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calculation of the x-ray profiles containing multiple Bragg reflections is investigated.

DOI: 10.1103/PhysRevB.77.174114 PACS number�s�: 61.05.cc, 61.05.cp, 68.65.Ac

I. INTRODUCTION

Thin crystalline films and multilayers are widely used in
modern nanoscale manufacturing throughout the semicon-
ductor, coating, optical, and infrared industries. The broad
use of these structures requires adequate methods for char-
acterization and quality control as well as for development of
electronic and optical devices with predictable properties.
These requirements have led to advances in application of
such characterization techniques1 as photoluminescence
�PL�, reflection high energy electron diffraction, transmission
electron microscopy,2 scanning tunneling microscopy, ex-
tended x-ray absorption fine structure, and others. High-
resolution x-ray diffraction3 �HRXRD� occupies a special
place among these methods due to its nondestructive charac-
ter, suitability of the x-ray wavelength for investigating na-
nometer and subnanometer length scales, and specific fea-
tures of the diffraction process on the perfect atomic
arrangement in the studied samples. This technique incorpo-
rates the fitting of experimental HRXRD profiles by theory
taking into account the interference of scattered x-ray waves
on the deformations of crystallographic lattice and scattering
of x rays at internal interfaces to obtain the parameters of the
studied samples.

The essential advantage of the HRXRD method is that the
dynamical range of x-ray measurements is very high in mod-
ern instruments and synchrotron sources, which makes it
possible to measure the diffraction peaks up to the relative
precision �exp�10−7, and thus the theoretical calculations
have to be as precise as �th��exp to accurately evaluate
sample parameters. This measurement precision and high
perfection of the investigated structures result in detailed ex-
perimental curves, containing plenty of information and re-
flecting the complex scattering of x rays within the sample.
This fact, in turn, demands a precise theoretical interpreta-
tion of the measured data taking into account numerous dy-
namical effects for the x rays inside the sample.

Growing attention has also been recently paid to the mea-
surements and interpretation of long-range scans �LRS� in
the high-resolution diffraction setup. These measurements
are carried out in a wide angular range of incidence or exit
beams, which covers a large number of Bragg reflections

��3�. The analysis of these profiles allows the very accurate
interpretation of the distortions in crystallographic lattice
�see, for example, Refs. 4–7, and citations therein�. The LRS
measurements play an essential role in the so-called x-ray
surface crystallography,8 where multiple crystal truncation
rods �CTRs� are measured and evaluated. In contrast to
CTRs, which scan reciprocal space with conservation of the
lateral component of the wave vector, the LRSs may also
pass through the reciprocal lattice points belonging to differ-
ent truncation rods. Both CTRs and LRSs require a precise
data interpretation in the vicinity of the Bragg peaks �con-
ventional dynamical diffraction theory is applicable� and in
the intermediate regions between the peaks �kinematical ap-
proach is applicable�.

The interpretation of LRS is a typical subject for phase
analysis in powder diffractometry, where x rays are scattered
from a sample’s monocrystalline blocks of small size. In this
case, the position and the intensity of the Bragg peaks from a
crystallographic lattice are calculated on the basis of kine-
matical diffraction theory. In the HRXRD setup, however,
the theoretical analysis of LRS profiles from multilayers
faces some specific problems. First, the dimension of monoc-
rystalline layers is large enough �up to centimeters�, and dy-
namical diffraction theory �DDT� has to be used for a de-
scription of the Bragg peak’s amplitude, width, and position.9

Second, using a conventional two-wave approximation of
DDT, the calculations are strongly related to one definite
Bragg reflection, which makes a consistent analysis of the
entire LRS containing several Bragg peaks impossible.

The systematic study on LRS with the use of a dynamical
approach was started two decades ago.10–14 Recently, this
problem has been considered in several works4–7,15 for deriv-
ing an effective algorithm for simulation of LRS, which can
be applicable for modern HRXRD methods. Within the ac-
curacy provided by the first order of x-ray polarizability, the
problem has been resolved in Ref. 7. In this work, the two-
beam DDT is utilized for simulation of LRS near the Bragg
peaks, and the kinematical theory is used in intermediate
angular regions.16 The effectiveness of this approach has
been recently reported in Ref. 17 by comparison with experi-
mental results. Another approach for LRS has been devel-
oped in Refs. 5 and 6 by means of the generalization and
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numerical solution of the Takagi-Taupin equations, which do
not take the specular waves into consideration. A novel
method for the calculation of LRS has recently been pro-
posed in Ref. 18. To take into account many-wave effects
using the DDT approach, the sample is divided into a se-
quence of very thin slabs parallel to the surface and the dif-
fracted intensity is calculated by matrix formalism. In this
approach, a required accuracy is achieved for a large number
of the artificial slabs, which essentially increases the volume
of simulations.

Let us summarize the principal approximations used in
HRXRD interpretation methods. The most widely used ap-
proach is a conventional DDT based on the two-wave ap-
proximation and on the replacement of the fourth-order dis-
persion surface by a quadratic equation.9 Physically, it
neglects the specularly reflected waves from internal inter-
faces. This approximation is also used in Takagi-Taupin
equations19 for x-ray diffraction from distorted crystals. The
accuracy of the conventional DDT is determined by x-ray
polarizability of sample material �th�����10−5. In the con-
ventional DDT approach, two variables are used to perform
simulation: the incidence angle of x rays �i and deviation
parameter �h from the exact Bragg condition for a selected
reciprocal lattice vector. This is not satisfactory for a covari-
ant description of LRS, which contains several Bragg peaks,
even after the introduction of a special correction20 for the
deviation parameter.4 The approach is also not applicable for
grazing-incidence noncoplanar x-ray diffraction or HRXRD
in the region far from the Bragg peaks.

The consistent theory of HRXRD in distorted crystals and
multilayers within two-beams approximation is based on
various modifications of the matrix method for the calcula-
tion of x-ray wave fields �see Ref. 21, and citations therein�.
In this method, contrary to conventional DDT, all of four
roots of the dispersion equation are used, which permits the
interpretation of diffraction profiles with an accuracy up to
�����10−4−10−5 for an arbitrary geometry but within the
angular scanning range limited to the neighborhood of the
Bragg peaks. The matrix methods, which are used for the
calculation of x-ray scattering from superlattices with a large
number of period repetitions and in grazing-incidence geom-
etries, cause some numerical problems, which can be over-
come by the proposed recursive matrix method.21 The vol-
ume of the calculations in the matrix method does not
essentially differ from the one in the conventional DDT tech-
nique.

Despite the good results for local scans near a Bragg
peak, the two-beam approximation cannot be directly used
for the covariant description of LRS. According to the analy-
sis done in Ref. 4, many-beam diffraction �MBD� has to be
taken into account in this case along with the accounting of
the second-order corrections �2����2 for the solution of the
Maxwell equations. This assumes the consideration of the
longitudinal components of x-ray wave fields inside the
sample as well as more precise boundary conditions at inter-
faces. It was mentioned in Ref. 14, that the effect of these
corrections can be essential in the regions between the Bragg
peaks, where the x-ray intensity is of order �1���� with re-
spect to the intensity on the peak.

