В.В. ГРУШЕВСКИЙ

ТЕОРЕМА СУЩЕСТВОВАНИЯ ДЛЯ НЕАВТОНОМНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ОБОБЩЕННЫМИ КОЭФФИПИЕНТАМИ

Differential equations with generalized coefficients are considered. Existence theorem for the equations under investigation in the sense of differential inclusions is proved.

Развитие теории дифференциальных уравнений с разрывными правыми частями в значительной степени вызвано многочисленными приложениями. Большое число задач из механики, электротехники и теории автоматического управления описываются уравнениями вида

$$\dot{x}(t) = f(t, x(t)),\tag{1}$$

где f — некоторая разрывная по переменной x функция.

Изучение уравнений вида (1) требует обобщения понятия решения. Большинство известных определений решений дифференциальных уравнений с разрывными правыми частями связаны с привлечением теории дифференциальных включений. Изучение дифференциальных включений было начато в 1930-е гг. в работах [1,2], но область их применения была недостаточной для стимулирования развития таких исследований. Лишь в 1950-х гг. снова появился интерес к дифференциальным включениям, поскольку в это время интенсивно развивалась теория автоматического управления, где дифференциальные включения находили применение. К концу 1970-х гг. была построена общая теория дифференциальных включений в конечномерных пространствах. Наиболее полное исследование дифференциальных уравнений с разрывными правыми частями приведено в работе [3].

Примерно в это же время в соответствии с потребностями практики появляется интерес к нелинейным дифференциальным уравнениям вида

$$\dot{x}(t) = f(t, x(t))\dot{L}(t), \tag{2}$$

где $\dot{\boldsymbol{L}}$ - обобщенная производная функции ограниченной вариации L(t).

Уже в случае непрерывной функции *f* при исследовании уравнений такого вида возникают принципиально неразрешимые трудности, связанные с невозможностью корректного определения произведения обобщенной функции на недостаточно гладкую. В связи с этим многими математиками предложены различные подходы к исследованию таких уравнений [4-8]. Заметим, что разные трактовки одного и того же уравнения приводят к различным решениям, поэтому предпочесть ту или иную интерпретацию можно только исходя из особенностей моделируемой задачи.

В данной работе исследуется дифференциальное уравнение вида (2) в случае, когда f - кусочно-непрерывная функция, a L - непрерывная функция ограниченной вариации. Доказывается теорема существования решений такого неавтономного дифференциального уравнения, понимаемого в смысле дифференциальных включений.

Рассмотрим в области $G = T \times R$, $T = [0, \alpha]$ задачу Коши:

$$\begin{cases} \dot{x}(t) = f(t, x(t))\dot{L}(t), \\ x(0) = x_0, \end{cases}$$
 (3)

где L- обобщенная производная непрерывной функции ограниченной вариации L(t), а функция f удовлетворяет следующим условиям:

- а) ограничена и кусочно-непрерывна в области G, т. е. каждая конечная часть области G состоит из конечного числа областей G_i , $i=\overline{1,l}$, в каждой из которых функция / непрерывна вплоть до границы, и множества M μ меры нуль (μ мера Лебега), состоящего из точек границ этих областей;
- б) (см. [3, с. 54]). Для каждой из областей G_i непрерывности функции / для всех t, за исключением счетного числа значений, выполняется $(\partial G_i)_t = \partial (G_{it})_t$, т. е. сечение границы области прямой t = const совпадает с границей сечения области той же прямой (при определении границы $\partial (G_{it})$ сечения множество G_{it} рассматривается как множество на прямой t = const).

Функция непрерывна в области вплоть до границы, если при приближении к каждой точке границы она стремится к конечному пределу, возможно, к разным пределам для различных граничных точек.

Как уже говорилось, определение решения дифференциального уравнения с разрывной правой частью связано с привлечением теории дифференциальных включений. Поэтому под решением задачи Коши (3) будем понимать решение следующей задачи Коши для дифференциального включения:

$$\begin{cases} \dot{x}(t) \in F(t, x(t)) \dot{L}(t), \\ x(0) = x_0, \end{cases} \tag{4}$$

где F - многозначная функция, которая получается путем некоторого доопределения функции f .Вообще говоря, существует несколько способов доопределения функции f до многозначной функции F. Мы будем рассматривать так называемый метод простейшего выпуклого доопределения [3, c. 40], согласно которому F(t,x) есть наименьшее выпуклое замкнутое множество, содержащее все предельные точки f(t,x'), $x' \to x$, t = const, причем $(t,x') \notin M$

