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Abstract

It will be shown that the familiar components of the terms of a

molecule; the energy of electronic motion, of the nuclear vibration

and of the rotation, correspond systematically to the terms of a power

series in the fourth root of the ratio of electron mass to (average)

nuclear mass. The treatment yields among other things an equation

for the rotation, which represents a generalization of the treatment of

Kramers and Pauli (top with built-in 
y-wheel). Furthermore, there

appears a justi�cation of the considerations of Franck and Condon on

the intensity of band lines. The relationships are illustrated for the

diatomic molecule.

Introduction

The terms of molecular spectra are usually made up of parts of various or-

ders of magnitude; the largest contribution comes from the electronic mo-
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tion about the nuclei, then follows the contribution of the nuclear vibration,

and �nally that from the nuclear rotation. The basis for the possibility of

such a classi�cation obviously rests in the comparative magnitudes of nu-

clear and electronic masses. From the standpoint of the old quantum theory,

which computed stationary states with the aid of classical mechanics, this is

the concept applied by Born and Heisenberg [1]; it was shown that the en-

ergy terms appear as the terms of increasing order with respect to the ratiop
m=M , where m is the electronic mass and M an average nuclear mass.

Thereby, however, nuclear rotation and vibration both appear in the second

order, which contradicts empirical �ndings (for small rotational quantum

numbers).

Here the problem will be approached anew from the standpoint of quan-

tum mechanics.1 It then becomes necessary to make our development with

respect to (m=M)1=4 rather than with respect to
p
m=M , so as to obtain

the natural order of energy terms. The considerations also become much

simpler and more transparent than in the old theory. The nuclear vibrations

correspond to terms of second order and the rotations to fourth order in

the energy, while the �rst and third order terms vanish. The absence of the

�rst order terms is related to the existence of an equilibrium position of the

nuclei, in which the electronic energy for stationary nuclei is at a minimum.

The fourth order terms for the rotational motion illustrate the generaliza-

tion of the treatment of Kramers and Pauli [2] in which the the behaviour

of a molecule is compared to that of a top with a built-in 
y-wheel. In or-

der to determine the eigenfunctions and thereby the transition probabilities

only to the zeroth approximation, the energy calculation must be carried

out to terms of fourth order (rotations). One obtains expressions for the

probabilities of simultaneous jumps of electronic, vibrational and rotational

quantum number through which the representations developed by Franck [3]

and elaborated by Condon [4] may be given precise interpretation.

1Through the discussion of the basis of this work with us, Dr. P. Jordan has helped us

with valuable comments, for which we express our thanks.
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The approximations to higher than fourth order will not be treated in this

work; they correspond to coupling among the three basic types of motion.

A calculation of this e�ect is only meaningful for simultaneous considera-

tion of all degeneracies of electronic motion for stationary nuclei, especially

the Heisenberg resonance degeneracy which arises from the equivalence of

electrons (also possibly of some nuclei) and in diatomic molecules, from the

degeneracy of the eigenrotation about the internuclear axis; these compli-

cated considerations will be forgone here.

As an example we will consider diatomic molecules in detail, using not

only the general method but also another utilising the separation of variables

in which the rotation becomes signi�cant even in the zeroth order approxi-

mation, as Born and H�uckel [5] have done it in the older quantum theory.

Part I. Notation and De�nitions

We denote the mass and rectangular coordinates of the electrons bym; xk; yk; zk

and of the nuclei by Ml; Xl; Yl; Zl. Letting M be any average value of the

Ml, we set

� =
�m
M

�1=4
(1)

and

Ml =
M

�l
=

m

�4�l
; (2)

the �l being dimensionless numbers of order of magnitude 1. Let the potential

energy of the system be

U(x1; y1; z1; x2; y2; z2; : : : ;X1; Y1; Z1; X2; Y2; Z2; : : : ) = U(x;X) (3)

where we denote by x the totality of electronic coordinates and by X, that

of the nuclear coordinates. The function U depends only on the relative

positions of the particles; however, we make no use of its particular form
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(Coulomb's law). The kinetic energy of the electrons is represented by the

operator

TE = � h2

8�2m

X
x

X
k

@2

@x2k
(4)

where the symbol
X
x

denotes the sum which arises from the above expresion

by cyclic permutation of x, y and z.

The kinetic energy of the nuclei is

TK = ��4 h2

8�2m

X
X

X
l

�l
@2

@X2
l

: (5)

The total energy is represented by the operator

H = H0 + �4H1 (6)

where

TE + U = H0

�
x;

@

@x
;X

�

TK = �4H1

�
@

@X

�
: (7)

We introduce now, in place of the rectangular coordinates of the nuclei,

3N � 6 functions

�i = �i(X) (8)

which denote the relative positions of the nuclei with respect to one another,

and 6 functions

�i = �i(X) (9)

which determine the position and orientation of the nuclear con�guration in

space. One can in a symmetrical fashion introduce the rectangular coordi-

nates �Xl, �Yl, �Zl of the nuclei relative to the instantaneous principal axes of

inertia; between these there are 6 relations:X
l

Ml
�Xl = 0 � � �

X
l

Ml
�Yl �Zl = 0 : : :
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One can thus express the �Xl by the 3N�6 independent parameters �1; �2; : : : :

�Xl = �Xl(�); : : :

There then exist transformations between the original and the new coordi-

nates, of the form

Xl = X0 +
X
y

�xy(�; �;  ) �Yl(�); (10)

X0; Y0; Z0 are the coordinates of the center of mass and the �xy are the

coe�cients of the orthogonal rotation matrix, and are thus known functions of

the Eulerian angles �; �;  . The quantities X0; Y0; Z0; �; �;  are the functions

denoted by �i in (9). By (10), the Xl are determined as functions of the �i

and �i; by solving, one obtains the expressions (8) and (9).2

This transformation does not, of course, separate the energy H into parts

corresponding to translation, rotation and relative motion of the nuclei. How-

ever one can separate H1 into three parts:

H1 = H�� +H�� +H��; (11)

H�� is linear homogeneous in the @2

@�i@�j
; H�� contains the @

@�i
; H�� is in-

dependent of all derivatives with respect to the �i. One can make further

generalizations about these operators. If we apply the entire operator H1 to

an arbitrary function f(�) of the relative nuclear coordinates �i, the resulting

quantity H1f(�) must be independent of the position in space, hence of the

�i. In particular, in H�� the coe�cients of the
@2

@�i@�j
cannot depend on the

�i. In contrast, these do appear in H��, associated with the @
@�i

, the �i, �i and
@
@�i

; in H�� associated with @2

@�i@�j
the @

@�i
, �i and �i.