In the present work, the many-beam dynamical diffraction

theory is proposed for covariant �i.e., uniformly applicable
for the entire angular scanning region and for an arbitrary
polarization of the wave fields� description of LRS, which
also takes into account all the required corrections to provide
an accuracy of the calculated diffraction profiles up to �th
����2. The aim of the investigation is to develop a MBD
method suitable for the applications and convenient for the
experimental LRS data fitting. We have found an analytical
approximation for the dispersion equation in the MBD case,
which is valid for arbitrary wave vectors and crystal param-
eters. As a result, the LRS profile is defined solely by a
single variable �i within the entire angular range, and is
calculated uniformly both near the Bragg peaks and between
them. The covariant matrix method �CCM� is extended for
the MBD case with corrections up to the order of ����2 and
for the boundary conditions applicable for all measurement
geometries, except for the special case when multiple Bragg
diffraction occurs �Bragg conditions coincide for three or
more crystallographic planes�. In Sec. II, the analytical solu-
tion for the dispersion equation in the MBD case is obtained,
which provides the required accuracy for the equation roots
within the entire region of the sample parameters variation.
The boundary conditions for all waves taking part in the
scattering process are resolved in Sec. III. In Sec. IV, several
numerical examples demonstrating the advantages of the
proposed technique are presented and the accuracy of the
method is proved by comparison with experimental LRS,
containing 16 Bragg reflections from a 22 nm layer of
YBa2Cu3O7 on a SrTiO3 substrate.

II. APPROXIMATE ANALYTICAL SOLUTION FOR MBD
DISPERSION EQUATION

We start with the expressions describing the x-ray wave

fields E� K� �r� ,�� and D� K� �r� ,�� for monochromatic radiation of
frequency � in a nonmagnetic ideal crystal as follows:

E� K� �r�,�� = �
H�

E� �K� +H� �e
i�K� +H� �·r�, D� K� �r�,�� = �

H�
D� �K� +H� �e

i�K� +H� �·r�,

�1�

where the summation is performed over the infinite set of the

vectors H� =0;h� ;g� . . . of the crystal reciprocal lattice.
This form of the wave fields is defined by the Bloch theo-

rem for a three-dimensional �3D� periodical crystal. The co-
efficients in Eq. �1� satisfy the infinite system of algebraic
equations, which follows from the Maxwell equations with
periodic x-ray polarizability of the crystal as follows:

��r�,�� = �
H�

�H� eiH� ·r�, �2�

K2E� K� − K� �K� · E� K� � − k0
2D� K� = 0, �K� + H� � · D� �K� +H� � = 0,

D� K� = E� K� + �
H�

�H� E� �K� −H� �. �3�

The wave vector K� is assumed to belong to the Brillouin
zone of reciprocal space, corresponding to the wave vector of
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the incident x-ray wave with wavelength � as follows:

K� � k� � k0n� , k0 = �/c =
2�

�
. �4�

The Fourier components of the electric field in Eq. �3� can be
excluded without essential loss of accuracy by representing
the constitutive equation as:

E� K� = D� K� − �
H�

�H� E� �K� −H� �,

and performing two sequential iterations as follows:

E� K� � D� K� − �
H�

�H� D� �K� −H� � + �
H�

�
G�

�H� �G� D� �K� −H� −G� �. �5�

Substituting Eq. �5� in Eq. �3� and using the transverse con-

dition for the vectors D� , we obtain the expressions

�K2 − k0
2�D� K� − K2�

H�
�̃H� D� �K� −H� � + K� �

H�
�̃H� �K� · D� �K� −H� �� = 0,

�6�

�̃H� � �H� − �
G�

�G� ��H� −G� �, �7�

which are different from commonly used equations for DDT
due to the additional terms related to both the change of the
wave field polarization in the crystal and to the renormaliza-
tion of Fourier components of x-ray polarizability �̃H� . This
renormalization is negligible in most cases but it can be es-
sential, for example, for so-called quasiforbidden Bragg re-
flections where it results in a weak but nonzero intensity of
the diffracted waves.

Equation �6� are the infinite set of vector equations. The
presence of small parameters in these equations �the compo-
nents of x-ray polarizability �̃H� � permits the construction of
the iteration method for the solution of the system, where the
dispersion equation for the two-beam diffraction is taken as
an initial approximation. To build the iteration scheme, the
definition of the wave field polarization has to be modified.
The issue is that the expression �6� for the two-beam case
lead to the dispersion equation of eighth order.9 The problem
is then reduced to two independent equations of fourth order,
if the wave field polarizations are supposed to be connected

to the particular reciprocal lattice vector H� . However, for
simulation of LRS containing several Bragg reflections, the
polarizations have to be defined in coordinates which are not
related to some crystallographic planes of the crystal. Below,
the analytical solution for the dispersion equation for two-
beam diffraction is obtained in covariant form, which is not
connected to any reciprocal lattice vector.

Let us consider Eq. �6� with two amplitudes only: direct

D� K� and diffracted D� K� h�
=D� �K� +h�� waves, corresponding to the

certain reciprocal lattice vector h� as follows:

�K2�1 − �̃0� − k0
2	D� K� − �̃−h�
K2D� K� h�

− K� �K� · D� K� h�
�� = 0,

�K
h�
2�1 − �̃0� − k0

2	D� K� h�
− �̃h�
Kh�

2
D� K� − K� h��K� h� · D� K� �� = 0,

K� h� = K� + h� . �8�

We do not use in these equations the conventional substitu-
tion �1−�0�−1��1+�0�, which does not satisfy the desired in
this work accuracy.4 Usually, the coordinate system of the

diffraction plane, defined by the vectors K� and K� h�, is used to
resolve the problem. Then two polarization eigenstates of the
direct and the diffracted waves �� and � polarizations� are
distinguished, which follow from the algebraic system of
scalar equations. However, for a wide angular range of LRS,

the vector K� may occur in the reciprocal lattice points, which

correspond to the reciprocal lattice vectors g� �h� and thus
other polarizations are defined �the case of noncoplanar dif-
fraction�. Therefore, the covariant representation for the
wave field polarizations has to be obtained in Eq. �8�, which

is not related to the diffraction plane of the certain vector h� .
We have to note that the covariant approach has also been
used for x-ray polarizations in arbitrary measurement geom-
etry in the case of two-beam diffraction.22

Using the second equation in Eqs. �8�, the amplitude of
the diffracted wave can be defined and then the vector equa-
tion for the amplitude of the direct wave is

�K2�1 − �̃0� − k0
2	�K

h�
2�1 − �̃0� − k0

2	D� K� − �̃h��̃−h��K2K
h�
2
D� K�

− �K� h� · D� K� �
K� h�K
2 − K� �K� · K� h���	 = 0. �9�

We assume in Eq. �9�,

K� = K0n� , K� h� � Khn�h�, n�h� =
K0

Kh
n� +

h�

Kh
.

