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On Fréchet differentiability of multifunctions
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The purpose of our article is to extend the classical notion of Fréchet differentiability to
multifunctions. To this end we define the notion of affinity for multifunctions and study the
basic properties of affine multifunctions. Then using affine multifunctions as local approxima-
tions and the Hausdorff distance for defining an approximation mode, we introduce the notion
of Fréchet differentiability for multifunctions mapping points of a finite-dimensional normed
space to compact convex subsets of another finite-dimensional normed space. We characterize
Fréchet differentiability of multifunctions through the differentiable properties of their support
functions and discuss the relationship of our notion of differentiability with other ones which
were studied by Blagodatskikh (Blagodatskikh, V.I., 1984, Maximum principle for differential
inclusions. Trudy Matematicheskogo Instituta AN SSSR, 166, 23–43 (in Russian)), Rubinov
(Rubinov, A.M., 1985, The conjugate derivative of a multivalued mapping and differentiability
of the maximum function under connected constraints. Sibirskii Matematicheskii Zhurnal,
26(3), 147–155 (in Russian)), Tyurin (Tyurin, Yu. N., 1965, A mathematical formulation of a
simplified model of industrial planning. Ekonomika i Matematicheskie Metody, 1(3), 391–409
(in Russian)), Banks and Jacobs (Banks, H.T. and Jacobs, M.Q., 1970, On differential calculus
of multifunctions. Journal of Mathematical Analysis and Applications, 29(3), 246–272).
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1. Introduction

At the present time, three approaches are mainly used to introduce the concepts
of differentiability of multifunctions (multi-valued mappings, set-valued mappings,
correspondences). The first approach is essentially a geometrical one. Its main idea
may be presented as follows. A multi-valued mapping F is identified with its graph
grF and a derivative of F at a point z02 grF is defined as a multi-valued mapping
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whose graph is a tangent or normal (in one sense or another) cone to gr F at z0. We refer
to [5–16] and others for the detailed presentation of different realizations of this
approach.

The second approach that was developed in [17–22] and some other papers extends
the classical scheme of definition of differentiability to multifunctions. In accordance
with this scheme, one needs first to define a relation of tangency on the class of map-
pings under consideration and to choose a subclass of local (differential) approxima-
tions consisting of mappings which are ‘simple’ in some sense. Then a mapping F is
called differentiable if there exists a ‘simple’ mapping belonging to the chosen subclass
of local approximations which is tangent to F. In the classical definitions of Gâteaux,
Hadamard and Fréchet differentiability of single-valued mappings affine functions are
used as local approximations and the linear mapping corresponding to the affine local
approximation of a differentiable mapping is called a derivative.

The third approach is based on embedding multifunctions under consideration
into a space of single-valued mappings, whose values belong to some functional
space, which is endowed with a structure of topological vector space or even a struc-
ture of normed space. Whenever such embedding may be made, one may interpret
multifunctions as single-valued mappings and use standard classicial definitions of
differentiability. This approach was realized in [1–4,23–27] for multifunctions with
convex and compact values. Such multifunctions are associated with their support
functions and, in such a way, they are embedded into the space of single-valued
mappings with values in the space of positively homogeneous and continuous func-
tions which can be endowed with a structure of a Banach space (at least in finite-
dimensional setting). The main drawback of this approach is that the derivative and
the corresponding local (differential) approximation are defined as single-valued
mappings with values in the functional space and may have, in general, no inverse
images among multifunctions.

The main purpose of the article is to extend the classical notion of Fréchet differ-
entiability to multifunctions mapping points of a finite-dimensional normed space to
compact convex subsets of another finite-dimensional normed space. To do it we
follow the second approach described above. In section 3 we define a notion of affinity
for multifunctions and study basic properties of affine multifunctions. Then in section
4, using affine multifunctions as local approximations and the Hausdorff distance for
defining a tangency relation, we introduce the notion of Fréchet differentiability for
multifunctions and present some properties of Fréchet differentiable multifunctions.
In section 5, we characterize Fréchet differentiability of multifunctions through the
differential properties of their support functions and discuss the relationship of our
notion of differentiability with other ones which were studied by Blagodatskikh
[1,28], Rubinov [2], Tyurin [3], Banks and Jacobs [4].