Определение. Под решением дифференциального включения (4) будем понимать такую непрерывную функцию x(t), для которой существует интегральное представление

$$x(t) = x_0 + \int_0^t u(s) dL(s)$$

где u(t) F(t,x(t)) для μ_L - почти всех t $T(\mu_L$ - мера Лебега - Стилтьеса, порожденная функцией L). Функцию $u(\cdot)$ будем называть селектором многозначного отображения $F(\cdot,x(\cdot))$

Полученная описанным способом многозначная функция $F: G \longrightarrow E(R)$, где E(R) - множество ограниченных замкнутых выпуклых подмножеств из R, является β -непрерывной по переменной x [3, c. 54]. Напомним, что многозначная функция F(p) называется β -непрерывной (или полунепрерывной сверху относительно включения) в точке p, если

$$\beta(F(p'),F(p)) \to 0$$
 при $p' \to p$, где $\beta(A,B) = \sup_{a \in A} \inf_{b \in B} |a-b|$, A,B -непустые замкнутые множества на вещест-

венной прямой. Оказывается, что при выполнении условия б) для функции F(t,x) можно указать β -непрерывную по совокупности переменных t, x функцию F_0 такую, что $F_0(t,x) = F(t,x)$, за исключением счетного числа значений переменной /.

Тогда легко видеть, что если x(t) - решение задачи Коши

$$\begin{cases} \dot{x}(t) \in F_0(t, x(t)) \dot{L}(t), \\ x(0) = x_0, \end{cases}$$
 (5)

то x(t) будет и решением дифференциального включения $\dot{x}(t) \in F(t,x(t))\dot{L}(t)$ с этим же начальным условием.

Замечание 1. Многозначное отображение F_Q строится аналогично построению F, за исключением того, что множество предельных значений функции $f(t,x'), x' \to x$, t = const, где $(t,x') \notin M$, заменяется множеством предельных значений функции $f(t',x'), x' \to x$, $t' \to t$, где $(t',x') \notin M$. Отметим также, что, в отличие от отображения F, которое в силу выполнения условия б) гарантированно определено для всех, кроме счетного числа, значений t, отображение F_0 всегда определено для всех точек области G.

Теорема. Пусть функция f ограничена, кусочно-непрерывна в области $G = T \times R$, $T = [0, \alpha]$, и удовлетворяет условию б). Многозначная функция F получена из функции/методом простейшего выпуклого доопределения, а L — непрерывная функция ограниченной вариации. Тогда на всем отрезке T решение задачи (4) существует.

Доказательство. Рассмотрим последовательность разбиений отрезка T: $0=t_{n0} < t_{n1} < ... < t_{nk} < t_{n(k+1)} < ... < t_{np_n} = a$, где $\left(p_n\right)_{n=1}^{\infty}$ - возрастающая последовательность, $\max_{k} \left|t_{n(k+1)} - t_{nk}\right| \to 0$ при $n \to \infty$

Построим аналог ломаных Эйлера $x_n(t)$. Положим $x_n(0) = x_0$. На каждом полуинтервале $t_{nk} < t \le t_{n(k+1)}$ определим $x_n(t)$ равенством

$$x_n(t) = x_n(t_{nk}) + \int_{t_{nk}}^t u_{nk} dL(s),$$

выбирая любое $u_{nk} \in F_0(t_{nk}, x_n(t_{nk}))$. Тогда имеем

$$x_n(t) = x_0 + \int_0^t u_n(s) dL(s),$$

где
$$u_n(s) = u_{nk} s \in (t_{nk}, t_{n(k+1)}]$$

Так как функция / ограничена, то отображение F_0 также ограничено, т. е. \exists такая постоянная M, что $\forall v \in \bigcup F_0(t,x)$ имеем $|v| \leq M$. Поэтому верна следующая оценка:

$$\left|x_n(t)\right| \le \left|x_0\right| + M \operatorname{Var} L(t),$$

что доказывает равномерную ограниченность семейства $\{x_n(t)\}$

Далее на отрезке T рассмотрим функцию $V(t) = \underset{s \in [0,t]}{\text{Var}} L(s)$. Так как функция L непрерывна, то V также непрерывна. По теореме Кантора функция V равномерно непрерывна на T. Это означает, что $\forall \ \varepsilon > 0 \ \exists \ \delta(\varepsilon)$ такое, что

$$\forall t_1, t_2 \in T$$
 имеем $|V(t_1) - V(t_2)| < \frac{\varepsilon}{M}$, как только $|t_1 - t_2| < \delta(\varepsilon)$