In the x-ray diffraction experiments, the scattering geometry
is described by two vectors: the unit vector n� and the vector

Z� of the inward normal to the sample surface or interface
�Fig. 1�. These vectors are not related to the certain Bragg
plane and can be used for a description of the polarization

FIG. 1. Schematic view of the x-ray Bragg many-beam diffrac-
tion from a thin layer on the substrate.
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states of the direct wave corresponding to the wave vector K�

as follows:

D� K� = D1e�1 + D2e�2, e�1 =

n� 	 Z� �

�
n� 	 Z� ��
,

e�2 = 
e�1 	 n�� = Z� − n��n� · Z� � . �10�

Then the equations for scalar amplitudes are expressed as

K2

k0
2 �1 − �̃0� − 1�K

h�
2

k0
2 �1 − �̃0� − 1�D1

−
Kh

2K0
2

k0
4 �̃h��̃−h��
1 − �n�h� · e�1�2�D1

− �n�h� · e�1��n�h� · e�2�D2	 = 0,

K2

k0
2 �1 − �̃0� − 1�K

h�
2

k0
2 �1 − �̃0� − 1�D2

−
Kh

2K0
2

k0
4 �̃h��̃−h��
1 − �n�h� · e�2�2�D2

− �n�h� · e�1��n�h� · e�2�D1	 = 0. �11�

Evidently, the wave vectors corresponding to the wave po-
larization eigenstates in the crystal do not depend on the
choice of the basic polarization vectors, and the determinant
of Eq. �11� results in recognized dispersion equations for �
and � states of polarization as follows:

�K2

k0
2 �1 − �̃0� − 1��K

h�
2

k0
2 �1 − �̃0� − 1� −

Kh
2K0

2

k0
4 �̃h��̃−h�
Cs

h�2 = 0,

s = �,�, C�
h = 1, C�

h = cos 2
B
h = �n� · n�h�� . �12�

However, the explicit form of the amplitudes from Eq. �9�
depends on the choice of the basis and the amplitudes are
defined as

D�
K�
�

= D
K�
�
e�1 cos �h − e�2 sin �h�,

D�
K�
�

= D
K�
�
e�1 sin �h + e�2 cos �h� ,

D�
K� h�

s
= 
K

h�
2/k0

2�1 − �̃0� − 1�−1�̃h�
D� K�
s

− n�h��n�h� · D�
K�
s ��

Kh
2

k0
2 ,

�13�

with the scalar amplitudes D
K�
s

and noncoplanar angle �h be-
tween the wave vector of the diffracted wave and the inci-

dence plane defined by the vectors n� ,Z� : cos �h= �
n� 	Z� � · 
n�
	n�h���.

The most convenient choice for the wave vector in the

crystal21 assumes the projection of K� � onto the plane perpen-

dicular to the surface normal Z� to be independent, i.e., the

component K� � remains continuous at interfaces. Thus, Eq.

�12� leads to the solution for normal projection of wave vec-
tor u=Kz /k0. We use here the results from Ref. 21, where Eq.
�12� is written in the following form:


u2 − �0
2 − �̃0�
�u + h�2 − �h

2 − �̃0� −
Kh

2K0
2

k0
4 �̃h��̃−h�Cs

2 = 0,

�14�

and diffraction parameters are defined as

�0
2 =

k0
2 − K�

2

k0
2 , �h

2 =
k0

2 − �K� + h���
2

k0
2 , h =

�h� · Z� �
k0

,

�h =
�K� + h��2 − K2

k0
2 = ��0 + h�2 − �h

2. �15�

The parameter �h describes the deviation of the wave vector

from the exact Bragg condition for vector h� , and the redefi-
nition �̃0→ �̃0+ �̃0

2 in Eq. �12� is used. However, for the cal-
culation of LRS, the parameter �h has to be calculated from
Eq. �15� without using �h unlike the usual procedure in the
HRXRD case.21

To solve Maxwell equations with required precision
���h��2, all four roots of the dispersion equation �14� have to
be considered, and the analytical Cartan formulas or the nu-
merical solution of the fourth-order equation are used to ob-
tain the results. In most cases of LRS, the angle regions �0

��h����̃0� �grazing-incidence diffraction� are less impor-
tant, and the approximate analytical solutions for the roots
are used. These solutions are obtained by iterations with a
small parameter

Qs
h �

Kh
2K0

2

k0
4 �̃h��̃−h�
Cs

h�2, �16�

and using the initial approximation taken from the two-beam
method. Then the analytical expressions are derived with a
desired accuracy for the roots of Eq. �14�, which are located

closely to the dispersion surface of vector K� as follows:

u1,2s
h � � u0 + x1,2s

h , u0 = ��0
2 + �̃0. �17�

Here the values x1,2s
h ,u0 coincide with the standard solutions

for two-beam diffraction,21 corresponding to the deviation
parameters �h

�= �u0�h�2−�h
2− �̃0. Similarly, the roots, as-

sociated with the dispersion surface for K� +h� , are

u3,4s
h � − h � uh + x3,4s

h , uh = ��h
2 + �̃0, �18�

with the deviation parameters �̃h= �uh�h�2−u0
2.

Now we derive the analytical expressions for the wave
field amplitudes in the crystal, assuming a connection of
waves scattered from different Bragg planes. The number of
waves N to be considered for LRS calculations is defined by
the number of Bragg peaks located in the simulated angular
interval. Let us consider the MBD equations with amplitudes

corresponding to the reciprocal lattice vectors h� ,g� , . . . as fol-
lows:
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UD� K� − �̃−h�
K2D� K� h�
− K� �K� · D� K� h�

��

− �̃−g�
K2D� K� g�
− K� �K� · D� K� g�

�� − ¯ = 0,

Uh�D� K� h�
− �̃h�
Kh�

2
D� K� − K� h��K� h� · D� K� ��

− �̃h�−g�
Kh�
2
D� K� g�

− K� h��K� h� · D� K� g�
�� − ¯ = 0,

Ug�D� K� g�
− �̃g�
Kg�

2D� K� − K� g��K� g� · D� K� ��

− �̃g�−h�
Kg�
2D� K� h�

− K� g��K� g� · D� K� h�
�� − ¯ = 0,

. . . , �19�

with U=K2−k0
2�1+ �̃0� ; Uh� =K

h�
2
−k0

2�1+ �̃0� ; . . ..
As mentioned above, the effective many-wave interaction

is omitted from consideration, i.e., the Bragg condition is
fulfilled simultaneously for two wave vectors only: K2�K

h�
2

�Kg�
2 or K2�Kg�

2�K
h�
2
. We demonstrate below that diffracted

wave fields are defined by the amplitudes D� K� , and the inter-
action between them due to polarizability �̃g�−h� can be ne-
glected. First, we consider a three-wave case with coplanar

vectors h� ,g� , for which the determinant of Eq. �19� for �
polarization is the following:

U�1 −
��̃g�−h��2K

h�
2
Kg�

2

Uh�Ug�
� −

��̃h��2K2K
h�
2

Uh�
−

��̃g��2K2Kg�
2

Ug�

+
K2K

h�
2
Kg�

2

Uh�Ug�

�̃g��̃−h��̃h�−g� + �̃−g��̃h��̃g�−h�� = 0. �20�

As follows from Eq. �20�, the consideration of the terms
��̃g�−h� near the Bragg peak �e.g., Ug� �U�Uh� �K2��0�� leads
to the shift of the angular position of the peak by the value
���0�2, which is beyond the precision of the HRXRD tech-
nique. In between the peaks Ug� �Uh� �U�K2��0�, these
terms are ���0�3, which is beyond the dynamical range of the
HRXRD. The similar yet more cumbersome analysis may be
provided for an arbitrary number of the waves involved in
the scattering process and for arbitrary polarization.