We will consider these operators explicitly for diatomic molecules.

The mechanical problem we must solve is

(H0 + �4H1 �W ) = 0: (12)

2It is of physical signi�cance that this solution is in general made using ambiguous

functions; compare [6].
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We will show that any arbitrary solution which corresponds to a combina-

tion of nuclei and electrons forming a stable molecule can be found by a

development in a power series in �.

Part II. Electronic Motion for Stationary Nu-

clei

If one sets � = 0 in (12) one obtains a di�erential equation in the xk alone,

the Xl appearing as parameters:�
H0

�
x;

@

@x
;X

�
�W

�
 = 0: (13)

This represents the electronic motion for stationary nuclei. We assume this

eigenvalue problem is solved. The eigenvalues depend only on the functions

�i of the Xi; then one can use the coordinate system de�ned by the principal

axes of inertia, ie let Xl = �Xl(�). In this system of axes, the eigenfunctions

depend, besides on xk, only on the �i; however, if one transforms back to the

arbitrary space-�xed axes, the �i again become involved.

We designate the nth eigenvalue and the corresponding normalized eigen-

function as

W = Vn(�)  = �n(x; �; �) (14)

so that the identity�
H0

�
x;

@

@x
; �; �

�
� Vn(�)

�
�n(x; �; �) = 0 (15)

is valid. Here we assume that Vn is a nondegenerate eigenvalue. As a matter

of fact, this is never the case since the indistinguishibility of the electrons

introduces the resonance degeneracy, discovered by Heisenberg and Dirac; for

diatomic molecules there is an additional degeneracy of the angular momen-

tum about the axis. But since we are concerned here only with the systemat-

ics of the approximation procedure, we will not consider these degeneracies.
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Their consideration would result in secular equations in the higher approxi-

mation.

The most important goal of our investigation is the proof that the func-

tion Vn(�) plays the role of a potential for the nuclear motion. For this we

must have several auxilliary formulas which will be derived now. It is neces-

sary to show that the matrix corresponding to the derivative of the operator

H0(x;
@
@x
; �; �) with respect to �i, (for constant x,

@
@x
) can be related to the

derivative of the function Vn(�).

Instead of taking the derivative with respect to the �i directly, we replace

the �i by �i + ��i and di�erentiate with respect to �; the coe�cient of a

power of � is then a homogeneous polynomial in �i, these coe�cients being

derivatives with respect to �i. Thus we write

Vn(� + ��) = V (0)
n + �V (1)

n + �2V (2)
n + : : : ; (16)

where

a) V (0)
n = Vn(�)

b) V (1)
n =

X
i

�i
@Vn
@�i

c) V (2)
n =

1

2

X
ij

�i�j
@2Vn
@�i@�j

;

: : : : : : : : : : : :

(17)

and correspondingly

H0 = H
(0)
0 + �H

(1)
0 + �2H

(2)
0 + : : :

�n = �(0)
n + ��(1)

n + �2�(2)
n + : : : (18)

: : : : : : : : : : : :

One can now develop the quantities �
(1)
n , �

(2)
n in the eigenfunctions �

(0)
n (x; �; �),

setting

a) �(1)
n =

X
n0

u
(1)
nn0�

(0)
n0 ;

b) �(2)
n =

X
n0

u
(2)
nn0�

(0)
n0 :

(19)
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Thus u
(r)
nn0 is a homogeneous polynomial of the rth order in �i, for instance

u
(1)
nn0 =

X
i

�i

Z
�
(0)
n0

@�
(0)
n

@�i
dx

u
(2)
nn0 =

X
ij

�i�j

Z
�
(0)
n0

@2�
(0)
n

@�i@�j
dx: (20)

These integrals, in which dx denotes the volume element in con�guration

space, are independent of the orientation of the nuclear system in space,

hence independent of the �i; one can thus evaluate them in the principal axis

system.

If now, F denotes any operator on the xi, we de�ne the rth order matrix

element of F Z
�
(0)
n0 F�

(r)
n dx = F

(r)
nn0: (21)

For r = 0 this becomes the usual matrix element

F
(0)
nn0 = Fnn0 =

Z
�
(0)
n0 F�

(0)
n dx: (22)

In general, by (19),

F
(r)
nn0 =

X
n00

u
(r)
nn00Fn00n0 : (23)

Using (15) for � = 0

(H
(0)
0 � V (0)

n )
(r)
nn0 = u

(r)
nn0(V

(0)
n0 � V (0)

n ): (24)

Furthermore, we obtain by substituting (16) and (18) in (15), the following

identities:

a) (H
(0)
0 � V (0)

n )�(1)
n + (H

(1)
0 � V (1)

n )�(0)
n = 0

b) (H
(0)
0 � V (0)

n )�(2)
n + (H

(1)
0 � V (1)

n )�(1)
n + (H

(2)
0 � V (2)

n )�(0)
n = 0

: : : : : : : : : : : :

(25)
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Multiplying these by �
(0)
n0 and integrating over the xi, by virtue of (24) we

�nd:

a) u
(1)
nn0(V

(0)
n0 � V (0)

n ) + (H
(1)
0 )nn0 � V (1)

n �nn0 = 0

b) u
(2)
nn0(V

(0)
n0 � V (0)

n ) + (H
(1)
0 � V (1)

n )nn0 + (H
(2)
0 )nn0 � V (2)

n �nn0 = 0

: : : : : : : : : : : :

(26)

From these one can compute the (H
(1)
0 )nn0, (H

(2)
0 )nn0, : : : , ie the matrix

elements
�
@H0

@�i

�
nn0

,
�

@2H0

@�i@�j

�
nn0

, : : : . This gives derivations ofH0 with respect

to derivations of Vn(�). We will later apply these formulas.3

Part III. Setting-up the Approximate Equa-

tions

An arbitrary con�guration of electrons and nuclei cannot always be treated

by a general approximation procedure. We will here consider only states

which correspond to a stable molecule. We will begin with the following

question:

Is there a system of values of the relative nuclear coordinates �i such

that the eigenfunctions  n of the energy operator (6), in so far as they de-

pend on the �i, have values signi�cantly di�erent from zero only in a small

neighbourhood of this set?

