the Coulomb poentil of a sphrialchesge

distribution. The integrals (a4 | 7, |6B), corresponding to a nucleus at C, can b
reduced to an integral of the above type, since putting

ad,+bB

B, =t oo, 0}
‘we have
@4 |7.168) = [(r)exp[ - S fate-Ap+ o= B} |ar
A v
= exp(— aﬁ’tb)f(llrc)exp[—zE.(a«)-b) (xfl’,){ldr. (15)
Vs
If we define Fo) = r'fn e du (16)
and oP- 3 G-R,

wobavel ™ (ad|V.|bB)= (a+b)exp( a+b)F(CPi(a+b)) an

To evaluate the remaining type of integral it is convenient first to evaluate

I sﬂ(l [r12) exp { =1 Z,: B(z, —I’,,)'} - vzvzy‘j‘(z.— Q) drdr,

=2 far,exp(~u 3 (0= Bt e (— 0t a9)

This transformation is obtained by integrating with respect to dr, using relation (13).
Now if we use the two centre variables rp, g, ¢ in place of z,, y;, 2 with

dry = (rpro| PQ) drpdrodd,
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A o ([PQ . [PQire WFa | (o
el ol e E el e
wPQ\s " Upory T Jra U rera drr 0 2

xrpexp( -mg,)f exp (—va?) da
o

u(Pera)zJ.:axp (—va%)da. (19)

Hence we require to evaluate an integral of the type
2 ‘
dexp{—alo— R} J' oxp{~ Ay dy (20)
LI .
when o> 0 and > 0. We have

é——&z da(R—2)oxp{—ala— R)"}j exp{—fydy

~/ (a+p’) “P( a/i,a) &)

and since J = 0 when R = 0 we obtain

(R (_oBE
7 AA/(D(-*-/?)J;EXP( a+ﬂ)dR' L
‘Substituting this back in (19) we get
_ o (PQuw
I-WF(W,V)- )

The actual integral which we require to evaluate is
[a4bB| M | cCaD) ='|- f (1fry3) exp{— (ard, + brig + orfo+ drip)} drydr,

9 5
—e { ‘ﬁ 'Zb °;D "iU (1fry3)exp{— (@ +8) rip— (c+d) rig} dr s,

(24)
where B, =(ad,+bBp)/(a+b) snd @, = (cC,+dD,)/(c+d), ete. (25)
The integral is just of the form of I so that
[a4bB| M | cCaD]
lf‘ ont { ABab_OD%d) F(PQ‘(a+b)(o+d))
=@ rdyatbrord P\ avb  o+d )
(26)

Tn view of the fact that the formulae for all functions of the complete Gaussian
class can be derived from the above formulae by differentiation we have shown that
all Schrdinger integrals can. be evaluated for this class, and it only remains to
show that the integrals between the derived detors reduce to these integrals. This is
apparent by simple examination. The detors are merely finite linear combinations
of the form

91(T1) (1) GalT0) (V) - In(Tn) Balvn), @7
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where g; are members of the complete Gaussian class and each y; represents either
a or B. Hence if we expand (S, | H | S;), where 8, and & are detors of this type, we
obtain only a finite number of terms o
(CAEARAVARCATARNCA \ Vir|62) - Gn| 90} (a | ),
[CAFARCAVABRCAP AT AR AT AT VAN (28)
(1|99 (| 3) - (9395 | Mig| 93951 - (Gn | G) (tin | )
The factors (; | ) are all 0 or 1 by the definition of the 4, and the other factors are
all integrals of the general types which we have shown can be ovaluated. In actusl
practice powerful techniques are available to obtain the integrals between detors
ithout explicit expansion, but these do not affect the final form of the answer.
Hence we see that all matrix elements of the form (S| H|S}), where H is the
Schrédinger-Hamiltonian and S, and S are detors formed from f\mcnons of the
canplate Glanssian lass oan-be exprossd. in orms of iabulated Fmoti

3. THE VARIATIONAL SELECTION METHOD USING DETORS FROM A COMPLETE
OLASS OF FUNCTIONS

In this section what is regarded as the most promising converging method of
obtaining electronic wave functions for atoms and molecules will be explained and
justified. Tt will not be possible to prove rigorously the theorems which are required,
but we shall give what ]ushﬁcrmon we can. Diffculties of rigorous justification are
well known in this field, in ime
sions, concerning the solnhons of A it Sin (e e
bounded. The requisite theorems may not be true for any mathematical fanetion
but are very probably true for the functions permissible for wave functions. It is
probably the difficulties of knowing and introducing such conditions for permissible
functions which have prevented rigorous proofs of various desirable theorems up
to the present.