Thus, neglecting the interaction of the diffracted waves,
the N-equations system is reduced to the single equation for

D� K� as follows:

UD� K� −
�̃h��̃−h�

Uh�
�K2K

h�
2
D� K� − �K� h� · D� K� �
K� h�K

2 − K� �K� · K� h���	

−
�̃g��̃−g�

Ug�
�K2Kg�

2D� K� − �K� g� · D� K� �
K� g�K
2 − K� �K� · K� g���	 − ¯

= 0. �21�

By expanding the vector D� K� into the series over the polar-
izations �10�, we obtain two equations for the scalar ampli-
tudes with the following determinant:

�� + Ah��n�h� · e�1�2 + Ag��n�g� · e�1�2 + ¯	�� + Ah��n�h� · e�2�2

+ Ag��n�g� · e�2�2 + ¯	 − �Ah��n�h� · e�1��n�h� · e�2�

+ Ag��n�h� · e�1��n�h� · e�2� + ¯	2 = 0,

� = �K2/k0
2 − �1 + �̃0�	 − Ah� − Ag� − ¯ ,

Ah� =
Kh

2K0
2

k0
4

�̃h��̃−h�

�K
h�
2/k0

2 − �1 + �̃0�	
,

Ag� =
Kg

2K0
2

k0
4

�̃g��̃−g�

�Kg�
2/k0

2 − �1 + �̃0�	
, . . . . �22�

This expression can be further simplified by neglecting the
products Ah� 	Ag� , . . . in the case, when the main dispersion

surface �close to K� � is considered, and no intersections of
three and more dispersion surfaces are present. Actually,
within the entire range of the LRS, the main contribution to
Eq. �22� is given by the term proportional to ��2���0�2. In

the vicinity of the particular Bragg peak �e.g., h��, the ampli-
tude Ah� ���̃h�, and other amplitudes Ag� , . . . ���̃h�2. Thus, the
products Ah� 	Ag� ���̃h�3 are beyond the limits of the accuracy
considered here. In between the Bragg peaks, the products
Ah� 	Ag� ���̃h�4 become smaller and can be omitted. Then the
solution of Eq. �22� delivers the values � as follows:

�1 = 0, ⇒ �K2/k0
2 − �1 + �̃0�	 − Ah� − Ag� − ¯ = 0,

�2 = − Ah�
�n�h� · e�1�2 + �n�h� · e�2�2� − Ag�
�n�g� · e�1�2 + �n�g� · e�2�2�

− ¯ = 0, ⇒

�K2/k0
2 − �1 + �̃0�	 − Ah��n� · n�h��2 − Ag��n� · n�g��2 − ¯ = 0.

�23�

Similarly to the case of a two-beam diffraction, these equa-
tions describe two eigenpolarizations �s=� ,�� of the wave
field in the crystal, however, these polarizations are not di-
rectly related to the particular reciprocal lattice vector. Intro-
ducing the notations from Eqs. �14�–�16�, the dispersion
equations for both polarizations are


u2 − �0
2 − �̃0� −

Qs
h


�u + h�2 − �h
2 − �̃0�

−
Qs

g


�u + g�2 − �g
2 − �̃0�

− ¯ = 0. �24�

The wave fields are expressed by the formulas, which are

reduced to Eq. �13� when the wave vector K� is close to one
of the Bragg peaks as follows:

D�
K�
�

= D
K�
�
e��, D�

K�
�

= D
K�
�
e��,

e�� = 
e�1�1 − e�2�2�, e�� = 
e�1�2 + e�2�1� , �25�

with arbitrary scalar amplitudes D
K�
s

and
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�1 �
Ah��n�h� · e�2�2 + Ag��n�g� · e�2�2 + ¯


A
h�
2�n�h� · e�2�2�n�h� · n��2 + Ag�

2�n�g� · e�2�2�n�g� · n��2 + ¯�1/2
,

�2 �
Ah��n�h� · e�2��n�h� · e�1� + Ag��n�g� · e�2��n�g� · e�1� + ¯


A
h�
2�n�h� · e�2�2�n�h� · n��2 + Ag�

2�n�g� · e�2�2�n�g� · n��2 + ¯�1/2
.

The amplitudes of the diffracted waves are calculated analo-
gously to Eq. �13�. The essential fact is that all the formulas

contain the dependence on K� and all the reciprocal lattice
vectors are taking part in LRS simulation in a covariant way.

In the general case, the dispersion equation �24� has 4N
roots u, where N is a number of considered waves. Assuming
that not more than two roots occur simultaneously near the
same point of the dispersion surface, i.e., the absence of the
many-wave diffraction, the analytical expressions for the
roots can be obtained with the accuracy ���̃0�2 and for any

wave vector K� and geometry, including also a noncoplanar
one. We use here the iteration scheme based on the condition
�Qs����̃0�2, similarly to the case of two-beam diffraction in
Eqs. �17� and �18�. Rearranging Eq. �24�,

XK� −
Qs

h

XK� h

−
Qs

g

XK� g

− ¯ = 0,

XK� = 
u2 − �0
2 − �̃0�, XK� h


�u + h�2 − �h
2 − �̃0�,

XK� g
= 
�u + g�2 − �g

2 − �̃0� − ¯ , �26�

the analytical approximation for 2N roots of Eq. �26� for

fixed polarization and valid for any K� is obtained in the
following way. The asymptotic formulas for the roots are

well known for the values K� , which are close to and far away
from the Bragg peaks. In the former case, the main contri-
bution to Eq. �26� is provided by the term, with XK� h

,XK� g
, . . .

close to zero, and then the roots follow from Eqs. �17� and
�18� with corresponding reciprocal lattice vector. In the latter
case, the approximate value of x is obtained as a sum of
small N terms as follows:

x �
Qs

h

XK� h

+
Qs

g

XK� g

+ ¯ .

Both limiting cases may be represented in the covariant
form, which delivers the expression for the roots of Eq. �26�
for each polarization. For instance, four roots, which are

close to the dispersion surface corresponding to the vector K� ,
are

u1,2s � � u0 + x1,2s
h�1� + x1,2s

g�1� + ¯ , �27�

where s=� ,�, x1,2s
h�1� ;x1,2s

g�1� ; . . . follow from Eq. �17� for defi-
nite reciprocal lattice vector. The rest of 4�N−1� roots follow
from

u3,4s
h � − h � uh + x3,4s

h�1�,

u3,4s
g � − g � ug + x3,4s

g�1�,

. . . , �28�

and parameters x3,4s
h�1� ;x3,4s

h�1� ; . . . are calculated by Eq. �18�.