This wave-mechanical requirement corresponds obviously to the classical

condition that the nuclei undergo only small oscillations about the equilib-

rium con�guration; the j nj2 is the probability of �nding a certain con�gu-

ration of given energy.

We consider, as the unperturbed system, the electronic motion for an

arbitrary but henceforth �xed nuclear con�guration, �i. We then develop all

quantities with respect to small changes of the �i, which we designate by ��i;

3The classical analogue to the simplest deduction from these formulae, namely the

identity (H
(1)
0 )nn = V

(1)
n which follows from (26a) for n = n0, is found in [7]; compare

especially with x 4, formula (11).
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we presume then that the \domain" of oscillation is such that � is close to

zero, an assumption which is only justi�ed by its success.

We have then as in (18), part II, the development

H0(x;
@

@x
; � + ��; �) = H

(0)
0 + �H

(1)
0 + �2H

(2)
0 + : : : ; (27)

where

a) H
(0)
0 = H0(x;

@
@x
; �);

b) H
(1)
0 =

P
i �i

@H0

@�i
;

c) H
(2)
0 = 1

2

P
ij �i�j

@2H0

@�i@�j
;

: : : : : : : : : : : :

(28)

and from (11) since @
@�

= 1
�

@
@�

�4H1(X;
@

@X
) = �4

�
1

�2
H�� +

1

�
H�� +H��

�
(29)

= �2H
(0)
�� + �3

�
H

(0)
�� +H

(1)
��

�
+ �4

�
H

(0)
�� +H

(1)
�� +H

(2)
��

�
+ : : :

where

a) H
(0)
�� = H

(0)
�� (�;

@2

@�i@�j
)

b) H
(1)
�� =

P
i �i

@H
(0)
��

@�i

: : : : : : : : : : : :

(30)

a) H
(0)
�� = H

(0)
�� (�; �;

@
@�
; @
@�
)

b) H
(1)
�� =

P
i �i

@H
(0)
��

@�i

: : : : : : : : : : : :

(31)
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a) H(0)
�� = H(0)

�� (�; �;
@2

@�i@�j
)

b) H
(1)
�� =

P
i �i

@H
(0)
��

@�i

: : : : : : : : : : : :

(32)

The arguments �i are hereafter to be considered constants.

The total energy operator is then

H = H0 + �H
(1)
0 + �2

�
H

(2)
0 +H

(0)
��

�
+ �3

�
H

(3)
0 +H

(0)
�� +H

(1)
��

�
+ �4

�
H

(4)
0 +H

(0)
�� +H

(1)
�� +H

(2)
��

�
+ : : : (33)

The succeeding terms all have the same form and can be formed from the

term in �4 by increasing the superscript by 1.

We also develop the desired eigenfunction and energy parameter with

respect to � :

 =  (0) + � (1) + �2 (2) + : : :

W = W (0) + �W (1) + �2W (2) + : : : (34)

We then obtain the following approximation equations:

a) (H
(0)
0 �W (0)) (0) = 0

b) (H
(0)
0 �W (0)) (1) = (W (1) �H

(1)
0 ) (0)

c) (H
(0)
0 �W (0)) (2) = (W (2) �H

(2)
0 �H

(0)
�� ) 

(0) + (W (1) �H
(1)
0 ) (1)

d) (H
(0)
0 �W (0)) (3) = (W (3) �H

(3)
0 �H

(0)
�� �H

(1)
�� ) 

(0)

+(W (2) �H
(2)
0 �H

(0)
�� ) 

(1) + (W (1) �H
(1)
0 ) (2)

e) (H(0)
0 �W (0)) (4) = (W (4) �H(4)

0 �H(0)
�� �H(1)

�� �H(2)
�� ) 

(0)

+(W (3) �H
(3)
0 �H

(0)
�� �H

(1)
�� ) 

(1)

+(W (2) �H
(2)
0 �H

(0)
�� ) 

(2) + (W (1) �H
(1)
0 ) (3)

: : : : : : : : : : : :

(35)
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Part IV. Solution of the Approximate Equa-

tions of zeroth and �rst Order: Equilibrium of

the Nuclei

The zeroth order equation (35a) describes the electronic motion for stationary

nuclei as discussed in Part II. From the normalized eigensolution �
(0)
n (x; �; �)

belonging to the eigenvalue V
(0)
n = Vn(�), we �nd the general solution in the

form:

 (0)
n = �(0)

n (�; �)�(0)
n (x; �; �) (36)

where �
(0)
n is an, as yet, arbitrary functions of the arguments �i; �j; this

must be included in order to enable solutions of the following approximation

equations.

The following approximation equation (35b)

(H
(0)
0 �W (0)) (1) = (W (1) �H

(1)
0 ) (0) (37)

is soluble only when the right side is orthogonal to  
(0)
n (relative to the

electronic coordinates xi).
4

This gives the conditionn�
H

(1)
0

�
nn
�W (1)

o
�(0)
n (�; �) = 0 (38)

where
�
H

(1)
0

�
nn

is the diagonal matrix element of the operatorH
(1)
0 relative to

the xi, thus by (28b) a homogeneous linear function of �i. This must however,

by (38), be constant, since �
(0)
n (�; �) cannot vanish identically without the

same being true for  
(0)
n .

Thus it follows that

W (1) = 0;
�
H

(1)
0

�
nn

= 0: (39)

4We de�ne the orthogonality of two functions f(x) and g(x) by
R
f(x)g(x)dx = 0.
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From (26a) and (17) we have however�
H

(1)
0

�
nn

= V (1)
n =

X
i

�i
@Vn
@�i

:

Thus:
@Vn
@�i

= 0: (40)

The validity of continuing our approximation procedure requires that the

relative nuclear coordinates �i must not be arbitrarily chosen, but must cor-

respond to an extremum of the electronic energy Vn(�). The existence of this

is therefore the condition for the existence of the molecule, a law which is usu-

ally assumed to be self-evident. We will show later that it must necessarily

be a minimum as well.