We shall first assume the convergence of the Ritz variational procedure for
e)genvalnes and eigenfunctions. It is convenient to summarize as a theorem all the
assumptions that are made in applying this procedure. This theorem has not been

proved ngomusly, but if various plausible assumptions (such as the convergence of
3(¢,| H| 99, when the g, form a complete system of functions) are made, it can

e provedexoapt for ths convergence!of the kigher sigenfasHons ¥y oo (560

Kemble 1937). The assumption of the convergence of these is, however, generally

made in practical numerical calculations.

Tusorzx 1. If f, and B, are the (b)th eigenfunction and eigenvalus of
H-B) =0, @9

these being labelled in order of ascending By, if ®, represents a normalized orthogonal

system of fanetions, if Y = $X*?®, and B satisfy

S@,|H |0, X - Bpx> 30)
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the Ep being labelled in ascending order, then we have
> BpH> B,

I£ @, is & complete system of functions then Jf converge monotonically downwards
to By, and £ converge in the mean square sense to

It has been considered simplest to ignore the possibility of degenerate eigenvalues
in this formulation. A considerably longer statement would be necessary to include
this possibility, but this could be done without any essential difference of content.

A variational method will now be considered which is not the final method the
author will advocate, but which forms an introduction and a justification of the
final method. This method will be referred to as the single-system detor method,
and the final method as the variational selection method. In the single-system
method we commence with {#}, & single complete system of orthonormal functions
of the variables z, 9, z. If we ate solving an  electron problem we form an ordered
system of (n)th order detors constructed from the {g,} in accordance with the general
procedure of placing all possible dezors which contein ¢, but not ¢, for p>m beforo

11 detors which contain any of ¢,,. This system is then to be used as a complete
syscem of funstions for the varmnonal procedure as stated in theorem 1. The B}

and ¥ = EX,’.‘M@, will converge according to the theorem if {®,} is a complete

orthonormal system of functions. The orthonormality follows from the definition
of the detors as mentioned above, but to show the completeness of the system a
theorem is required which has not been established for general functions for the
infinite ranges of integration for which it is required, although it can be proved for
finite ranges of integration. The proof for finite ranges is given by Courant & Hilbert
(1931, p. 47), but its general validity will be assumed for infinite ranges for the types
of functions which will be used in these calculations.
TazorsM 2. If {$,} denotes & complete system of functions for the space 2, y, z, then
the system Pualr) Bua(ra) Beslrs) - BonlCa)s @1)
where each pair 51, §2, etc., denotes a single suffix of the r type, and where the
products are ordered so that all products containing ¢,, but no ¢, (p >m) are placed
before all pmducts containing any of the ¢,, is a complete system for the space
(1 oy eor Tk
Tt follows from this theorem that the products
Bulr1) a0 $oa(F) fgavs) - Bon(T) s (32)
where ;; have the possible values /z‘ = and p_; =B, is a complete system of
functions for the space (Iy, vy, Ty, Vs, ... ,,), since the system would be complete
for each of the combinations of the ,L,n
If we consider an anti-symmetric f\mcnon F then by definition
o, PF=F, (33)
and if F is expanded in terms of the complete system of produeta with coefficients
A(si, ki) we can operate on both sides of the equation an
U)o BF = F = (a) S0, 3, Alsi, Im>¢.,m,¢..m coBon s (38)

thus expressing F' as a sum of detors.
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Hence for anti-symmetric functions the detor system is a complete system, and
the use of the single-system detor method for obtaining converging anti-symmetric
solutions of Schrddinger’s equation is in accordance with theorem 1

The variational selection method can now be stated. This is & general procedure
with considerable liberty of choice, which ozm be appljad to a complete class of
functions, When approximating to a particular K, and 4, we take the M (th) approxi-
mation to be given by the use in the variational mechod of M detors formed from any
m orthonormal ¢ out of the complete class. We do not specify the choice of the
$M or of O the M detors, which need not be all the detors that can be formed from
the ¢4, beyond one condition. We specify that the Jf obtained from this choice
must be less than i where this is the value given by the ()th approximation in
the single- system detor method when nsmg some complete system of {4}} chosen
out of th Thi of method makes it
include a large variety of particular processes. For a given value of M we could
take considerable pains to minimize B} with respect to the various parameters
which designate the members of the complete class, or we could perform many
schemes of less exhaustive tests. In actual fact the postulated comparison with
some single-system method will be only nominal, because in minimizing at all we
shall generally have implicitly compared with the use of a single complete system of
the functions. Single complete systems, such as those based on

exp (—ar?), exp (—2ar?), etc.,

and the spherical harmonics, would be so simple to work with that no other choice
would be made, unless the energy could be considerably lowered by doing so.