2. Preliminaries

Let X and Y be finite-dimensional normed vector spaces over reals R.
A multifunction F : X �Y from X into Y assigns to each x 2 X a (possibly empty)

subset FðxÞ � Y . The sets

dom F :¼ fx 2 X jFðxÞ 6¼ 6 0g
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and

grF :¼ fðx, yÞ 2 X � Y jy 2 FðxÞg

are called the effective domain and the graph of the multifunction F, respectively.
A multifunction F : X�Y is said to be closed if its graph grF is a closed subset

of X�Y.
A multifunction G : X�Y is called an extension (a restriction) of a multifunction

F : X�Y if domF � domG (domF � domG) and F(x)¼G(x) for all x 2 domF
(x 2 domG).

By bccY we denote the collection of bounded closed convex subsets of Y. The
collection bccY equipped with the addition (by Minkowski)

M þN :¼ f y1 þ y2jy1 2 M, y2 2 Ng ðM,N 2 bccY Þ

and multiplication by nonnegative reals

�M :¼ f�yjy 2 Mg ðM 2 bccY ,� � 0Þ

is a semilinear space [29].
The function

dHðM,NÞ :¼ inff� � 0jM � N þ �BY ,N � M þ �BY g

(BY is the unit ball in Y ) called the Hausdorff distance determines a structure of a metric
space on bccY.

Throughout this article we confine ourselves to multifunctions F : X�Y with
F(x)2 bccY for all x2 domF. It enables us to interpret the multifunction F : X�Y
considered below as the single-valued function F :X!bccY from the normed vector
space X into the semilinear metric space bccY.

Let X* and Y* be the norm duals of X and Y respectively.
By H(Y*) we denote the Banach space of positive homogeneous ( p(�y*)¼ �p(y*)

for all y*2Y* and all �� 0) and continuous functions p : Y� ! R with standard
algebraic operations and the norm defined by

kpk ¼ max
ky�k¼1

jpð y�Þj:

A positive homogeneous function p : Y� ! R is said to be sublinear [30] if it is
subadditive, i.e.,

p y�1 þ y�2
� �

� p y�1
� �

þ p y�2
� �

y�1, y
�
2 2 Y�

� �
:

The collection CH(Y*) of sublinear functions is a convex cone in H(Y*). It follows
from [30, Theorem 3.1.5] that the cone CH(Y*) is closed in the norm topology
of the Banach space H(Y*). The linear hull DCH(Y*) of the cone CH(Y*) is called
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the space of difference-sublinear functions; a function p : Y� ! R lies in DCH(Y*) if and
only if it can be presented as a difference of two sublinear functions.

A single-valued mapping P : Y� ! X� is said to be dffierence-sublinear if for any
x2X the real-valued function y*!hx, P(y*)i is difference-sublinear. A detail account
of results concerning difference-sublinear functions and mappings can be found
in [31–34].

The correspondence assigning to each subset M2 bccY its support function

sM y�ð Þ ¼ max y, y�
� ���y 2 M
� �

is an isometrical isomorphism (called the Minkowski duality [29]) between the metric
sublinear space bccY and the convex cone CH(Y*) of sublinear functions.

Given a multifunction F :X! bccY, a real-valued function sF : domF � Y� ! R

defined by

sF x, y�ð Þ :¼ max y, y�
� ���y 2 FðxÞ
� �

is called the support function of F.
Due to the Minkowski duality, one can associate with a multifunction F : X ! bccY

the single-valued mapping ~FF : domF ! CHðY�Þ such that ~FFðxÞ ¼ sF ðx, �Þ for all
x 2 domF . Since CH(Y*)�DCH(Y*)�H(Y*) one can also consider ~FF either as a
mapping from domF into the normed space DCH(Y*) or as a mapping from domF
into the Banach space H(Y*).