III. MATRIX METHOD FOR THE BOUNDARY
CONDITIONS IN MBD

Equations �27� and �28� express analytically the mono-
chromatic wave field in an infinite crystal for the whole

range of the vector K� as a superposition of the waves.

D� �r� = �
s=�,�

�
�=1

2N

eiK� �·r��+ik0u�,sz�e��,s + �
j=1

N−1

V� s,�
hj eih� j·r��D�,s.

�29�

The interaction dynamics between the x-ray wave and the
crystal establishes the polarization eigenvectors e��,�

� , which
are not necessarily coincident with the basic polarization

vectors e�1,2
� in the incidence plane. The vectors V� s,�

hj are cal-
culated by Eq. �25� with a proper root of the dispersion equa-
tion u�,�,� as follows:

V� s,�
hj =

Kh
2K0

2

k0
4

�̃h� j

�u�,s + hj
�2 − �hj

2 − �̃0


e��,s − n�h� j
�n�h� j

· e��,s�� ,

�30�

and in a similar way for other reciprocal lattice vectors.
The 4N undefined amplitudes D�,s are found from the

boundary conditions. In the multilayered structures, the ma-
trix form of the boundary conditions is preferable �see Ref.
21 for the two-beam case�. The undefined amplitudes D�,s

n for
the layer n are considered as the projections of the
4N-component vector, and each crystalline layer is character-
ized by x-ray polarizabilities �0

n ,�
H�
n �for amorphous layers

�
H�
n

=0�. The reciprocal lattice vectors involved in LRS simu-
lations differ in normal components only �normal strain�,

h��
n = h��

n+1, g��
n = g��

n+1, . . . , hz
n � hz

n+1, gz
n � gz

n+1, . . . .

To calculate the wave field with an accuracy ��
h�
2
, the gen-

eral form of the boundary conditions for the normal and
tangential components of the field has to be used.23 Let us
consider first the electric field as follows:

�
�Z� · D� �n�� − �Z� · D� �n+1����z=zn
= 0,

�
E� �n� − Z� �Z� · E� �n����z=zn

= �
E� �n+1� − z��z� · E� �n+1����z=zn
,

�31�

where zn is the coordinate of the interface between layers n
and �n+1� �z0=0 corresponds to the vacuum-sample sur-
face�. The Fourier components of the electrical field are ex-

pressed via Fourier components of the vector D� �r�� by using
Eqs. �5� and �6�. Because the lateral component of the wave
vector is continuous at the interfaces, the boundary condi-
tions �31� are valid for all Fourier components of the wave
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field. The supplementary boundary conditions follow from

the continuity of the magnetic field B� ��� 	E� :

�
�� 	 D�
K�
�n��1 − �̃0

�n�� − �
h�

�̃h��� 	 D� �K� −h��
�n� ��z=zn

= �
�� 	 D�
K�
�n+1��1 − �̃0

�n+1�� − �
h�

�̃h��� 	 D� �K� −h��
�n+1� ��z=zn

.

�32�

Equations �31� and �32� lead to the 4N equations for the
amplitudes D�,s

�n� and D�,s
�n+1�, which deliver the wave fields in

the neighbor layers. Here n=0,1 ,2 , . . . ,L; L is a total num-
ber of layers in the sample; n=0 corresponds to vacuum. For
convenience reasons,21 two groups of the amplitudes may be
distinguished �Fig. 1�. The amplitudes of the first group cor-
respond to the wave fields decreasing inside a sample �trans-
mitted waves with the positive imaginary part of the wave
vector�: Iu�,s

�n��u�,s
�n�+�0, ⇒T�,s

�n� , �=1,2 , . . . ,N. The wave
fields, which are increasing inside a sample, define the
specular amplitudes: Iu�,s

�n��u�,s
�n�−�0, ⇒R�,s

�n� , �
=1,2 , . . . ,N. Obviously, the amplitudes of the diffracted
waves T�,s,h,g,. . .

�n� ,R�,s,h,g,. . .
�n� are expressed through the ampli-

tudes T�,s
�n� ,R�,s

�n� by using Eq. �30�.
Thus, the total number of the amplitudes to be found,

including the amplitudes in vacuum, is 4	N	 �L+1�. The
incident amplitudes in a vacuum

T1,s
�0� = As, �A1�2 + �A2�2 = 1, �33�

are supposed to be known. The absence of the incident

waves with the wave vectors �K� +h�� , �K� +g�� , . . . in a vacuum
gives another 2�N−1� equations: ��T�,s,h,g,. . .

�0� =0.
Due to continuity of the lateral component of the wave

vector at interfaces, the conditions �31� and �32� have to be
satisfied for both principle wave and all �N−1� diffracted
waves taking a part in a many-beam diffraction. Hence, the
boundary conditions for the wave fields at L interfaces result
in 4	N	L equations. Moreover, for a typical HRXRD cal-
culation of x-ray scattering from thin film structures, the last
layer is assumed to be infinite along the z axis �substrate�,
and thus the reflected waves are absent: ��R�,s

�L�

=0; ��R�,s,h,g,. . .
�L� =0. That gives additionally 2N equations.

Thus, the system of linear equations is complete, and the
solution delivers the observed quantity in vacuum amplitudes
R�,s

�0� expressed via the amplitudes of the incident wave As.
Let us consider first the case of a single interface, i.e.,

LRS for the Bragg diffraction in a single crystal, and neglect
the terms of order ��0�2 in order to compare our results with
the solution of this problem in Refs. 5–7. In this case the
corrections to the boundary conditions �31� due to longitudi-
nal components of the electrical fields in the crystal are of
the same order ���h�2 and can be neglected.9 The boundary
conditions �31� are then expressed independently for each
polarization and are reduced to the continuity conditions for
the direct and diffracted wave fields and their derivatives.
With the same accuracy for the dispersion equation �24�, the
terms �Qs

g , . . . can be omitted in the calculation of the roots

near the Bragg peak for the vector h� . Thus, the problem is

reduced to the approximate calculation of the amplitudes of

the reflected waves in vacuum R̃s,h
�0� , R̃s,g

�0� , . . ., independently

for each reciprocal lattice vector h� ,g� , . . . and using standard
two-beam diffraction formulas �see, for example, Ref. 21�.
Thus, the observed quantity in the LRS x-ray intensity is
written for the arbitrary incidence angle �i as

I��i� �
cos �e

cos �i
�

s=1,2
�e�s

hR̃s,h
�0� + e�s

gR̃s,g
�0� + ¯�2. �34�

The formula �34� coincides with the results obtained in Refs.
5–7. When summing over the reciprocal lattice vectors in Eq.

�34�, only the values h� ,g� , . . . are taken into account, which
lie along the scanning direction in the space of the momen-

tum transfer Q� =K� �−K� .
In order to estimate the contribution from many-wave dif-

fraction, which improves the accuracy of Eq. �34�, let us

represent the MBD amplitudes in the form Rs,h
�0�= R̃s,h

�0�

+rs,h
�0� , Rs,g

�0�= R̃s,g
�0�+rs,g

�0� , . . .. The corrections rs,h
�0����h� should

be calculated from the modified dispersion equation �24� and
with the general boundary conditions �31�, which mix � and
� polarizations. In the angular region far from the Bragg

peaks 
B
h ��i�
B

g , both R̃s,h
�0�� R̃s,g

�0����h� are small, therefore
the contribution of the many-wave correction ��rs,h

�0��2 into

intensity is of the same order as R̃s,h
�0�	 R̃s,g

�0�. This means that
the simulated intensity is not calculated as just a sum of the
wave fields calculated in the two-beam approximation for the
peaks located on the scanning direction.

