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A zone spectrum of the ultrarelativistic channelled particles in a crystal
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Résumé. - On obtient l’équation de dispersion qui définit le spectre d’énergie de bande du mouvement transverse
de particules chargées canalisées dans un plan. La solution numérique de cette équation est obtenue en utilisant
le potentiel réel du plan cristallographique. On calcule les coefficients de population des niveaux d’énergie et on
compare les solutions classique et quantique du problème de la canalisation des particules.

Abstract. - The dispersion equation which defines the band energy spectrum of the transverse movement of the
plane channelled charge particle is obtained in this work. The numerical solution of this equation is found using
the real crystallographic plane potential. The population coefficients of the energy levels are calculated and quantum
and classical solutions of the problem of particle channelling are compared.
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1. Introduction. - The possibility of infrared pho-
ton formation under transitions between transverse

energy levels of the channelled protons was at first
mentioned by Tomson [1]. In references [2, 3] this

process was considered for channelled electrons and
for the optical range of the radiated photons. However,
the interest in the problem of channelling radiation
was largely stimulated by the works of Baryshevsky
and Dubovskaya [4] and Kumakhov [5] where they
at first showed that because of the Doppler effect
ultrarelativistic electrons and positrons would radiate
X-rays and photons in harder range. In reference [4]
the quantum theory in which the channelling radiation
was caused by transitions between energy zones of the
transverse movement of the channelled particle was
given and in reference [5] the channelled particle was
considered as a radiating classical oscillator.
The radiation from the channelled particles was

discovered by several experimental groups [6-8] and
at present the quantitative theoretical description
of the real radiation spectrum is a very actual problem.
Such analysis is necessary to choose the optimal
conditions for obtaining the intensive X-ray bunches
so as to use the above-mentioned radiation for

studying of crystal structures. In many works devoted
to the theory of the channelling radiation (see, for
example, reference [9] and cited works) the later was
considered as a radiation under transitions between
below-barrier isolated energy levels only. But in
accordance with the accurate quantum theory des-
cribed in references [ 10-11 ] the quantitative description

of the experimental spectrum can be obtained if
all the possible transitions between energy zones both
below-barrier and above-barrier are taken into consi-
deration.

In the present work the quantum calculations of the
electrons and positrons energy band spectrums and of
the population coefficients are fulfilled for the case of
plane channelling. The main results were briefly
presented earlier [12]. Our calculations are based
on the quasiclassical approximation. As was shown in
references [13-14] the correct utilization of this approxi-
mation enables account to be taken of effects of the
below-barrier passage and the above-barrier reflec-
tion. Using this method we have built the simple and
sufficiently accurate algorithm for the numerical
calculation of the band spectrums and wave functions
in the whole range of the transverse energy of the
channelled particles. Our calculation method is most
convenient when the total particle energy

The analogous problem was independently inves-
tigated by Tulupov [ 15]. But the method of many-wave
diffraction theory used in this work is not efficient for
numerical calculation of the band spectrum in the
case of sufficiently large total energy of the channelled
particle and for calculation of high above-barrier
zones whose population are essential if the angle
dispersion of the particles in the real beams is taken
into account. Therefore our results and the results

represented in reference [15] are not covered in fact.
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As will be shown further, our calculation method
possesses additional advantages in comparison with
the direct solution of the Schrodinger equation.
These advantages are connected first with the possi-
bility of zone spectrum « scaling » and secondly due
to simple way of population coefficients averaging
over the angle dispersion in the particle beam.

2. A zone spectrum of the one-dimension crystal
in the quasiclassical approximation. - It is well known
that in the plane channelling case the ultrarelativistic
(E &#x3E; m) particle movement can be described by the
equation which formally coincides with non-relati-
vistic one-dimension Schrodinger equation (h = c =1 )

where Eo = pz + py + m is the longitudinal par-
ticle energy (pz and py are the momentum components,
m is the particle mass); Z-axis coincides with the
particle velocity direction; X-axis is perpendicular to
the channel plane; V(x) is the potential of the crystal-
lographic plane, which can be built as follows [16] :

Here g(i) are the Fourier components of the accurate
three-dimensional potential of the particle-crystal
interaction; these components include the Debye-
Waller factor, which appears when potential averag-
ing over the atoms thermal vibrations ; d is the lattice
period along the X-axis ; T is the reciprocal lattice
vector.