3. Affine multifunctions

3.1. Definition and elementary properties

Let X and Y be finite-dimensional vector spaces over reals R.
A multifunction A : X ! bccY is said to be

(i) convex if

�A x1ð Þ þ ð1� �ÞA x2ð Þ � A �x1 þ ð1� �Þx2ð Þ ð1Þ

for all x1, x22 domA and �2 [0, 1];

(ii) affine if

�A x1ð Þ þ ð1� �ÞA x2ð Þ ¼ A �x1 þ ð1� �Þx2ð Þ ð2Þ

for all x1, x22 domA and �2 [0, 1].

Convex multifunctions have been studied by many authors from different points of
view (see, for instance, [5,35,36] and references therein). Affine multifunctions were first
introduced by Gautier [37] (see, also, Lemarechal and Zowe [20]) for the case X ¼ R

and domA ¼ ½0,T 	 � R, T>0. The definition of affinity presented here was given
in [38].

394 V. V. Gorokhovik and P. P. Zabreiko



Notice that for single-valued functions the inclusion (1) and the equality (2) are
equivalent to each other. Moreover, the following statement is true.

PROPOSITION 3.1 Let A : X ! bccY be a convex multifunction. If Aðx0Þ is a singleton
(i.e., Aðx0Þ ¼ fy0gÞ for some point x02 ri(domA) then A : X ! bccY is actually a
single-valued affine function on domA.

Here ri(domA) stands for the relative interior of domA.

Proof Let x be a point of domA. Since x02 ri(domA) then for some �xx 2 domA and
�2 (0, 1) we have x0 ¼ �xþ ð1� �Þ �xx. From (1) it follows that �AðxÞ þ
ð1� �ÞAð �xxÞ � Aðx0Þ ¼ fy0g. This shows that both sets AðxÞ and Að �xxÞ are singletons.
Since x is an arbitrary point of domA then AðxÞ is single-valued for each x2 domA

and, hence, by the above remark it follows that A is affine. g

In general, however, affine multifunctions form a proper subclass of the class of
convex multifunctions. Let us consider the multifunction A : R ! bcc R with
gr A :¼ fðx, yÞ 2 R� Rkxj � y � �jxj þ 2g. It is not difficult to see that this multifunc-
tion is convex, but not affine.

Let sAð�, �Þ : X � Y� ! R be the support function of a multifunction A : X ! bccY .
Straightforward from the above definitions and from properties of convex sets and their
support functions (see, for instance, [30]), we obtain the following characterizations for
both convex and affine multifunctions.

PROPOSITION 3.2 [35–37] A multifunction A : X ! bccY is convex (affine) if and
only if for each y*2Y* the real-valued function sAð�, y

�Þ : X ! R is concave (affine) on
domA, i.e.,

sA �x1 þ ð1� �Þx2, y
�ð Þ � �sA x1, y

�ð Þ þ ð1� �ÞsA x2, y
�ð Þ

sAð�x1 þ ð1� �Þx2, y
�ð Þ ¼ �sA x1, y

�ð Þ þ ð1� �ÞsA x2, y
�ð Þ

for all x1, x22 domA and all �2 [0, 1].

Remark 3.3 Let A : X ! bccY be an affine multifunction and (u, v) a point of X�Y.
It is easy to see that the multifunction A1 : X ! bccY defined by grA1 ¼ grAþ ðu, vÞ
is affine too. It shows that without loss of generality we can assume that 02 domA.

Remark 3.4 Let A : X ! bccY be an affine multifunction with 02 domA and let U
denote the linear hull of domA. In the case int ðdomAÞ ¼ 6 0 we may define the multi-
function A1 : X ! bccY by setting A1ðxÞ ¼ AðPxÞ for all x 2 X where P :X!U
denotes a projector of X onto U.

Immediately from the definition of A1 we obtain domA1 ¼ domAþ kerP, where
kerP¼ {x2X|P(x)¼ 0} denotes the kernel of the projector P. Since domA is a
convex subset of X and dimX<þ1 then riðdomAÞ 6¼ 6 0 and, hence,
intðdomA1Þ 6¼ 6 0. Besides, it is not hard to see that A1 is an affine multifunction and
A1ðxÞ ¼ AðxÞ for x 2 domA. Thus each affine multifunction A : X ! bccY can be
extended with preserving affinity to the effective domain whose interior is nonempty.