Считая для определенности, что $t_2 > t_1$, для любой ломаной из рассматриваемого семейства имеем

$$|x_n(t_1) - x_n(t_2)| = \left| \int_{t_1}^{t_2} u_n(s) dL(s) \right| \le M \operatorname{Var}_{t \in [t_1, t_2]} L(t) = M |V(t_2) - V(t_1)| < \varepsilon.$$

Таким образом, последовательность непрерывных по построению функций $\{x_n(t)\}$ является равномерно ограниченной и равностепенно непрерывной. Тогда по теореме Арцела - Асколи из нее можно выбрать подпоследовательность $\{x_n(t)\}$, равномерно сходящуюся к некоторой функции x(t).

Остается лишь показать, что x(t) будет решением дифференциального включения (5), а именно имеет место равенство

$$x(t) = x_0 + \int_0^t u(s)dL(s), \tag{6}$$

где включение $u(t) \in F_0(t,x(t))$ выполняется для μ_L - почти всех $t \in T$.

Так как
$$\|u_{n_t}\|_{L_2(T,\mu_L)} = \sqrt{\int\limits_T \left(u_{n_t}(s)\right)^2 dL(s)} \le M \sqrt{\mathop{\mathrm{Var}}_{t\in T} L(t)}$$
, то из последовательно-

сти $\{u_{n_l}\}$ можно выбрать подпоследовательность $\{\tilde{u}_m = u_{n_m}\}$, слабо сходящуюся к некоторому элементу $u \in L_2(T,\mu_L)$ [9, с. 180]. Следовательно, данная подпоследовательность будет слабо сходиться и в пространстве $L_1(T,\mu_L)$. Тогда, рассуждая как в [10, с. 16, теорема 1.3], получаем равенство (6) и включение

 $u(t)\in\bigcap_{l=1}^{\infty}\overline{co}\bigcup_{m=l}^{\infty}\tilde{u}_m(t)$ для μ_L - почти всех $t\in T$. Здесь $\overline{co}A$ обозначает замкну-

тую выпуклую оболочку множества А.

Следовательно, полагая $\tilde{x}_m(t) = x_{n_m}(t)$, имеем

$$u(t) \in \bigcap_{k=1}^{\infty} \overline{co} \bigcup_{m=1}^{\infty} F_0(t_{mk}, \ \tilde{x}_m(t_{mk}))$$

для μ_L - почти всех $t \in T$. В силу β -непрерывности функции F_0 по переменным t, x имеем для μ_L - почти всех $t \in T$

$$u(t) \in F_0(t, x(t))$$

Таким образом, получили, что x(t) - решение задачи Коши (5), а следовательно, и задачи Коши (4). Теорема доказана.

Замечание 2. В формулировке теоремы ограниченность функции f требовалась для того, чтобы гарантировать существование решения на всем отрезке T.

Замечание 3. Условие б) выполняется для достаточно широкого класса областей.

- 1. Marchaud M. A. // Bull. Soc. Math. France. 1934. Vol. 60. P. 1.
- 2. Z a r e m b a S. T. // C.R. Acad Sci. Paris, 1934. Vol. 199. № 10. P. A545.
- 3. Филиппов А.В. Дифференциальные уравнения с разрывной правой частью. М., 1985.
- 4. Завалищин СТ., Сесекин А. Н. Импульсные процессы модели и приложения. М., 1991.
- 5. Antosik P., Ligeza J. Generalized functions and operational calculus: Proc. conf. Varna, 1975. Sofia, 1979. P. 2026.
 - 6.Das P.C., Sharma R. R. //Czheh. Math. J. 1972. Vol. 22. № 1. P. 145.
 - 7. Pandit S.G., Deo S.G. // Lect. Notes Math. 1982. Vol. 954.
 - 8. Kurzwei 1 J. // Czheh. Math. J. 1958. Vol. 8. № 1. P. 360.
 - 9. Иосида К. Функциональный анализ. М., 1967.
- Толстоногое А. А. Дифференциальные включения в банаховом пространстве. М., 1986.
 Поступила в редакцию 30.08.06.

Владимир Владимирович Грушевский - аспирант кафедры функционального анализа. Научный руководитель - доктор физико-математических наук, профессор Н.В. Лазакович.