The total energy E and the wave function .p of the
particle are connected with the transverse energy 8
and with the function 9(x) as follows

where ax is the Dirac matrix; u(p) is the spinor des-
cribing a free particle with momentum p. The expres-
sions (3) are fulfilled with accuracy - ( V )/Eo.
Thus we come to the problem of building the energy

band spectrum in the one-dimensional periodical
potential. The general dispersion equation determining
the energy spectrum can be found without any approxi-
mation [14]. Really, there are two linear independent
solutions of the equation (1) in the region where
8 &#x3E; V(x). Let us call these solutions f(x) and f*(x).
Then in the region kd  x  (k + 1) d ; k = 0, 1, 2,...
the general solution of the equation (1) may be written
as follows :

In the region (k + 1) d  x , (k + 2) d each function f
and f * transforms into some linear combination of
the same functions, that is

and coefficients R and D satisfy the condition

I D 12 = 1 + I R 12, which follows from the condition
of the flow periodicity. Then

and in accordance with the Bloch theorem

where K is the crystal momentum. As the functions f
and f* are linearly independent, the coefficients C1 1
and C2 must satisfy the system of the equations

The condition of the existence of a non-trivial
solution of the system (7) leads to the dispersion
equation

where

Let us introduce the reflection coefficient R, and the
passage coefficient D 1 instead of R and D. The new
coefficients are defined in the usual manner. For

example in the case of a wave passing over the potential
barrier from left to right one can find the following
relation

In order to find the analytical expression for D 1
it is necessary to use some approximations for calcu-
lating the functions f and f*. In the present work we
utilize the quasiclassical approximation. For the

equation (1) this approximation accuracy is defined

by the following parameter
.... I

where n is the number of discrete spectrum levels in
the isolated potential pit coinciding with the channel
potential; Vm is the maximum value of the crystallo-
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graphic plane potential. In this approximation f
and f * are defined by the following expressions

In the region E  Vm coefficient D 1 is defined by the
well known expression

provided that
Here

and xl ; x2 ; X3 are the turning points; energy s is
counted off the potential minimum.
As distinct from the classical case the reflection

coefficient is not equal zero when 8 &#x3E; Vm. In the
quasiclassical approximation the method of the cal-
culation of D 1 for 8 &#x3E; Vm was developed in refe-
rence [13]. This method is based on using the special
countour integration to build the functions f and f*.
This countour must pass over complex turning points
which are defined by the equality
... 7/ / lr _ 

Not repeating the calculations in reference [13], we

cite the expression for the reflection coefficient. In
this case

If the function V(x) is symmetrical with respect to
point x = d/2 (this condition is usually fulfilled for a
real potential) then the integral countour may be
chosen in such a manner that the values D 1 I and
q(s) are expressed by the real integrals. Then

The expressions (12) and (14) fail when the trans-
versal movement energy is approximately equal to
the barrier potential Vm. Therefore we shall obtain
the formula which will apply when c - Vm and which
reduces to (12) or (14) in the corresponding limit
cases. For the case 8 &#x3E; Vm the analogous investi-

gation was carried out in reference [ 17] in connection
with another problem.
Near the barrier potential

and the equation (1) has the analytical solution

where D.(z) is the parabolic cylinder function.
To the right of the potential barrier, that is when x , &#x3E; 0, D. and D _ m _ 1 turn into the quasiclassical functions

f and f * respectively in the asymptotic limit. Let us count B1 = 0 as we are interested by the reflection and
passage coefficients on the solitary barrier. Then for xl 4 4 , &#x3E; 1