The function �
(0)
n (�; �) remains, as yet, undetermined. Setting in (37)

W
(0)
n = Vn(�), W

(1)
n = 0 and  

(0)
n = �

(0)
n �

(0)
n we �nd the equation which

determines �
(1)
n �

H
(0)
0 � V (0)

n

�
 (1)
n = �H(1)

0 �(0)
n �(0)

n : (41)

A solution of this by (25 a) is  
(1)
n = �

(0)
n �

(1)
n where �

(1)
n is the function (19a)

de�ned by (18). The general solution is obtained by adding a solution �
(0)
n

of the homogeneous equation with the yet undetermined factor �
(1)
n (�; �):

 (1)
n = �(0)

n �(1)
n + �(1)

n �(0)
n : (42)

Part V. Solution of the Approximate Equa-

tions of second and third Order:Nuclear Vi-

bration

We now reach the approximation equation (35c), which after substitution of

the solutions for the lower order approximations is�
H

(0)
0 � V (0)

n

�
 (2)
n =

�
W (2)

n �H
(2)
0 �H

(0)
��

�
�(0)
n �(0)

n

� H
(1)
0

�
�(0)
n �(1)

n + �(1)
n �(0)

n

�
: (43)
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In order for this to be solvable, the right must again be orthogonal to �
(0)
n ;

using the notation of part II this yields, because of (39):n�
H

(2)
0 +H

(0)
��

�
nn

+
�
H

(1)
0

�
nn
�W (2)

n

o
�(0)
n = 0:

It follows from (26b) with V
(1)
n = 0:�

H
(2)
0

�
nn

+
�
H

(1)
0

�(1)
nn

= V (2)
n : (44)

Since H
(0)
�� by (30a) is seen to be independent of the xk we �nd:n

H
(0)
�� + V (2)

n �W (2)
n

o
�(0)
n = 0: (45)

Noting the meanings of H
(0)
�� and V

(2)
n given by (17c) and (30a) we see that

(45) represents the equation for harmonic nuclear vibration:(
H

(0)
��

�
�;

@2

@�i@�j

�
+
1

2

X
ij

�i�j
@2Vn
@�i@�j

�W (2)
n

)
�(0)
n = 0: (46)

This equation shows that the function Vn(�) plays the role of a potential

energy for the nuclei, up to terms of 2nd order. For the existence of a stable

molecule there is a further condition that the extremum of Vn(�) determined

by (40) must be a minimum; then the quadratic form V
(2)
n must be positive

de�nite, thereby all degrees of freedom �i stable and oscillating about the

equilibrium con�guration are possible. It is known that the equation for the

vibration (46) is separable through a linear transformation of the �i to normal

coordinates �i. If �
(0)
ns (�) be the normalized eigensolution of (46) belonging

to the eigenvalue W
(2)
ns , the general solution is

a) W (2) =W
(2)
ns ; �

(0)
n = �

(0)
ns , where

b) �
(0)
ns = �

(0)
ns (�)�

(0)
ns (�):

(47)

The index s thus represents the set of vibrational quantum numbers. �
(0)
ns

is an, as yet, undetermined function of the �i, the introduction of which is

necessary for the continuation of the procedure.
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It is known that �
(0)
ns (�) is a linear combination of products of orthogonal

Hermite functions for the individual normal coordinates �i; these functions

have the property that they approach zero very rapidly (exponentially) out-

side the limit of classical vibration. So our substitution of (�+��) is justi�ed

since it indeed leads to a solution, with regard to the �-oscillation within the

limit, which vanish with �. We apply the further property of the orthog-

onal Hermite functions that they are either even or odd functions of their

argument.

Let � be any operator on the �i. We can then construct the corresponding

matrix

�nn0

ss0

=

Z
�
(0)
n0s0��(0)

ns d� (48)

where d� is the volume element in the space of the �i.

In order to solve equation (43) we substitute on the right side, using (45),�
W (2)

ns �H
(0)
��

�
�(0)
ns = V (2)

n �(0)
ns ;

(43) then becomes:�
H(0)

0 � V (0)
n

�
 (2)
n =

�
V (2)
n �H(2)

0

�
�(0)
ns �

(0)
n �H(1)

0

�
�(0)
ns �

(1)
n + �(1)

ns �
(0)
n

�
:

(49)

The general solution is

 (2)
n = �(0)

ns �
(2)
n + �(1)

ns �
(1)
n + �(2)

ns �
(0)
n ; (50)

where �
(2)
ns denotes a new, undetermined function of the �i; �j; this is easily

veri�ed using the identities (25).

We now consider the approximation equation of 3rd order (35d); after

substitution of the already determined quantities, this becomes:�
H

(0)
0 � V (0)

n

�
 (3)
n =

�
W (3) �H

(3)
0 �H

(0)
�� �H

(1)
��

�
�(0)
ns �

(0)
n

+
�
W (2)

ns �H
(2)
0 �H

(0)
��

� �
�(0)
ns �

(1)
n + �(1)

ns �
(0)
n

�
� H

(1)
0

�
�(0)
ns �

(2)
n + �(1)

ns �
(1)
n + �(2)

ns �
(0)
n

�
: (51)
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We may consider the right side as a development in the �
(0)
n ; we write�

H
(0)
0 � V (0)

n

�
 (3)
n =W (3)�(0)

ns �
(0)
n �

X
n0

F
(3)
nn0�

(0)
n0 ; (52)

where

F
(3)
nn0 = F

(3;1)
nn0 �

(2)
ns + F

(3;2)
nn0 �

(1)
ns + F

(3;3)
nn0 �

(0)
ns ; (53)

where the F are operators on �and �, and

a) F
(3;1)
nn0 =

�
H

(1)
0

�
nn0

b) F
(3;2)
nn0 =

�
H

(0)
�� �H

(2)
0 �W

(2)
ns

�
nn0

+
�
H

(1)
0

�(1)
nn0

;
(54)

we can say about F
(3;3)
nn0 only that it is a homogeneous function of 3rd degree

in the �i and the @=@�i.