The significance of the procedure is probably shown most clearly by summarizing
the basic assumptions as a conjectured theorem.
TazorEM 3. If Yy, and B, are the (k)th eigenfunction and eigenvalue of

(H-E) Y =0,

these being labelled in order of ascending Z, if {¢,} denotes a complete class of
functions z, ¥, 2, if (#;) denotes a complete system of functions ocourring in {¢,}
and {0/} the complete system of detors formed from these, if E denotes the (k)th
eigenvalue in the variational approximation using the first M of these detors, if
@} denotes a set of M detors made from any set of orthogonal functions out of {¢,}
such that these give a value K} < E') for the ()th eigenvalue when used in the
variational procedure, then EJ converge monotically to B, and ¥, the corre-
sponding eigenfunction, converges in the mean square sense to

This theorem cannot be proved rigorously, but it is justified fon degree corre-
sponding to assumptions of the ordinary variational method. The convergence of
B} follows from the variational theory when we assume the completeness of the
detors formed from a complete system. The convergence of Y3 follows from the
convergence of B3 just as given by Kemble (1937) for the ordinary variational
procedure. Theconvergence of Bl (k> 1) ha,s not been proved. However, all practical

variational theorem (1), and it appears

practically cemm um. theorem (3) w.l] be snm]arly justified.
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The only quantities which we require to carry out the process numerically for
particular molecules are the values of the Schrddinger integrals between the detors
used to approximate to the wave function. But it has been shown that, if we work
with the complete class of Gaussian functions, all these can be expressed very
simply in terms of tabulated functions. Since this complete class contains all
Gaussian and Hermitian functions situated at all points of space, it is particularly
appropriate for molecules and systems of atoms where the nuclei and concentrations
of electrons oceur at large distances. We can facilitate the rate of convergence by
using linear combinations of functions centred round the different centres of elect-
ronic concentration. The early terms can correspond to complete systems of fanctions
on the several centres concerned. The essential virtue of the complete Gaussian
class is that it is the only complete class in which there ocour complete systems of
functions situated round all points and for which all the integrals involved in the
variational selection method of detors can be evaluated.

It has thus been established that the only difficulty which exists in the evaluation
of the energy and wave function of any molecule, or other system of atomic nuclei
and electrons, when the complete Gaussum classis used with the vematlona.l selection

does not involve any numerical integrations. Whether this method will be finally
used or whether a modification or a separate method may be developed, cannot at
present be foreseen, but this represents a definite step forward, since it is the first
time it has been possible to state such a scheme.

4, THE APPLICATION OF THE VARIATIONAL SELECTION METHOD FOR NON-
GAUSSIAN FUNCTIONS, AND THE APPLICATION TO ATOMS
Tt will have been noted that the practical application of the variational selection
method to detors constructed from complete classes of functions {7} other than the
Gaussian class would be quite possible if the integrals

(CARARNCANEITAR MKlfs)- [frfnlM‘flfu] (35)

could be evaluated. Itis, however, very d
used contains complete systems of functions which can be | placed round all the
dxﬁerent atomic nuclei in the sysbem No oth is

mcegtahon of the necessary mtegm]s - This is not. foasible becatse, even allowing for
considerable simplification, & numerical integration over six dimensions with

to ranges is complotely prohibitive. Hence, unless new methods of the requisite
integral evaluation are developed, the use of the Gaussian class constitutes the only
method for general molecules.

If the necessary integrals could be evaluated the functions which would be
generally considered to be most useful and rapidly convergent would be the class
composed of the fanctions #'y™z" exp ( — ar ), together with all linear combinations
of these. Reasonable accuracy would be expected with small numbers of terms in
this case. This follows since, if the electrons did not interact and were only subject
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$0 the field of ! time, perfect] lutions of this form could be
written down. Even when electronic inferaction is allowed for, such functions have
given surprisingly good results for approximations to atomic wave fanctions using

only very fow terms. However, it is well known that the evaluation of the general
integrals in such cases has proved to be a singularly intractable problem, and the
use of these functions cannot be considered unless some definite progress is made in
the evaluation of these integrals.