In the region x,  0 the function (p(x) has the next form [18]
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and when I x, 4 4 , I &#x3E; 1, coincides with the linear combination of the functions f and f *

where

Using the well known asymptotic expressions for the functions Dm and D _ m _ 1 [ 18] one can find

where r(z) is the f-function.
Thus when s is near barrier potential

Now we take into account that in the region where the solution (15) may be used the following equality takes
place

As a result we obtain the dispersion equation in the following form

which permits us to build the zone spectrum in the whole range of the transverse particle energy.
Let us consider the limit cases when the solution of the equation (19) may be obtained analytically.

where EN(O) coincides with the energy of the discrete spectrum levels in the isolated potential pit
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and

defines the value of allowed energy band is significantly less than the distance between bands.

In this case the energy spectrum consists of wide allowed energy bands and narrow forbidden energy bands.
The width of the forbidden energy band is expressed as follows

and for s &#x3E;&#x3E; Vm we have

The exact solution of equation (19) for the Si crystal has been obtained numerically. The parameters of the
considered problem have been defined by the conditions of the experiment [8]. The potential used as the inter-
plane potential has been obtained in Moliere’s approximation with averaging over the thermal vibrations [19].
In the case of positrons this potential can be written as 

and in the case of electrons the potential is expressed as follows

The definition of the potential parameters I/J a; yi; Pi; ti; Ul are given in reference [19].
Using the optimal program permits us to build the whole energy spectrum with a precision of 1 jo both

for electrons and for positrons in several minutes on a computer ES 1033.
As for example figure 1 shows the energy spectra of electrons and positrons which have the same total

energy Eo = 28, 56 MeV and channel along the ( 1,1, 0) crystallographic plane in Si crystal.

3. The wave function normalization and the popu-
lation coefficients of the energy levels. - According to
formulae (4) and (7) the stationary wave function
of the channelled particle is expressed as

where

The factor C 1 is determined by the condition of the
wave function normalization

we have neglected the contribution of fast-oscillating
functions f2 and f*2 in the integral.

If the energy levels are far from the barrier potential
the factor I is expressed as follows

where T(s) is a classical transit time of a particle
between crystallographic planes. Hence the norma-
lization constant is

If the quantum effects of tunnelling and above-
barrier reflection are neglected, then 1 q 12 takes two
values only : I q 12 = 0, when 8 &#x3E; V m and 1 q 2 = 1
when 8  Vm. Therefore the normalization constant
has a jump discontinuity when 8 passes from below-
barrier range to above-barrier range. This is clarified
under a classical approach to the considered problem :
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Fig. 1. - The characteristics of the band spectrum of the
electrons and positrons channelled along the (1, 1, 0) plane
in Si crystal : a) disposition of zones for electrons with
energy E = 28 MeV (in the left) and E = 56 MeV (in the
right); the solid line is the Moliere potential averaged over
the thermal vibrations; energies in units 108 cm-1 = 2 keV;
b) the same for positrons; dotted lines show the level

disposition in the parabolic potential which is represented by
dashed line ; c) the detailed structure of zones with n = 10,
11 for positrons with E = 56 MeV.

in this case the particle movement period tests the
jump discontinuity too and as a result the radiation
intensity and radiation spectrum from the particles

with flying angle 0  OL - 2 Vm and with angleEo
0 &#x3E; OL sharply differ one from another. The artificial
contrast of the radiation from the particle moved
above the potential barrier and the radiation from the
channelled particle arises under the classical conside-
ration of this problem [20]. In fact from the quantum
point of view both types of radiation have a mutual
nature and are conditioned by the transitions between
the energy bands of the particle transverse movement.
The formula (20) fails when the energy level closely

equals the barrier potential and a classical period 2 T
becomes infinite. However using the analytical solu-
tion (15) allows a regularization of the expression of
the normalized integral (20). In fact, let us introduce

some point a belonging to the interval - d andg g 2’ 2
meeting the conditions which are joint in a case when
the particle movement is quasiclassical

Then if the potential is symmetrical with respect to
point d/2 one can obtain the following formula using
the asymptotic expression for Dm(z)
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Taking into account the dispersion equation, one can transform the expression for 1 q 12 as follows

where

The formulae (21) and (22) permit us to calculate the
normalization constant C1 for any allowable value of
variable 8. The normalization constant Cl behaviour
is compared with the behaviour of the normalization
constant without regularization in figure 2.