Kaganer et al.7,17 demonstrated that the coherent scatter-
ing of x rays from the atomic planes, forming a real surface
of the crystal, results in the corrections ���h�2 for the re-
flected amplitudes, which are calculated for the ideal inter-
faces modeled by mathematical planes. This contribution
into the LRS profile is additive with respect to the MBD
corrections, and it can be calculated using distorted wave
Born approximation, where the wave fields for ideal inter-
faces are used as a zeroth approximation.

To find a general solution of the boundary problem for
LRS from the multilayered samples within the framework of
MBD, the matrix approach21 for the two-beam diffraction
case has to be extended. For simplicity reasons, we consider
here the diffraction from the interface vacuum surface, which
corresponds to z=z0. The wave field is described by the set
of 4N plane waves �N is a number of waves in MBD�. The
amplitudes can be conveniently described by the
4N-component vector of state ���, which has the following
components in vacuum �index 0�:

��0� = �A1;A2;R1,0
�0� ;R2,0

�0� ;0;0;R1,h
�0� ;R2,h

�0� ;0;0;R1,g
�0� ;R2,g

�0� ; . . .� ,

�35�

where only 2N+2 components are nonzero. Here we account
for both the nonzero amplitudes of the specularly reflected
waves in vacuum Rs,0

�0� and the amplitudes of the diffracted
waves Rs,h

�0� ,Rs,g
�0� , . . .. In the formulas, the first lower index

corresponds to polarization and the second one to the recip-
rocal lattice vector. In the case of coplanar diffraction, when
the polarizations e�1,2 coincide with the usual � ,� polariza-
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tions, the state vector in a zeroth approximation is reduced to
the product of two four-component vectors as follows:

��0,h
�0�� = �0,h

�����0,h
����, �0,h

�s� � = �As;Rs,0
�0�;0;Rs,h

�0�;0;0; . . .� .

�36�

The corresponding state vectors of the field in the crystal
have the following components:

��1� = �T1,1
�1� ;T2,1

�1� ;R1,1
�1� ;R2,2

�1� ;T1,2
�1� ;T2,2

�1� ;R1,2
�1� ;R2,2

�1� ; . . .� .

�37�

In the boundary conditions at the interface with coordinate zi,
the components of the state vector are multiplied by the
phase factor, which depends on the corresponding root of the
dispersion equation �24�. In two-beam approximation, both
polarizations are considered independently with accuracy
���h��, and the appearance of the phase factor is a result of
the multiplication of the diagonal matrix by ���.21 In the
MBD case, however, the mixing of the polarizations is
caused by the fact that the diffraction planes of different
reciprocal lattice vectors do not coincide with the incidence
plane. Therefore, the polarization mixture has the same order
effect as other many-wave phenomena. Using Eq. �26�, the
matrix �2N	2N� for MBD is written in the following form:

f i��i� � �f i��,�,s,s����i���,s�, �,� = 1,2, . . . 2N, s,s� = 1,2

�f i�s,s�,�,� = ��,��f�
i �s,s��u�� ,

�f�
i �1,1 = 
�1

2eik0ziu�,� + �2
2eik0ziu�,�� ,

�f�
i �2,2 = 
�2

2eik0ziu�,� + �1
2eik0ziu�,�� ,

�f�
i �1,2 = �f�

i �2,1 = �1�2
− eik0ziu�,� + eik0ziu�,�� . �38�

Let us derive the equations following from the 4N boundary
conditions �31� and �32� for the MBD case. Choosing a y
axis perpendicularly to the incidence plane �polarization vec-
tor e�1� and z axis along the surface normal �polarization vec-
tor e�2 in the incidence plane�, the conditions �31� along with
Eq. �5� result in the following relations between the compo-
nents of the field in vacuum �0� and in the crystal �1� at the
interface zi:

Ey
�0��zi� = Ey

�1��zi�, ⇒ D
K� ,1

�0�
= D

K� ,1

�1�
− �

H�
�̃H� D

K� −H� ,1

�1�
,

Dz
�0��zi� = Dz

�1��zi�, ⇒ D
K� ,2

�0�
= D

K� ,2

�1�
,

k0z

k0
Dy

�0��zi� = − i
d

k0dz
Dy

�1��zi�, ⇒
K0z

k0
D

K� ,1

�0�
= − i

d

k0dz
D

K� ,1

�1�
,

k0z

k0
Ez

�0��zi� = − i
d

k0dz
Ez

�1��zi�, ⇒
Kz

�0�

k0
D

K� ,2

�0�

= − i
d

k0dz

D

K� ,2

�1�
− �

H�
�̃H� D

K� −H� ,2

�1� � . �39�

Because for the many-beam diffraction the polarizations e�1,2

do not coincide with the polarizations e��,�, the derivatives in
Eqs. �39� are not produced as a simple multiplication by the
component Kz of the wave vector in the sample, as it happens
in two-wave diffraction. A supplementary �2N	2N� matrix
has to be introduced in the second and in the fourth Eqs.
�39�, using Eq. �38� as follows:

f i��zi���i� � �f i���,�,s,s����i���,s�,

�,� = 1,2, . . . 2N, s� = 1,2,

�f i��s,s�,�,� = ��,�� f̃�
i �s,s��u�� ,

� f̃�
i �1,1 = 
u�,��1

2eik0ziu�,� + u�,��2
2eik0ziu�,�� ,

� f̃�
i �2,2 = 
u�,��2

2eik0ziu�,� + u�,��1
2eik0ziu�,�� ,

� f̃�
i �1,2 = � f̃�

i �2,1 = �1�2
− u�,�eik0ziu�,� + u�,�eik0ziu�,�� .

�40�

For both wave field components in a vacuum and a crystal,
these equations have to be resolved independently for both
polarizations and for all N coefficients of wave field expan-
sion over the reciprocal lattice vectors. This requirement fol-
lows from the conservation of the wave vector components,
which are parallel to the interface. As a result, the following
system of �4N� linear equations is obtained for unknown
components of the state field ��0� , ��1� �we assume the sur-
face of the sample at zi=0�:

A1 + R1
�0� = �

�=1

N


T1�
�1� − �

H�
�̃H� T

1�,�K� −H� �
�1� �

+ �
�=1

N


R1�
�1� − �

H�
�̃H� R

1�,�K� −H� �
�1� � ,

�0�A1 − R1
�0�� = �

�=1

N

u1�
�1�+T1�

�1� + �
�=1

N

u1�
�1�−R1�

�1�,

A2 + R2
�0� = �

�=1

N

T2�
�1� + �

�=1

N

R2�
�1�,

�0�A2 − R1
�0�� = �

�=1

N

u1�
�1�+
T2�

�1� − �
H�

�̃H� T
2�,�K� −H� �
�1� �

+ �
�=1

N

u1�
�1�−
R2�

�1� − �
H�

�̃H� R
2�,�K� −H� �
�1� � ,

R1,h
�0� = �

�=1

N


T1�,h
�1� − �

H�
�̃H� T

1�,�K� +h�−H� �
�1� �

+ �
�=1

N


R1�,h
�1� − �

H�
�̃H� R

1�,�K� +h�−H� �
�1� � ,
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− �hR1,h
�0� = �

�=1

N

�u1�
�1�+ + h�T1�,h

�1� + �
�=1

N

�u1�
�1�− + h�R1�,h

�1� .