From the above remarks it follows that without loss of generality we can assume
in what follows that affine multifunctions under consideration are such that
intðdomAÞ 6¼ 6 0 and 02 int(domA). Moreover, we can suppose that (0, 0)2 grA.
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3.2. A conjugate mapping to an affine multifunction

Let A : X ! bccY be an affine multifunction such that intðdomAÞ 6¼ 6 0 and let
sAð�, �Þ : X � Y� ! R be the support function of A. From the characterization of
affine multifunctions given in Proposition 3.2, we conclude that for each y*2Y* the
real-valued function sAð�, y

�Þ : domA ! R is affine on domA. Since intðdomAÞ 6¼ 6 0
then the function sAð�, y

�Þ : domA ! R can be extended in the unique way to the
entire space X with preserving affinity. Consequently, with each y*2Y* we may
associate a linear function A

�
ð y�Þ 2 X� such that

sA x, y�ð Þ ¼ sA x0, y�
� �

þ x� x0,A� y�ð Þ
� �

for all x 2 domA: ð3Þ

Here x0 is an arbitrary fixed point of domA.
Thus, each affine multifunction A : X ! bccY defines the single-valued mapping

A
� : Y� ! X� which we call the conjugate mapping to the affine multifunction

A : X ! bccY .
It is worth emphasizing that the conjugate mapping A

� : Y� ! X� is single-valued
while the initial mapping A : X ! Y is multi-valued.

Example 3.5 Let A : X ! Y be a single-valued linear operator from X into Y and
let Q be a compact convex subset of Y. It is not hard to see that the multifunction
A : x ! AxþQ is affine and its conjugate mapping A

� : Y� ! X� coincides with the
linear operator A* :Y*!X* that is conjugate to the linear operator A:X!Y in
common sense for linear (single-valued) operators (cf., for instance, [39]).

PROPOSITION 3.6 The conjugate mapping A
� : Y� ! X� to an affine multifunction

A : X ! bccY is a difference-sublinear mapping, i.e., it is positive homogeneous,
continuous and for every h2X the real-valued function y� ! h,A�

ð y�Þ
� �

can be presented
as a difference of two sublinear functions.

Moreover, the function y� ! h,A�
ð y�Þ

� �
is sublinear for every h2X holding

x0þ th2 domA for some x02 domA and for all t� 0.
At last, the function y� ! h,A�

ð y�Þ
� �

is linear whenever h2X holds x0þ th2 domA

for some x02 domA and for all t 2 R.

Proof Let h2X. Choose a point x02 int(domA) and a real �>0 such that
x0þ th2 domA for all t2 (0, �). Then it follows immediately from the equality (3)
that for all t2 (0, �) we have

h,A�
ð y�Þ

� �
¼ t�1 sA x0 þ th, y�

� �
� sA x0, y�

� �� �
:

This equality shows that the function y� ! h,A�
ð y�Þ

� �
is difference-sublinear.

Suppose that a vector h2X holds x0þ th2 domA for some x02 domA and
for all t� 0. Since for each x2 domA the function y� ! sAðx, y

�Þ is subadditive,
we have

sAðx, y
�
1 þ y�2Þ � sAðx, y

�
1Þ � sAðx, y

�
2Þ � 0 for all y�1, y

�
2 2 Y�: ð4Þ
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Setting x¼ x0þ th we obtain from the inequality (4) and the equality (3) that

sA x0, y�1 þ y�2
� �

� sA x0, y�1
� �

� sA x0, y�2
� �

þ t h,A� y�1 þ y�2
� �� �

� h,A� y�1
� �� �

� h,A� y�2
� �� �� 	

� 0

holds for all t� 0. It implies

h,A� y�1 þ y�2
� �� �

� h,A� y�1
� �� �

� h,A� y�2
� �� �

� 0:

Thus, the function y� ! h,A�
ð y�Þ

� �
is subadditive and, hence, it is sublinear.