It is to be noticed that there is the closed form

expression for the integral of I Dm 12 in (21). It is
determined by the G-function of Majer [18]. However
we calculated this integral numerically using the
D-function integral representation.
Now we consider the calculation of the population

coefficients of the energy levels when the defined
form wave package falls on the crystal. For the right

Fig. 2. - Comparison of the normalization constants

without regularization (dotted line) and with regularization
(solid line).

interpretation of the radiation spectrum the detailed
consideration of this point is very important. At
first let us discuss the definition of the population
coefficient and consider its dependence on the package
configuration. Usually the incident beam is charac-
terized by the angle 0 only, whereas the population
coefficient C",c being defined by the expression

depends on the configuration of the wave package 00.
However one can show that for real experiments this
dependence is not important.

Let us decompose the function 4/0(r) in a Fourier
integral:

where a(p - po) is a function which has its maximum
at the point po(po_, 0; 0 ; poz) and which is nonzero

in the range Apx p., - POx where Ax is

the width of the incident beam.

Substituting (24) in (22) and taking into account that
in a case of real experiment Ax is much greater than
the distance between crystallographic planes we obtain
that Q"K are determined by the direction of momentum
po only and are not dependent on the wave package
configuration. Under the classical consideration of
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this problem the momentum po direction coincides
with the particle motion direction.
Thus the population coefficients Q"K are expressed
as follows

where the index K is determined by the condition
r o/i

K = Po. 0 - 2 7r!- ; K is the crystal momentum of[ d ]
the considered one-dimensional crystal ;

Let us take note that the momentum pZ, determining
the total wave function (3) does not equal poz because
the boundary continuity condition is used for the

preassigned total energy. Therefore

First of all let us consider the cases in which quantum
effects are not important. Then

Under the considered approximation, we use the

sleepest descent method for calculating the integral (26)
and as a result we obtain the expression which was
first found in reference [21] ]

where the saddle point xo is determined by the condi-
tion

2 2

In the cases both EIIK pOx &#x3E; V., and ’6#IK 
pOx 

 0In the cases both 2 2 E 0 &#x3E; V m and E"x - 2 Eo
the equation (28) has no real roots (noting that the
energy e counts off the potential minimum both for
electrons and for positrons). But there is always the
complex root of this equation that is zo = xo + iyo.
The nonzero imaginary part of the equation (28)
root means an exponential decrease of the popula-
tion coefficients in this energy range. Analytical
continuation of the quasiclassical wave function

permits us to obtain the following expressions for
the population coefficients in the different energy
ranges

A complex point of turn zo is determined by the equa-
lity

under any pox.
When the saddle point is in the neighbourhood of

the barrier potential point or the potential minimum
point, the expression (29) becomes invalid. However
in the neighbourhood of these points the real poten-
tial is approximated by a parabola and in these energy
ranges QnK is calculated using analytical solution of the
Schrodinger equation (1)

where
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Fig. 3. - The band population coefficients for px = 0 :

a) positrons with energy E = 56 MeV; b) the same for electrons.