If (52) is solvable, we must have

W (3)�(0)
ns � F (3)

nn = 0

because of (53) and (54a)

F (3;2)
nn �(1)

ns =
�
W (3) � F (3;3)

nn

�
�(0)
ns ; (55)

where, by (54b) and (44)

F (3;2)
nn = H

(0)
�� � V (2)

n �W (2)
ns :

Thus (55) is the inhomogeneous equation corresponding to the vibration

equation (45); since (45) has the normalized solution �
(0)
ns belonging to the

eigenvalue W
(2)
ns , (55) is solvable only when the right side multiplied by �

(0)
ns

has a vanishing integral over �-space. This gives, using (47b), a di�erential

equation for �(0)ns (�): �
F

(3;3)
nn
ss

�W (3)
�
�(0)ns = 0:
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However, F
(3;3)
nn is odd in the �i and @=@�i so the diagonal element of the

�-matrix must vanish. When one transforms to the normal coordinates �i,

�
(0)
ns becomes a sum of products of orthogonal Hermite functions, F

(3;3)
nn , a

polynomial of odd order in the �i and @=@�i, so that every term contains at

least one of �i or @=@�i in an odd power; therefore every term in the �-matrix

vanishes. It follows therefore

W (3) = 0 (56)

and �
(0)
ns remains, as before, undetermined.

Now we may solve:

�(1)
ns = S(1)

ns �
(0)
ns (57)

where S
(1)
ns is the following operator with respect to the �i:

S(1)
ns =

X0

s0

F
(3;3)
nn
ss0

�
(0)
ns0

W
(2)
ns �W

(2)
ns0

: (58)

Finally the solution of (52):

 (3)
n =

X0

n0

F (3)
nn0�

(0)
n0

V
(0)
n � V

(0)
n0

(59)

and by (53), this has the form:

 (3)
n =

X0

n0

�
G

(3;1)
nn0 �

(2)
ns �

(0)
n0 +G

(3;2)
nn0 �

(1)
ns �

(0)
n0 +G

(3;3)
nn0 �

(0)
ns �

(0)
n0

�
; (60)

where

G
(3;2)
nn0 =

F
(3;2)
nn0

V (0)
n � V (0)

n0

: (61)

Noting (54) we see that G
(3;1)
nn0 is a number, G

(3;2)
nn0 a di�erential operator with

respect to the �i and G
(3;3)
nn0 an operator with respect to the �i and �i.
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By (26a), Part II

X0

n0

G
(3;1)
nn0 �(2)

ns �
(0)
n0 =

X�
H

(1)
0

�
nn0

�
(0)
n0 �

(2)
ns

V
(0)
n � V

(0)
n0

=
X0

n0

u
(1)
nn0�

(0)
n0 �

(2)
ns

= �(1)
n �(2)

ns

thus

 (3)
n = �(1)

n �(2)
ns +

X0

n0

�
G

(3;2)
nn0 �(1)

ns �
(0)
n0 +G

(3;3)
nn0 �(0)

ns �
(0)
n0

�
: (62)

Part VI. Solution of the Approximate Equa-

tions of fourth and higher Order: Rotation and

Coupling E�ects

After substitution of the quantities already determined, the 4th order ap-

proximation equation (35e) becomes:�
H(0)

0 � V (0)
n

�
 (4)
n =

�
W (4) �H(4)

0 �H(0)
�� �H(1)

�� �H(2)
��

�
�(0)
ns �

(0)
n (63)

�
�
H

(3)
0 +H

(0)
�� +H

(1)
��

� �
�(1)
ns �

(0)
n + �(0)

ns �
(1)
n

�
+

�
W (2)

ns �H
(2)
0 �H

(0)
��

� �
�(2)
ns �

(0)
n + �(1)

ns �
(1)
n + �(0)

ns �
(2)
n

�
� H

(1)
0

(
�(1)
n �(2)

ns +
X0

n0

�
G

(3;2)
nn0 �(1)

ns �
(0)
n0 +G

(3;3)
nn0 �(0)

ns �
(0)
n0

�)
:

We develop again the right side in the �(0)
n :�

H
(0)
0 � V (0)

n

�
 (4)
n =W (4)�(0)

ns �
(0)
n �

X
n0

F
(4)
nn0�

(0)
n0 ; (64)

where

F
(4)
nn0 = F

(4;2)
nn0 �(2)

ns + F
(4;3)
nn0 �(1)

ns + F
(4;4)
nn0 �(0)

ns ; (65)
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here we have

F (4;2)
nn0 =

�
H(0)

�� �H(2)
0 �W (2)

ns

�
nn0

+
�
H(1)

0

�(1)
nn0

(66)

and is identical with F (3;2)
nn0 (54b). While F (4;3)

nn0 is of odd order in the �i; @=@�i,

F
(4;3)
nn0 is of even order. The integrability of (64) requires:

W (4)�(0)
ns � F (4)

nn = 0;

this means that by (65)

F (4;2)
nn �(2)

ns =
�
W (4) � F (4;4)

nn

�
�(0)
ns � F (4;3)

nn �(1)
ns : (67)

The left side agrees again with the vibration equation (45) because of (66).

The right side must also be orthogonal to �
(0)
ns . Substituting the expressions

for �
(0)
ns and �

(1)
ns from (47b) and (57), and using the symbol

(�)
(1)
ss0 =

Z
�
(0)
ns �S

(1)
ns d� =

X0

s00

h
�F

(3;3)
nn
ss00

i
ss0

W
(2)
ns �W

(2)
ns00

; (68)

we �nd n
F

(4;4)
nn
ss

+
�
F (4;3)
nn

�(1)
ss
�W (4)

o
�(0)ns = 0: (69)

This equation determines �nally the function �
(0)
ns (�), hence the motion of the

principal axes of inertia: the translations and rotations. The principal term

of the operator in (69) is the one which contains the second derivative with

respect to the �i; a glance at (63) shows that it arises from H
(0)
�� �

(0)
ns �

(0)
n , the

term corresponds in F
(4;4)
nn to�
H

(0)
��

�
n
=

Z
�
(0)
n H

(0)
�� (�

(0)
n : : : )dx; (70)

where in the place of the dots we have to put in the function which is op-

erated upon. Since the operator (70) is independent of the �i, the diagonal

elements of the corresponding s-matrix are identical with it. Physically the
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fact that the complicated operators
�
H

(0)
��

�
n
appear instead of the simple

operators H
(0)
�� indicates a coupling between the top motion of the nuclei and

the electronic motion.