It proves the second statement of the proposition.
Let a vector h2X holds x0þ th2 domA for some x02 domA and for all t2R. In this

case we have x0þ th2 domA and x0þ t(� h)2 domA for all t� 0 therefore both
functions y� ! h,A�

ð y�Þ
� �

and y� ! � h,A�
ð y�Þ

� �
are sublinear and, consequently,

they are linear.
It completes the proof of the proposition. g

PROPOSITION 3.7 For every difference-sublinear mapping P :Y*!X* there exists an
affine multifunction A : X ! bccY such that A�

¼ P, where A
� : Y� ! X� is the map-

ping conjugate to A.

Proof Let {e1, e2, . . . , em} be a basis of X. Since the functions pið�Þ : y
� ! ei,Pð y

�Þ
� �

,
i¼ 1,2, . . . ,m, are difference-sublinear we can represent each of them in the form
pið�Þ ¼ p

i
ð�Þ � �ppið�Þ, i¼ 1,2, . . . ,m, where the functions p

i
ð�Þ, �ppið�Þ, i¼ 1, 2, . . . ,m are

sublinear.
Let us consider the function qð�Þ : y� ! �m

i¼1ðpið y
�Þ þ �ppið y

�ÞÞ. It is evident that q( � )
is sublinear. Besides, for each y*2Y* we have

q y�ð Þ þ x,P y�ð Þ
� �

¼
Xm
i¼1

ð1þ xiÞpi y�ð Þ þ ð1� xiÞ �ppi y�ð Þ

h i
,

where x1, x2, . . . , xm are the coordinates of the vector x in the basis {e1, e2, . . . , em}.
It shows that the function y� ! qð y�Þ þ x,Pð y�Þ

� �
is also sublinear for all x2X such

that x ¼
Pm

i�1 xiei with |xi|� 1, i¼ 1, 2, . . .,m.
Now let A : X ! bccY be the multifunction such that domA :¼ x ¼fPm
i¼1 xiei jxij � 1, i ¼ 1, 2, . . . ,mg and sAðx, y

�Þ ¼ qð y�Þ þ x,Pð y�Þ
� �

. It follows from
Proposition 3.2 that A is affine and, moreover, we can readily see from the definition
of the conjugate mapping that A�

¼ P. The proof is complete. g

Example 3.8 [20,37] Consider the multifunction A : R ! bccR2 the graph of which is
given by

grA :¼ fðx, yÞ 2 R� R
2
ky1j � 1� x, jy2j � 1þ xg:

It is evident that domA ¼ ½�1, 1	. Using straightforward calculation we get that the
support function of A can be presented in the form

sA x, y�ð Þ ¼ y�1
�� ��þ y�2

����� �
þ x � y�1

��þ�� y�2
����� �
:
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It shows that A is an affine multifunction and its conjugate mapping is defined by

A
� : y�1, y

�
2

� �
! � y�1

�� ��þ y�2
�� �� 2 R:

PROPOSITION 3.9 (cf. with Le Van Hot [40]) Any convex multifunction A : X ! bccY
with domA¼X is actually affine and can be presented in the form

AðxÞ ¼ AxþAð0Þ for all x 2 X,

where A:X!Y is a uniquely defined single-valued linear operator from X to Y.

Proof Observe that sAðx, �y�Þ ¼ �miny2AðxÞ y, y
�

� �
for all y*2Y* and x2X.

It shows that for each y*2Y* the concave function x ! sAðx, y
�Þ majorizes the

convex function x ! �sAðx, �y�Þ, i.e., for each y� 2 Y�

�sA x, �y�ð Þ � sA x, y�ð Þ for all x 2 X :

Fix y*2Y* and let x�1 2 X� be an arbitrary subgradient of the concave function
x ! sAðx, y

�Þ at a point x12X and let x�2 2 X� be an arbitrary subgradient of the
convex function x ! �sAðx, �y�Þ at a point x22X. Then we have

� sA x1, �y�ð Þ þ x�1, x� x1
� �

� �sA x, �y�ð Þ

� sA x, y�ð Þ � sA x�2, y
�

� �
þ x�2, x� x2
� �

for all x2X. From this inequality we deduce that the real-valued affine function

u : x ! x�2 � x�1, x
� �

þ sA x2, y
�ð Þ þ sA x1, �y�ð Þ þ x�1, x1

� �
� x�2, x2
� �

is nonnegative on X. But it is possible if and only if the function u is constant or,
equivalently, if and only if x�1 ¼ x�2.