Coefficients of linear combination of the parabolic
cylinder functions in (30) are chosen from the condi-
tion that for I Ml,2 I &#x3E; 1 the functions (Pl,2 coincide
with quasiclassical solutions. 
The integral (26) determining the coefficient C(o)

can be turned into the infinite integral as the inte-
gration in the neighbourhood of points x = 0 and
x ~ d/2 brings the main contribution to this integral.
As a result, the coefficients may be expressed over
special functions but this expression is sufficiently

complicated. Therefore we found the population
coefficients by calculating the integral in (26) numeri-
cally. Figure 3 shows the behaviour of the population
coefficients both for electrons and for positrons for
monochromatic beams. In both these cases the beha-
viour of the population coefficients is essentially
different and this fact must be accounted for in cal-

culating the channelled particle radiation.
In the real experiment particles in the beam have

a sufficiently large angle dispersion A0 and it is

necessary to average QIIK over these angles. If A0

2Vm
is the same order as OL 2 Vml one can find theE
simple formula for the averaged population coeffi-
cients on the basis of quasiclassical expression (29).
The formula is

where a(px - Pox) is the function describing the

particle angle distribution in the beam. The normaliza-
tion condition is
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4. A zone spectrum « scaling ». - The peculiar
character of the problem of zone spectrum building
for ultrarelativistic channelled particles is that the

longitudinal energy enters as a parameter in the

equation defined the particle transverse movement.
Besides the interplane potential parameters essentially
change when the crystallographic plane and material
of the crystal where the particle is channelled are

changed. Therefore it seems at first sight that it is

necessary to calculate independently a zone spec-
trum for any modification of the experimental condi-
tions. But it is proved that the dependence of zone
spectrum characteristics from Eo, amplitude Vm
and period of the interplane potential is universal
in the limits of the considered method. This circum-
stance permits us to make a « scaling » of zone spec-
trum and to find the values 8"K for different Eo, V m
and d on the basis of sole « calibrating » spectrum.

Indeed, let us consider the equation which defines
the values corresponding to the centre of zpnes

where a = xl, b = x2 for below-barrier region of 8
and a = - d/2, b = d/2 for s &#x3E; V m.
An analogous equation but for the other energy El

and for the potential V(x) = Å. V( ax) is

Let us consider the numbers n and n 1 as continuous
variables. Then it follows directly from equations (32)
and (33) that B(n) and E 1 (n 1 ) connect by means of the
correlation

Now suppose that the « calibrating » spectrum s(n)
is known. Then the discrete energy levels E 1 (n 1 )
for arbitrary E 1 ; a; A and for natural n I one can find
by means of the formula which is just with an accuracy
of the quasiclassical parameter

where n, and n- are the natural parts of the number

cxn Eo calculated with surplus and scarcityan1 TFOEl’-o I calculated with surplus and scarcity1 Eol
accordingly.

In the above-barrier region where the width of a
forbidden zone is exponentially small the dispersion
equation (19) is simplified

and the energy levels E 1 (n 1; K) are expressed from
the « calibrating » spectrum 8(n ; x) as follows

The quasimomentum K and the value An are defined
by following inequality

In order to improve the accuracy of the correla-
tion (36) one can use interpolating formula analo-
gies (35).
And after all let us consider the essentially quantum

region of the value E ~ Vm when the width of forbid-
den zone is compared with the width of allowed zone
and the dispersion equation is sufficiently complicate.
But it remains to take into account that in this region
the potential V(x) coincides with parabola

and the equation (19) does not change under the
following transformation

, ,

where the value As(n; x) was defined earlier.
The totality of the formulae (36)-(37) permits us to

built a zone energy spectrum of channelled particle
with an accuracy  2 % for different values of the
total energy E &#x3E; 10 MeV and for different potential
parameters if zone spectrums described in § 3 are
used as « calibrating » spectrums.
And in conclusion of this paragraph we note that

the considered method of the spectrum « scaling »
may be used in the case of axis channelling and for
channelled ions. Besides a zone spectrum « scaling »
permits us to make the analytical transformation of
radiation spectra from the channelled particles when
the experimental conditions change.

5. Conclusions. - The investigation carried out in
our work shows that the use of the semiclassical

approximation enables us to calculate all the cha-
racteristics of the channelled electrons and positrons
in the whole range of the transverse movement energy.
The obtained results are significant for the quantitative
calculation of the channelled particle radiation spec-
trum in the crystal. This problem will be considered
separately.
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