The situation for atoms is much simpler. In this case the class of all linear com-
binations of functions z'y™z" exp (—ar) situated ebout the single nucleus s likely
to give rapidly convexgem approximations and all the necessary integrals can be
evaluated. A first result using this method for beryllium is reported in a subsequent
paper. Actually it is convenient to write the functions in the form

S0, §) rH+® exp (—ar), *

where S is & spherical harmonic. The methods of evaluation of the necessary
integrals are well known and the manipulation is particularly simple. The class can
be easily shown to contain complete systems of functions since a system

)

is complete with respect to the radial variation, while the spherical harmonics are
complete with respect to the angular variation. By considering different values of &
we have infinite numbers of complete systems in our general class. The use of such
funotions for spproximate wave functions consiting only of s\ngle detors has been

times, the leulations being those of Morse, Young &
Haurwitz (1935). However, we systemmc useasa cunvergmg method by means of
incressing numbers of detors has not previously been

The method which has been most extensively used fot atoms is the Hartree-Fock
method. The relation of this to our present, considerations can be stated by saying
that numerical functions of the type f(r) S™(6, ¢) are used. In the ordinary case
only a smgle detor lms been used, and there is no attempt f,o obtain ultu:um/e con-
verge h ion which is called
detors h&vs been used, but actually, since all the integrals have to be evaluaced
numerically, it does not appear to be feasible to use more than two or three such
terms. However, in principle this method can be regarded as a particular case of the
procedure we have called variational selection, although in practice it is very dis-
similar from the use of explicit functions.

In conclusion, the author wishes to state that, in his opinion, we shall ultimately
be driven to the general method of variational selection of detors from one or other
complete class of functions for more accurate data on the structure of atorms and
molecules. Since the method using Gaussian class of functions for molecules would
be laborious although possibly necessary, it appears best to develop and systematize
the common aspect, the variation selection method. This can be done by some
calculations for atoms while at the same time obtaining useful results. Numerical
and theoretical results along these lines will be reported in the subsequent parts of
this series of papers.

exp(—nkr), (n=1,2, .
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5. DisoussoNn

The value of the present treatment lies not so much in the fresh mathematical
analysis, which is Telatively elementary, but in the fact that it provides for the first

ime a systematic scheme by which the wave functions of the stationary states of
the electrons in the field of any arrangement of nuclei can be evaluated. In general,
the necessary computation would be laborious, but there are cases where such
calculations provide the only hope of obtaining data otherwise almost inaccessible,
and where long caloulations might be worth while. On the other hand, it may be
possible to improve the scheme either b; ificati ical method,
or by developments purely in the numerical procedure. For atoms the use of the
variational selection method for detors from exponentials instead of Gaussian
functions appears as if it will provide & powerful method without further modifi-
cation.

An interesting aspect of the general method is that it has a certain heuristic value.
By slightly specializing the most general method one is able to give an extremely
compact statement of a procedure to which quantum mechanics reduces the general
problem of predicting the energy and structure of any system of atoms and mole-
cules. * Consider Gaussian polynomial products situated around esch nucleus of the
system. Take orthogonal linear combinations of these and form the detors after
combining these functions with the spin functions. Calculate the energy of a linear
combination of these detors with adjustable coefficients. Choose these coefficients
and the original parameters of the orthogonal functions to minimize the energy.
As the number of functions considered is increased this energy will converge to the
ground state. Alternatively, by minimizing a higher eigenvalue of the variational
equation, we can converge to the energy of an excited state. All the necessary
integrals can be evaluated by simple formulae.” The only errors which are not
decreased indefinitely by taking larger numbers of detors are of the nature of
relativistic corrections. It is the author’s opinion that it is simpler to explain this
general method than to explsin many of the more approximate and restricted
methods.

The relation of the present analysis to approximate theories, such as molecular
orbitals, localized bonds, and modifications of these, is twofold. In the first place the
integrals evaluated provide for the first time a possibility of applying these methods
in & quantitative a priors manner for a general molecule without the necessity of the
prohibitive numerical integrations over six dimensions. Previously, if caloulations
were attempted for any system more complicated than the simplest diatomic mole-
cule, the only practical procedure was to derive the energy in terms of unknown
integrals and then estimate these by comparison with experimental energies
(Coulson 1947). In the second place an examination of the numbers of integr
which would be required for these approximate non-converging methods and for
the varintional selection of detors when using the same set of initial functions shows
that the computation would not be very much greater in the general method.
Hence it appears that in @ priori caleulations it will be most worth while to use the
many detor procedure.
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CoNCLUSIONS
The methods developed above give for the first time a quantitative method of
evaluating the stationary state wave functions and energy levels of all atoms and
molecules to any required degree of acouracy. Direct application to complicated
cases would involve very heavy computing but may be worth while in special cases.
On the other hand, it may be possible to derive shorter modifications of the method.
A related method, applicable only o atoms, appears to be of great practical value.
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