These are, as we will later see for the case of the diatomic molecule, the

same e�ects that Kramers and Pauli [2] have tried to demonstrate using the

assumption of a `
y-wheel' built in to the top. Thus there are terms in (69)

that contribute to the operator H��; these correspond to a coupling of the top

motion with angular momenta which are a consequence of nuclear vibration.

Finally, there are terms which do not concern the �I ; these are the additions

to the vibrational energy of order �4.

Since the translations can always be separated in a trivial fashion, we

consider only the rotations. If r be the rotational quantum number, we have

for the solution of (70)

W (4) = W (4)
nsr; �(0)ns = �(0)nsr(�): (71)

Then one can solve (67) and �nally also (64). It is of no use to write out the

formulae explicitly.

Clearly, the procedure may be continued; however nothing new of sig-

ni�cance will appear. The higher approximations describe couplings among

rotations, vibrations and electronic motions. Quantum numbers other than

the ones already introduced do not enter.

We summarize now the consequences of our solutions. The most obvious

result is that in order to determine completely the eigenfunctions to 0th order

it is necessary to solve the approximation di�erential equations to 4th order;

we have

 nsr(x; �; �) = �(0)
n (x; �; �)�(0)

ns (�)�
(0)
nsr(�) + : : : (72)

where �
(0)
n is the eigenfunction for electronic motion for stationary nuclei,

�
(0)
ns that for nuclear vibration, and �

(0)
nsr that for rotation. Thus are de�ned

the vibrational coordinates �i from an equilibrium con�guration �i which is

de�ned by the requirement that in this con�guration the electronic energy
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Vn(�) is a minimum. The determination of the three functions �
(0)
n , �

(0)
ns and

�
(0)
nsr yield the energy to 4th order:

Wnsr = V (0)
n + �2W (2)

ns + �4W (4)
nsr + : : : ; (73)

where V
(0)
n is the minimum value of the electronic energy which characterizes

the molecule at rest, W
(2)
ns is the energy of nuclear vibration, and W

(4)
nsr con-

tains (along with additional terms for the vibrational energy) the rotational

energy. In this approximation (to �4) the three basis types of motion are

`separated'; the coupling among them involves terms of higher powers of �.

Given (72) we can now calculate transition probabilities (intensities of

bands).

The electrical moment of a moleculeM consists of a nuclear part P and

an electronic part p; the x-component is:

Mx = Px + px; where

(
Px =

P
l elXl

px = e
P

k xk
: (74)

Hence from the set of matrix elements with respect to xk, �i and �j;

(px)n
n0
=

Z
px�

(0)
n �(0)

n dx (75)

is a function of the �i and �j, then the

(px) ns
n0s0

=

Z
(px)n

n0
�
(0)
ns0�

(0)
ns0d�

(Px) ns
n0s0

=

Z
(Px)�

(0)
ns �

(0)
n0s0d� (76)

are functions of the �j, �nally

(px) nsr
n0s0r0

=

Z
(px) ns

n0s0
�(0)nsr�

(0)
n0s0r0d�

(Px) nsr
n0s0r0

=

Z
(Px) ns

n0s0
�(0)nsr�

(0)
n0s0r0d� (77)

are numerical constants which determine the radiation and the transition

probability for nsr ! n0s0r0. We can interpret this step by step procedure
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as follows: for every electronic transition n! n0, there corresponds a virtual

oscillator with moment (px)n
n0
; from this one obtains the matrix (px) ns

n0s0
which

corresponds to a system of vibrational bands (transitions from s ! s0), by

a rule (somewhat di�erent from the ordinary one) in which one uses one

eigenfunction of the lower and one of the upper electronic level (equation

(76)). We repeat the procedure for the line of the band corresponding to the

transition r ! r0. The method of evaluation of the intensity of vibrational

bands contained here is �rst given by Franck [3] and further developed by

Condon [4].

These are determined by variation of the functions Vn(�) and Vn0(�); only

in the neighbourhood of their minima are the corresponding eigenfunctions

�
(0)
ns and �

(0)
n0s0 signi�cantly di�erent from zero; their product is so only when

these regions overlap. When the function Vn(�) changes only slightly in an

electronic transition n! n0, the bands corresponding to a small change of s

will be intense; however if Vn(�) changes greatly in the transition, an overlap

of the intervals in which �
(0)
ns and �

(0)
n0s0 do not vanish becomes possible only

when the di�erence s�s0 is large. These relations are quantitatively discussed
by Condon. Similar considerations apply for the rotations mutatis mutandis.

Part VII. Special Case of the Diatomic Molecule

As an example we will brie
y treat the diatomic molecule. Besides the res-

onance degeneracy, which is a consequence of the indistinguishibility of the

electrons, there is an additional degeneracy since corresponding to every en-

ergy value there are two possible modes of motion in which the angular

momentum about the internuclear axis is oppositely directed. Since we are

not concerned here with the �ne structure of bands, we will not consider this

degeneracy; we limit our consideration to cases in which the angular momen-

tum about the axis vanishes or when the electronic energy is independent or

only slightly dependent on the angular momentum component.

For two nuclei we have only one � coordinate, the nuclear separation, and
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�ve � coordinates: the coordinates of the center of mass X0; Y0; Z0, and the

polar coordinates of the internuclear axis �; !.

