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The study of spin dynamics in a curved
space–time (a gravitational field) was initiated
immediately after the formulation of the
relativistic Dirac theory. The early efforts were
mainly concerned with the development of
mathematical tools and methods appropriate for
the description of interaction of spinning particles
with a gravitational field. The studies of the
spinor analysis in the framework of the general
Lagrange-Noether approach have subsequently
resulted in the construction of the gauge-theoretic
models of physical interactions, including also
gravity (see Ref. [1] and references therein).

We present the results of our investigations
of the Dirac fermions based on the new method [2]
of the Foldy–Wouthuysen (FW) transformation.
Earlier, we analyzed the dynamics of spin in
weak static and stationary gravitational fields
[3, 4] and in strong stationary gravitational fields
[5] of massive compact sources. These previous
results are now extended to the general case of a
completely arbitrary gravitational field.

Our notations and conventions are the same
as in Ref. [5].

We use the notations t and xa (a =
1, 2, 3) for the coordinate time and the spatial
local coordinates, respectively. A convenient

∗

E-mail: alsilenko@mail.ru; Also at INP, Belarusian

State University, Minsk, BELARUS

parametrization of the space–time metric was
proposed by De Witt [6] in the context of the
canonical formulation of the quantum gravity
theory. In a slightly different disguise, the
general form of the line element of an arbitrary
gravitational field reads

ds2 = V 2c2dt2 − δ
âb̂
W â

cW
b̂
d

× (dxc −Kccdt) (dxd −Kdcdt).
(1)

One needs orthonormal frames to discuss
the spinor field and to formulate the Dirac
equation. From the mathematical point of view,
the tetrad is necessary to “attach” a spinor space
at every point of the space–time manifold. Tetrads
(coframes) are naturally defined up to a local
Lorentz transformations, and one usually fixes
this freedom by choosing a gauge. We discussed
the choice of the tetrad gauge in [4] and have
demonstrated that a physically preferable option
is the Schwinger gauge [7, 8], namely the condition

e 0̂
a = 0. Accordingly, for the general metric (1) we

will work with the tetrad

e 0̂
i = V δ 0

i , eâi = W â
b

(

δbi − cKb δ 0
i

)

,

a = 1, 2, 3.
(2)

The inverse tetrad, such that eiαe
α
j = δij ,

ei
0̂
=

1

V

(

δi0 + δiacK
a
)

, eiâ = δibW
b
â,

a = 1, 2, 3,
(3)
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also satisfies the similar Schwinger condition,
e0â = 0. Here we introduced the inverse 3 × 3
matrix, W a

ĉW
ĉ
b = δab .

The Dirac equation in a curved space–time
reads

(i~γαDα −mc)Ψ = 0,

α = 0, 1, 2, 3.
(4)

The Dirac matrices γα are defined in local Lorentz
(tetrad) frames. They have constant components.
The spinor covariant derivatives are [1, 9, 10]

Dα = eiαDi,

Di = ∂i +
iq

~

Ai +
i

4
σαβΓi αβ .

(5)

Here the Lorentz connection is Γi
αβ = −Γi

βα, and

σαβ =
i

2

(

γαγβ − γβγα
)

are the generators of the

local Lorentz transformations of the spinor field.
We introduced the useful objects:

Fa
b = VW a

b̂
,

Fa
b = VW a

b̂
,

Q
âb̂

= gâĉW
d
b̂

(

1

c
Ẇ ĉ

d + Ke∂eW
ĉ
d +W ĉ

e∂dK
e
)

,

C
âb̂

ĉ = W d
âW

e
b̂
∂[dW

ĉ
e],

C
âb̂ĉ

= g
ĉd̂
C
âb̂

d̂.

(6)

We also introduced a pseudoscalar Υ and a 3-
vector Ξ = {Ξa} by [5]

Υ = V ǫâb̂ĉΓ
âb̂ĉ

= −V ǫâb̂ĉC
âb̂ĉ

,

Ξâ =
V

c
ǫ
âb̂ĉ

Γ0̂
b̂ĉ = ǫ

âb̂ĉ
Qb̂ĉ (7)

where C
âb̂

ĉ = −C
b̂â

ĉ is the anholonomity object

for the spatial triad W â
b.

We limit ourselves to the case when an
electromagnetic field is switched off. After a
lengthy algebra, we obtain the FW Hamiltonian
in the form

HFW = H
(1)
FW +H

(2)
FW , H

(1)
FW = βǫ′ +

~c2

16

{

1

ǫ′
,
(

2ǫcaeΠe{pb,F
d
c∂dF

b
a}

+Πa{pb,F
b
aΥ}

)

}

+
~mc4

4
ǫcaeΠe

{

1

T
,
{

pd,F
d
cF

b
a∂bV

}

}

,

H
(2)
FW =

c

2
(Kapa + paK

a) +
~c

4
ΣaΞ

a +
~c2

16

{

1

T
,

{

Σa{pe,F
e
b},

{

pf ,
[

ǫabc(
1

c
Ḟf

c

−Fd
c∂dK

f +Kd∂dF
f
c)−

1

2
Ff

d

(

δdbΞa − δdaΞb
)

]

}

}

}

,

ǫ′ =

√

m2c4V 2 +
c2

4
δac{pb,Fb

a}{pd,Fd
c}, T = 2ǫ′

2
+ {ǫ′,mc2V }. (8)

The equation of spin motion is obtained from the commutator of the FW Hamiltonian with the
polarization operator Π = βΣ [11]:

dΠ

dt
=

i

~
[HFW ,Π] = Ω(1) ×Σ+Ω(2) ×Π ,

Ωa
(1) =

mc4

2

{

1

T
, {pe, ǫ

abcFe
bF

d
c∂d V }

}

+
c2

8

{

1

ǫ′
, {pe, (2ǫ

abcFd
b∂dF

e
c + δabFe

bΥ)}

}

,

(9)
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Ωa
(2) =

~c2

8

×

{

1

T
,

{

{pe,F
e
b},

{

pf ,
[

ǫabc(
1

c
Ḟf

c −Fd
c∂dK

f +Kd∂dF
f
c)−

1

2
Ff

d

(

δdbΞa − δdaΞb
)

]

}

}

}

+
c

2
Ξa.

The explicit expression for the force operator reads [11]

Fâ =
1

2

{

Ẇ b
â, pb

}

+
1

4

{

pb,

{

∂HFW

∂pc
, ∂cW

b
â

}}

−
1

2

{

W b
â, ∂bHFW

}

,

∂HFW

∂pc
= β

c2

4
δad

{

1

ǫ′
,
{

pb,F
b
aF

c
d

}

}

+ cKc +
~

2
T
c

(10)

where we introduced the following compact
notation

T
c =

∂U

∂pc
, U := Π ·Ω(1) +Σ ·Ω(2). (11)

Thus, we start from the covariant Dirac
equation, apply the FW transformation [2], and
construct the FW Hamiltonian for an arbitrary

space–time geometry. We also derive the operator
equations of motion.
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