It shows that at each point x2X the concave function x ! sAðx, y
�Þ has the only

subgradient and, moreover, this subgradient does not depend on x. It implies that
the function x ! sAðx, y

�Þ is affine in x. By Proposition 3.2 we conclude that A is an
affine multifunction.

Since A : X ! bccY is an affine multifunction with domA ¼ X then its conjugate
mapping A

� : Y� ! X� satisfies the equality

sA x, y�ð Þ ¼ sA 0, y�ð Þ þ x,A� y�ð Þ
� �

ð5Þ

for all x2X and y*2Y*. Moreover, it follows from the last statement of Proposition
3.6 that the function y� ! hx,A�

ð y�Þi is linear for each y*2Y*. Consequently,
A

�: Y� ! X� is a single-valued linear operator from Y* into X*. Now, let A :X!Y
be the linear operator conjugate to A

�: Y� ! X� in the sense of the theory of linear
operators, i.e.,

x,A� y�ð Þ
� �

¼ Ax, y�
� �

for all y� 2 Y� and all x 2 X :
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Then we have from (5) that

sA x, y�ð Þ ¼ sA 0, y�ð Þ þ Ax, y�
� �

for all y� 2 Y� and all x 2 X

and we conclude that

AðxÞ ¼ AxþAð0Þ for all x 2 X :

It completes the proof of the proposition. g

3.3. Linear processes associated with affine multifunctions

A multifunction R : X ! bccY will be called a linear process if it is

(i) positive homogeneous:

RðtxÞ ¼ tRðxÞ for all x 2 dom R and all t � 0;

(ii) additive:

Rðx1 þ x2Þ ¼ Rðx1Þ þ Rðx2Þ for all x1, x2 2 dom R:

It is evident that domR and grR are convex cones in X and in X�Y respectively,
and Rð0Þ ¼ f0g. Besides, it is immediate consequence of the above definition that any
linear process R : X ! bccY is an affine multifunction.

LetR� : Y� ! X� be the conjugate mapping to a linear processR : X ! bccY . Since
domR is a convex cone then due to Proposition 3.6, for each x 2 dom R the function
y� ! hx,R�ð y�Þi is sublinear.

Notice that 02 domR and sRð0, y
�Þ 
 0 for all y� 2 Y�. Hence it follows from the

definition of the conjugate mapping that

sRðx, y
�Þ ¼ x,R�ð y�Þ

� �
for all x 2 dom R and all y� 2 Y�

and, consequently, for each x2 domR we have

RðxÞ ¼ y 2 Y y, y�
� ��� � x,R� y�ð Þ

� �
for all y� 2 Y

� �
:

PROPOSITION 3.10 Let A : X ! bccY be an affine multifunction. Then there exists a
linear process R : X ! bccY with domR ¼ 0þðdomAÞ and

Aðxþ hÞ ¼ AðxÞ þ RðhÞ ð6Þ

for all x2 domA and all h2 0þ (dom A).
Here 0þ (domA) is the recession cone of domA.

Proof Let A� : Y� ! X� be the conjugate mapping to A. Setting domR ¼ 0þðdomAÞ

and RðxÞ ¼ f y 2 Y jh y, y�i � hx,A�
ð y�Þig for all x2 domR we define the multi-

function R. It is evident that R : X ! bccY is a linear process and

sA xþ h, y�ð Þ ¼ sA x, y�ð Þ þ sR h, y�ð Þ

for all x2 domA, h2 0þ(domA) and all y*2Y*. The last equality is equivalent to (6).

The proposition is proved. g
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Remark 3.11 A multifunction R : X ! bccY is a linear process if and only if it is
both a convex process [30,41,42] and a fan [32,43]. We refer readers to papers
and monographs mentioned above for more detail accounts on convex processes
and fans.