�41�

This system of equations has to imply the relations �30� be-
tween the amplitudes T1�,h

�1� ,R1�,h
�1� of the diffracted waves and

the amplitudes T1�
�1� ,R1�

�1� of the direct waves. Contrary to the
two-beam diffraction, both polarizations are bounded be-
cause of the nondiagonal matrices Vs,s�,�

h in Eq. �30�.
In the general case of L layers, �L+1� state vectors of the

electromagnetic field have to be found, starting from the
vacuum �35� and proceeding with the successive L vectors as
follows:

��n� = �T1,1
�n� ;T2,1

�n� ;R1,1
�n� ;R2,1

�n� ;T1,2
�n� ;T2,2

�n� ;R1,2
�n� ;R1,2

�n� ;

. . . T1,N
�n� ;T2,N

�n� ;R1,N
�n� ;R2,N

�n� �,

n = 1,2 . . . �L − 1� ,

��L� = �T1,1
�L� ;T2,1

�L� ;0;0;T1,2
�L� ;T2,2

�L� ;0;0; . . . T1,N
�L� ;T2,N

�L� ;0;0� .

�42�

Thus, the MBD boundary conditions at L interfaces, with the
coordinates z0=0 on the surface and zn , n=1,2 , . . . �L−1�
between other layers, are represented by the matrix equations

Ŝ0�z0���0� = Ŝ1�z0���1� ,

Ŝ1�z1���1� = Ŝ2�z1���2� ,

. . .

ŜL−1�zL−1���L−1� = ŜL�zL���L� , �43�

where the expressions for 4N	4N matrices Ŝ follow from
Eqs. �38�, �39�, and �41�, and the expression for the 4N
	4N matrix can be built as follows:

Ŝ0 =�
1 0 ¯ 1 0 − �2� ¯ 0

0 0 ¯ s�l=1,��
1,+,1

¯ 0 ¯ s�l=N−1,��
1,+,1

0 0 � 0 ] 0 � ]

0 0 ¯ 0 s�l=1,��
N−1,+,1 0 ¯ s�l=N−1,��

N−1,+,1

− 1 0 ¯ �2� 0 ssp,−,1 ¯ 0

0 0 ¯ 0 s�l=1,��
1,−,1 0 ¯ s�l=N−1,��

1,−,1

0 0 � 0 ] 0 � ]

0 0 ¯ 0 s�l=1,��
N−1,+,2 0 ¯ s�l=N−1,��

N−1,+,2

0 0 ¯ �1� 0 ssp,−,2 ¯ 0

0 0 ¯ 0 s�l=1,��
1,−,2 0 ¯ s�l=N−1,��

1,−,2

0 0 � 0 ] 0 � ]

0 0 ¯ 0 s�l=1,��
N−1,−,2 0 s¯ s�l=N−1,��

N−1,−,2

� , �44�

ssp,−,j = e��3−j� · �− k0�0Z� + k��� 	 e��
�sp� 1

k0
, �2� = − e�2 · e��

�sp�,

�1� = − e�1 · e��
�sp�, sl

k,+,j = �k,le� j · e�s
�k�,

sl
k,−,j = �k,le��3−j� · �− k0�h�k

+ k�� + h�k�
� 	 e�s

�k� 1

k0
,

l = �1, . . . ,N;s = ��,��	 , �45�

Sn = �s��=1,+,��
��=1,+,1�

¯ s��=N,−,��
��=1,+,1�

] � ]

s��=1,+,��
��=N,−,2�

¯ s��=N,−,��
��=N,−,2� � , �46�

� = �1, . . . ,N, � ,s�=�,��	, � = �1, . . . ,N, � , j = 1,2	 ,

s�
1,+,j = eik0u�z�n�

e� j · �e���1 − �̃0� + �̃0Z� �Z� · e���

− �
h�

�̃h�
V� �
h� − Z� �z� · V� �

h� ��	 ,

s�
1,−,j = eik0u�z�n�

e��3−j� · �k0u�Z� + k���

	�e���1 − �̃0� − �
h�

�̃h�V� �
h� �

1

k0
,

s�
m,+,j = eik0u�z�n�

�̃h�m
e� j · 
V� �

h�m�1 − �̃0� − e���, m = 2, . . . ,N ,
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s�
m,−,j = eik0u�z�n�

�̃h�m
e��3−j� · �k0u�Z� + k�� + h�m�

	
V� �
h�m�1 − �̃0� − e���

1

k0
. �47�

The wave field in the vacuum can be written in the following
form:

E� �r�� = �
s=�,�

eik��·r���As
�0�eik0�0ze�s

�0� + As
�sp�e−ik0�0ze�s

�sp�

+ �
j=1

N−1

Rj,se
ih� j�

·r��e−ik0�h� j
zes

�j�� , �48�

where As
�sp��Rs,0

�0� are the amplitudes of the specular reflected
waves and the polarization vectors are represented analo-
gously to Eq. �10� as follows:

e��
�0� = e�1, e��

�0� = e�2, e�
�sp� = e�1,

e�
�sp� = − �− k0�0Z� + k��� 	 e��

�sp� 1

k0
,

e�
�j� = �− k0�h� j

+ k�� + h� j�
� 	 Z� ,

e�
�j� = − �− k0�h� j

+ k�� + h� j�
� 	 e�

�j� 1

k0
. �49�

The further calculations are formally similar to the two-beam

diffraction case. The matrix M̂ connecting the amplitudes in
a vacuum and substrate is found by the solution of the equa-
tion system �43� as follows:

��0� = M̂��L�,

M̂ = Ŝ0
−1Ŝ1�z0�
Ŝ1�z1��−1

¯ 
ŜL−1�zL��−1ŜL�zL� .

�50�

As mentioned above, for each vector of the wave field at the
interface, the vector components can be separated into the
amplitudes of the transmitted and the reflected waves as fol-
lows:

��0� = ��T0	;�R0	�; ��L� = ��TL	;�0	� , �51�

where the components �T0	 possess only two nonzero ampli-
tudes A1 ,A2. The matrix can also be split into blocks of
�2N	2N� matrices as follows:

M̂ = �M̂TT M̂TR

M̂RT M̂RR
� . �52�

Then, the matrix solution of Eq. �51� for unknown ampli-
tudes of the reflected waves is

��R0	� = M̂RT
M̂TT�−1��T0	� . �53�

Finally, the intensity of x-ray radiation in the LRS is calcu-
lated as

I��i� =
cos �e

cos �i
� �
s=1,2

�
j=1

N

Rs,je�s
�j��2, �54�

with Rs,h ;Rs,g ; . . ., defined by the components of the vector
��R0	�.