The kinetic energy of the nuclei becomes

TK = ��4 h2

8�2m

�
�0 +

�

�2
@

@�

�
�2
@

@�

�
+
�

�2
��

�
(78)

where

� =

�
m

M1 +M2

�1=4

and � =
(M1 +M2)

2

M1M2

(79)

and

�0 =
@2

@X0
2 +

@2

@Y0
2 +

@2

@Z0
2 ;

�� =
1

sin2 �

@2

@!2
+

1

sin �

@

@�

�
sin �

@

@�

�
: (80)

Thus:

H�� = � h2

8�2m
�
@2

@�2
;

H�� = � h2

8�2m

2�

�

@

@�
; (81)

H�� = � h2

8�2m

�
�0 +

�

�2
��

�
:

Substituting � + �� for � and developing in �, we �nd:

H
(0)
�� = � h2

8�2m
�
@2

@�2
;

H
(p)
�� = 0; p = 1; 2; : : : (82)

H(0)
�� = � h2

8�2m

2�

�

@

@�
;

H
(1)
�� =

h2

8�2m

�

�2
�
@

@�
; (83)

: : : : : : : : : : : : : : :
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H
(0)
�� = � h2

8�2m

�
�0 +

�

�2
��

�
;

H
(1)
�� =

h2

8�2m

2�

�3
���: (84)

: : : : : : : : : : : : : : :

The nuclear separation is determined by the equation

V 0
n =

@Vn
@�

= 0: (85)

The equation for nuclear vibration is�
� h2

8�2m
�
@2

@�2
+
1

2
�2V 00

n (�)W
(2)
n

�
�(0)
n = 0: (86)

If we set

a =
8�2m

h2�
W (2)

n b =
8�2m

h2�
V 00
n � = �b1=4 (87)

we have [8] �
@2

@�2
+

�
ap
b
� �2

��
�(0)
n = 0:

The eigenvalues are

a=b1=2 = 2s+ 1 (s = 0; 1; 2; : : : );

with eigenfunctions

�(0)
ns = exp�(�2=2)Hs(�);

where Hs is the sth Hermite polynomial.

The energy of the vibrations is thus:

�2W (2)
ns = a

h2

8�2

�2�

m
= (2s+ 1)b1=2

h2

8�2

�2�

m

=

�
s+

1

2

�
h

4�

r
�4
�

m
V 00
n
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or

�2W (2)
ns =

�
s+

1

2

�
h�0 (88)

with

1

4�

r
�4
�

m
V 00
n =

1

4�

s�
1

M1
+

1

M2

�
V 00
n = �0 (89)

the frequency of the oscillator.

We set up now the equation (69) for the rotation, neglecting any detailed

estimation of the correction to the vibrational energy. Since H�� by (81) does

not contain derivatives with respect to the �j, we need consider only the term�
H

(0)
��

�
n
in (69); all remaining terms we include in the constant Cns. The

rotational equation (69) is then:��
H

(0)
��

�
n
+ Cns �W (4)

�
�(0)ns = 0: (90)

Since we have dropped the translational part from H��(0), we have by (70)

and (84) for an arbitrary function f(�):

�
H

(0)
��

�
n
f(�) = � h2�

8�2m�2

Z
�
(0)
n ��(�

(0)
n f)dx

and by (80)

��(�
(0)
n f) = �(0)

n ��f + f���
(0)
n + 2

 
1

sin2 �

@�
(0)
n

@!

@f

@!
+
@�

(0)
n

@�

@f

@�

!
:

Thus

�
H

(0)
��

�
n
f = � h2�

8�2m�2

(
��f + f

Z
�
(0)
n ���

(0)
n dx

+ :
2

sin2 �

@f

@!

Z
�
(0)
n
@�

(0)
n

@!
dx + 2

@f

@�

Z
�
(0)
n
@�

(0)
n

@�
dx

)
:
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If we write �� in the form:

�� =
@2

@�2
+ ctg �

@

@�
+

1

sin2 �

@2

@!2

we see that it is convenient to introduce the following notation:

�n =

Z
�
(0)
n
@�

(0)
n

@�
dx; 
n =

Z
�
(0)
n
@�

(0)
n

@!
dx;

�
(2)
n =

Z
�
(0)
n
@2�

(0)
n

@�2
dx; 


(2)
n =

Z
�
(0)
n
@2�

(0)
n

@!2
dx:

(91)

These quantities are the diagonal matrix elements of p�, p!, p
2
� and p

2
! (aside

from a factor h
2�2

, � h2

4�2
respectively); the �rst two denote the average value

of the electronic angular momentum about their corresponding Eulerian an-

gle; the second two, the average of the square of the angular momentum of

electronic motion. We write then for (90) explicitly:��
@2

@�2
+ 2�n

@

@�
+�

(2)
n

�
+ ctg �

�
@

@�
+�n

�
1

sin2 �

�
@2

@!2
+ 2
n

@

@!
+ 


(2)
n

�
+
8�2m�2

h2�

�
W (4) � Cns

��
�(0)ns = 0 (92)

This is very similar to the equation of Kramers and Pauli for a rotor with

a built-in 
y-wheel; the di�erence is essentially that they use the squares of

the average values �n
2
and 
n

2
, instead of the average of the squares �2

n and


2
n.

The dependence of the quantities in (91) on the angles � and ! may be

established by elementary considerations if it is assumed that for this purpose

the diagonal elements of the quantum mechanical matrix may be replaced

by the corresponding classical averages. One may decompose the motion of

the electronic angular momentum vector into an irregular variation without

average rotations and a superimposed uniform rotation about the molecular

axis. We represent the variation in the average by a constant vector; this

rotates uniformly about the axis. This exhibits the same behaviour as a

symmetric top with angular momentum components with respect to the top-

�xed coordinate system having values L, M and N . From this we may
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express the components of the angular momentum in the �, ! direction as

follows:

� = L cos 
 �M sin 



 = L sin � sin 
 +M sin � cos 
 +N cos �;

where 
 is the angle of the eigenrotation about the axis. Averaging over 
,

we �nd:5

� = 0 
 = N cos �

�2 = 1
2
(L2 +M2) 
2 = 1

2
(L2 +M2) sin2 � +N2 cos2 �:

We identify N with the quantum number � which gives the angular momen-

tum about the axis, and 1
2
(L2 +M2) and 1

2
N2 with the averages p2? and p2k

of the total electronic angular momentum perpendicular and parallel to the

axis; since N is constant, p2k = p2. We have �nally:

�n = 0 
� = p cos �

�2
n = p2? 
2 = p2? sin

2 � + p2 cos2 �:
(93)

This result requires naturally a rigorous quantum mechanical veri�cation;

presumably p2 is replaced by p(p+ 1).