3.4. Some other properties of affine multifunctions

Let us recall (see, for instance, [5]) that a multifunction F :X! bccY is Lipschitzian on
a set Q� domA if there exists a real number LQ such that for all x1, x22Q we have

Fðx1Þ � Fðx2Þ þ LQkx1 � x2kBY :

Here BY is a unit ball of Y.
The real LQ is called the Lipschitz constant for F on Q.

PROPOSITION 3.12 An affine multifunction A : X ! bccY is Lipschitzian on its effective
domain domA with Lipschitz constant L ¼ kA

�
k, where

A
�



 

 ¼ max
ky�k�1

A
� y�ð Þ



 

:
Proof From positive homogeneity and continuity (it is sufficient continuity at zero)
of the conjugate mapping A

� : Y� ! X� we conclude that there exists L� 0 such that

A
� y�ð Þ � Lk ky�



 

 for all y� 2 Y�, ð7Þ

with the smallest constant L for which (6) holds being equal to kA
�
k.

Now from (4) and (6) we obtain that for all x1, x22 domA and all y*2Y*

sA x1, y
�ð Þ � sA x2, y

�ð Þ
�� �� ¼ x1 � x2,A

� y�ð Þ
� ��� ��

� A
� y�ð Þ



 

 x1 � x2k k � A
�



 

 y�


 

 x1 � x2k k ð8Þ

and, consequently,

sA x1, y
�ð Þ � sA x2, y

�ð Þ þ A
�



 

 x1 � x2k k y�


 



for all x1, x22 domA and all y*2Y*.
Since the function y� ! ky�k is the support function of the unit ball BY�Y the last

inequality is equivalent to the inclusion

A x1ð Þ � A x2ð Þ þ A
�



 

 x1 � x2k kBY for all x1, x2 2 domA:

The proposition is proved. g

PROPOSITION 3.13 An affine multifunction A : X ! bccY is uniformly continuous in the
Hausdorff sense on domA.
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Proof Using the equality

dH A x1ð Þ,A x2ð Þð Þ ¼ max
ky�k�1

sA x1, y
�ð Þ � sA x2, y

�ð Þ
�� ��

we obtain from inequality (8) that

dH A x1ð Þ,A x2ð Þð Þ � A
�



 

 x1 � x2k k for all x1, x2 2 domA

and it completes the proof of the proposition. g

3.5. Inextensible affine multifunctions

We say that an affine multifunction A : X ! bccY is inextensible if there is no affine
extension of A other than A itself.

It is an immediate consequence of Remark 3.4 that an effective domain of any
inextensible affine multifunction has a nonempty interior.

PROPOSITION 3.14 For any affine multifunction A : X ! bccY with intðdomAÞ 6¼ 6 0
there exists the uniquely defined inextensible affine extension of A.

Proof Let A�: Y� ! X� be the mapping conjugate to A. Fix a point x02 int(domA)
and consider the real-valued function ŝsA : X � Y� ! R defined by

x, y�ð Þ ! ŝsA x, y�ð Þ :¼ sA x0, y�
� �

þ x� x0,A� y�ð Þ
� �

: ð9Þ

Straightforward from the definition of A� it follows that for each y*2Y* the function
ŝsAð�, y

�Þ : X ! R is the uniquely defined affine extension of the function
sAð�, y

�Þ : domA ! R to the entire space X. Using Proposition 3.6 we conclude that
for each x2X the function ŝsAðx, �Þ : Y

� ! R is difference-sublinear and, hence, it is
positive homogeneous and continuous.

Consider the multifunction ÂA : X ! bccY such that

dombAA ¼ x 2 X ŝsAðx, �Þ
�� : Y� ! R is sublinear

� �
and the value of bAA at every x2 dombAA is defined by

bAAðxÞ ¼ y 2 Y y, y�
� ��� � ŝsA x, y�ð Þ for all y� 2 Y�

� �
:

It is not difficult to verify that bAA is an affine extension of A.
It remains to prove that bAA is an inextensible affine multifunction.
Let B : X ! bccY be an affine extension of bAA. Note that B is an affine extension

of A as well. Hence, sAðx, y
�Þ ¼ sBðx, y

�Þ for all x2 domA and all y*2Y*.
Since for each y*2Y* there exists an only affine extension of the real-valued
function sAð�, y

�Þ : domA ! R on the entire space X then sBðx, y
�Þ ¼ ŝsAðx, y

�Þ

for all x2 domB and all y*2Y*. It implies that domB � dom bAA and it proves that
the affine multifunction bAA : X ! bccY is inextensible.