IV. DISCUSSION AND COMPARISON WITH THE
EXPERIMENTAL DATA

The typical samples measured in a HRXRD setup consist
of thin films on a substrate. Both substrate and film have
monocrystalline structure and the thickness of the film is
comparable with the x-ray extinction length. Therefore, the
dynamical theory has to be used to calculate the position, the
shape, and the intensity of the Bragg peaks from the sub-
strate and layers in the vicinity of Bragg reflections. Usually,
within the two-beam approximation for the dynamical dif-

fraction theory, the peaks for each vector h� are simulated by

using the deviation parameter �h= �2k�h� +h2� /k0
2 from the ex-

act Bragg condition and for the polarization vectors corre-

sponding to the definite reciprocal lattice vector h� . This de-
viation parameter, however, does no longer yield a valid

result in the LRS calculations near reflections other than h�

reflection 
g� , f� , . . . �see Fig. 1��, where other deviation param-
eters and polarization vectors have to be introduced. How-
ever, the use of different deviation parameters for a single
scan calculation complicates essentially the fitting of the ex-
perimental LRS data.

The method reported in this work, being valid for the
entire scanning angular range, solves the problem of the co-
variant simulation of the LRS diffraction curve from multi-
layered samples. The x-ray diffraction profile has a covariant
form depending on the incidence angle of x rays and is not
related to the particular reciprocal lattice vector. The problem
is solved by using the analytical expressions �27� and �28�
for the roots of the MBD dispersion equation and the gener-
alized matrix method for the boundary conditions in multi-
layered samples �43�.

The theory presented in this work also gives the answer to
the principal question formulated in Ref. 4: how important is
the role of many-wave effects and the corrections ����2 for
the calculation of LRS between the Bragg peaks? The accu-
racy of the HRXRD profiles measured with modern instru-
ments achieves the value of �exp�10−7,3 and the magnitude
of the parameter describing the ratio of x-ray intensities on
the wings �IW� and on the maximum �IB� of the Bragg peak is

�W/B =
IW

IB
� ��h� � 10−4 − 10−5 � �exp.

Thus, the intensity oscillations are quite observable in the
high-resolution setup. The condition at which DDT has to
replace the kinematical theory for correct data interpretation
also includes the ratio of the film thickness L and the extinc-
tion length Lext as follows:
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�D/K = k0L��0� �
L

Lext
� 1.

As follows from the dispersion equation �27�, the calculation
of x-ray intensity for a stand-alone Bragg peak within the
two-beam diffraction approach means neglecting the contri-
butions from the neighboring waves, which are determined
by the value �2= ��h�2. This value also describes the changes
in the boundary conditions �31� comparing to the two-beam
case due to the transverse component of the wave fields �po-
larization effects�. The phase shift of the waves in media is
then quantified by the parameter

�MBD = k0L��h�2 � k0Lext��h�2 � ��h� ,

and thus �MBD��W/B. Therefore, the many-wave and polar-
ization effects may show up in the regions between the
peaks.

The effectiveness of the algorithm proposed in this work
is proven for a measured LRS diffraction profile from a 22
nm layer of YBa2Cu3O7 on the SrTiO3 substrate, corre-
sponding to the �001� truncation rod and with the reflection
indices 1� lS�4 for the substrate and 1� lS�13 for the
film. The thickness of the monocrystalline film L is one-tenth
of the extinction length Lext. All the measurements and simu-

lations are performed at the Cu K� x-ray wavelength.
First, we demonstrate the influence of the many-beam ef-

fects on the profile shape between the Bragg peaks. Figure
2�a� shows the LRS segment between �0 0 10� and �0 0 11�
peaks calculated using Eq. �54� on the basis of MBD �thick
black line� and two-beam dynamical diffraction theory �thin
red line� by the direct summing of x-ray intensities from both
reflections, which results in the intensity’s discrepancies be-
tween the peaks. However, as was shown in Refs. 5–7 that
the precision of the two-beam approach may be improved
when the amplitudes instead of intensities of the wave fields
from different Bragg reflections are summed up. However,
the LRS diffracted intensity also evidently changes between
the Bragg peaks, when the MBD boundary conditions �39�
take into account the longitudinal component of the electro-
magnetic field in the crystal. Figure 2�b� shows the same
LRS segment simulated with �thick black line� and without
�thin red line� a longitudinal component in the boundary con-
ditions. The amplitude of the MBD corrections is seen to be
consistent with the estimates above.

Figure 3 compares the LRS profile for the discussed
sample calculated by dynamical MBD �black line� and by the
kinematical theory �red line�.16 The simulations confirm the
general agreement of both approaches. However, the differ-
ence in both profiles is prominently evident in the regions of
Bragg peak 
Fig. 4�a�� and at the small incidence angle of x
rays 
Fig. 4�b��, where specularly reflected waves are domi-
nating. These discrepancies may be observed in high-
resolution experiments due to the high precision of modern
diffractometers.

Finally, the proposed theory has been verified on experi-
mental data from a YBa2Cu3O7 /SrTiO3 sample. Figure 5
compares the measured data �red line� and simulated �black
line� by the current MBD algorithm diffraction profile, which
accounts for 16 scattered waves. The figure demonstrates a
good agreement of the positions and the intensity ratio of the
Bragg peaks between the measured and calculated LRS

FIG. 2. �Color online� �a� Diffracted x-ray intensity between
Bragg peaks, calculated by the MBD �thick black line� and two-
beam diffraction method using intensity summation �thin red line�.
�b� MBD calculations with �thick black line� and without �thin red
line� accounting for the longitudinal component of the wave field in
the boundary conditions.

FIG. 3. �Color online� Long-range scans for the 22 nm
YBa2Cu3O7 layer on the SrTiO3 substrate calculated by the kine-
matical �red line� and the dynamical �black line� theories. The ki-
nematical profile in the specular reflection area has been calculated
by Parratt’s formulas.
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curves. The theoretical curve is calculated also in the specu-
lar reflection region. The measured profile does not contain
specular reflection because the experimental setup requires
the suppression of the diffuse x-ray scattering by a knife
edge, which is not desirable in HRXRD measurements.

V. CONCLUSIONS

A theoretical approach based on many-beam dynamical
x-ray diffraction is developed for the calculation of the wide

x-ray diffraction profiles from multilayered crystalline
samples in coplanar geometry and could be used in the non-
coplanar geometry. The corrections of the second order on
the x-ray polarizability are taken into account in the disper-
sion equations and in the boundary conditions. The major
part of the algorithm is obtained in an analytical form, from
which it is possible to write a numerical code for the simu-
lation of long-range scans for HRXRD, based upon the ma-
trix method for x-ray diffraction from multilayered struc-
tures. The influence of various factors upon the simulation of
x-ray profiles containing multiple Bragg reflections is inves-
tigated and the comparison with experimental data is pre-
sented.
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