In the eigenvalue problem (92), the quantity 8�2m�2

h2�
W (4) is equal to a

numerical function of the rotational quantum number r, say gns(r); the ro-

tational energy is thus:

�4W (4)
nsr =

h2��4

8�2m�2
gns(r) =

h2

8�2J
gns(r); (94)

where

J =
m

��4
�2 =

M1M2

M1 +M2
�2; (95)

the moment of inertia of the nuclei at equilibrium.

5Compare, for instance [9]

27



A discussion of the higher approximation is meaningless unless we con-

sider the degeneracies; we will not attempt this here.

We will now show brie
y that one can treat the diatomic by a completely

di�erent perturbation procedure; the classical analogue of this treatment was

carried out by Born and H�uckel [5]. The motion of the electronic system is

considered to be unperturbed not for stationary nuclei but rather for uniform

rotation of the nuclei.

Part VIII. Independent Treatment of the Di-

atomic Molecule.

We go back to equation (12), and rewrite, substituting (11):

�
H0 + �4 (H�� +H�� +H��)�W

	
 = 0:

Diatomic molecules have the peculiarity that H�� is generally independent of

the �. In this case, the method enables separation from the translations and

rotations. From (81), dropping the translational terms:�
H0 � h2�

8�2m
�4
�

@2

@�22
+
2

�

@

@�
+

1

�2
��

�
�W

�
 = 0: (96)

We set

 = Yr(�; !)	r(x; �); (97)

where Yr is a spherical function of rth order which satis�es the equation:

��Yr + r(r + 1)Yr = 0;

thus we �nd for 	r the condition�
H0 � h2�

8�2m
�4
�

@2

@�22
+
2

�

@

@�
� r(r + 1)

�2

�
�W

�
	r = 0: (98)
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We again substitute �+�� for �; thus considering vibrations about the state

of uniform rotation. Denoting the energy of this state as:

R =
h2��2

8�2m

r(r + 1)

�2
=

h2

8�2J
r(r + 1) (99)

and setting

W = E+R; (100)

we �nd for (98) �
H

(0) + �H(1) + �2H(2) + � � � � E
�
	r = 0 (101)

where

H
(0) = H

(0)
0

H
(1) = H

(1)
0 + �R0

H
(2) = H

(2)
0 +

1

2
�2R00 � h2�

8�2m

@2

@�2
(102)

H
(3) = H

(3)
0 +

1

6
�3R000 � h2�

8�2m

2

�

@

@�
: : : ;

H(0)
0 , H(1)

0 , : : : are the operators given earlier. All the formulas of Part II are

valid without modi�cation. The approximation equations are:

a)
�
H

(0) � E
(0)
�
	

(0)
r = 0

b)
�
H

(0) � E
(0)
�
	

(1)
r =

�
E
(1) � H

(1)
�
	

(0)
r

c)
�
H

(0) � E
(0)
�
	

(2)
r =

�
E
(2) � H

(2)
�
	

(0)
r +

�
E
(1) � H

(1)
�
	

(1)
r

: : :

(103)

The �rst has the solution:

E
(0) = Vn(�); 	(0)

r = 	(0)
rn = �(0)

rn (�)�
(0)
n (x; �); (104)

where Vn(�) and �
(0)
n (x; �) are the previously introduced functions and �

(0)
rn (�)

is, to begin with, arbitrary. The condition for integrability of (103b) is�
E
(1) � H

(1)
�
�(0)
rn (�) = 0:
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Now, by (26a) (Part II):

H
(1)
nn =

�
H

(1)
0

�
nn

+ �R0 = V (1)
n + �R0 = �

@

@�
(Vn +R):

Hence, as before (Part IV),

E
(1) = 0;

@

@�
(Vn +R) = 0: (105)

This condition obviously states that for the unperturbed rotation, equilib-

rium must prevail between the centrifugal force and the quasi-electric force,

which, as a consequence of the electronic motion, resists a displacement of

the nuclei. The centrifugal force is:

�
�

1

M1
+

1

M2

�
p2r
�3

= �
�

1

M1
+

1

M2

�
h2

4�2

r(r + 1)

�3
;

where the quantummechanical value h
2�

p
r(r + 1) for the angular momentum

is substituted for pr; by (99) and (95), this agrees with R0.

From relation (105), how to calculate the equilibrium separation �r; de-

pends on the rotational quantum number r. For small values of the rotational

energy R, one can develop �r in powers of �, where:

� = �4
�

m

h2

4�2
r(r + 1) =

�
1

M1

+
1

M2

�
h2

4�2
r(r + 1); (106)

we �nd:6

�r = � +
1

�3V 00
n

� � 3

�7V 00
n
2

�
1 +

�

6

V 000
n

V 00
n

�
�2 + : : : (107)

Since � is of order �4, we will use by systematic procedure only as many

terms of this set as correspond to the order of the approximation in the

perturbation method.

6One can easily deduce this formula from the cited work of Born and H�uckel.
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Since we consider this again, we will shortly see that this is the same

method as before, only simpli�ed by the previous consideration of the rota-

tion. The solution of (103b) is:

	(1)
rn = �(0)

rn �
(1)
n + �(1)

rn �
(0)
n (108)

this corresponds to (42); and the condition for integrability of (102c):n
H

(2)
nn +

�
H

(1)
nn

�(1)
nn
� E

(2)
n

o
�(0)
rn = 0:

This is, however, the vibration equation�
� h2�

8�2m

@2

@�2
+
1

2
�2(V 00

n +R00)� E
(2)
n

�
�rn = 0: (109)

Thus, as in Part VII:

�2E(2)
rns =

�
s+

1

2

�
h�r; (110)

where the frequency,

�r =
1

4�

s�
1

M1

+
1

M2

�
(V 00

n +R00) (111)

still depends on the rotational quantum number r, from the R.

Further, as in Part VII,

�(0)
rns = exp(��2=2)Hs(�) (112)

with

� = �b1=4; b =
8�2

h2
m

2�
(V 00

n +R00):

The procedure may be continued in the usual fashion. We �nd E(3) = 0,

while E(4), besides the deviation from the harmonic vibration law, contains a

coupling with the electronic motion. A thorough consideration of the formu-

lae would, however, be beyond the scope of this work, which demonstrates

only the principle of the development; also the calculation of the higher

approximations is meaningful only when the degeneracies are taken into ac-

count.
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