The proof is complete. g
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Remark 3.15 In fact in the proof of Proposition 3.14 we showed the existence of the
duality between the collection of all inextensible affine multifunctions from X into Y
and the collection of real-valued functions sð�, �Þ : X � Y� ! R satisfying the following
conditions:

(a) for each y*2Y* the partial function sð�, y�Þ : X ! R is affine on X;
(b) for each x 2 X the partial function sðx, �Þ : Y� ! R is difference-sublinear on Y*;
(c) the set fx 2 X jsðx, �Þ : Y� ! R is sublinear} has a nonempty interior.

Remark 3.16 Let A1: X ! bccY and A2: X ! bccY be two inextensible affine
multifunctions. If there exists an open set U� domA1 \ domA2 such that
A1ðxÞ ¼ A2ðxÞ for all x2U then A1ðxÞ ¼ A2ðxÞ for all x2X or, equivalently,
grA1 ¼ grA2.

PROPOSITION 3.17 For each inextensible affine multifunction A : X ! bccY its effective
domain domA is a closed subset of X.

Proof Let x2 cl(domA) and x02 int(domA). Then xt :¼ txþ ð1� tÞx0 2 intðdomAÞ

for all t2 [0, 1). Hence, for all y�1, y
�
2 2 Y� and t2 [0, 1), we have

ŝsA xt, y
�
1 þ y�2

� �
� ŝsA xt, y

�
1

� �
þ ŝsA xt, y

�
2

� �
:

Here ŝsAð�, y
�Þ : X ! R is the affine extension of the function sAð�, y

�Þ : domA ! R to
the entire space X.

Since for each y*2Y* the function ŝsAð�, y
�Þ : X ! R is affine and, consequently,

continuous then tending t to 1 in the last inequality we obtain

ŝsA x, y�1 þ y�2
� �

� ŝsA x, y�1
� �

þ ŝsA x, y�2
� �

:

Due to inextensibility of A we deduce from the latter inequality that x2 domA.
It completes the proof. g

PROPOSITION 3.18 Each affine multifunction A : X ! bccY with a closed effective
domain domA is closed. In particular, an inextensible affine multifunction A is closed.

Proof The graph of an affine multifunction A : X ! bccY can be presented in
the form

grA ¼
\

y�2Y�

ðx, yÞ 2 domA� Y y, y�
� �

� x� x0,A� y�ð Þ
� �

� sA x0, y�
� ���� �

where x0 is a fixed point of domA. It shows that in the case, when domA is closed, the
graph grA is the intersection of the family of closed sets. The second assertion follows
from Proposition 3.17. g

Example 3.19 Let A : R ! bcc R2 be the affine multifunction given in Example 3.8.
Recall that domA ¼ ½�1, 1	. Representing the support function of A in the form

sA x, y�ð Þ ¼ ð1� xÞ y�1
�� ��þ ð1þ xÞ y�2

�� ��
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we see that it is sublinear in y* only for x 2 ½�1, 1	. It shows that A is an inextensible
affine multifunction.

4. Differentiability of multifunctions

4.1. Definition of Fréchet differentiability

Let X and Y be finite-dimensional normed vector spaces over R and F : X ! bccY a
multifunction from X into Y with intðdomF Þ 6¼ 6 0.

Definition 4.1 We say that a multifunction F : X ! bccY is Fréchet differentiable at a
point x02 int(domF) if there exists an affine multifunction Aðx0j�Þ : X ! bccY such
that 02 int(domAðx0j�Þ) and

lim
h!0

dH F x0 þ h
� �

,A x0
��h� �� �

khk
¼ 0: ð10Þ

Here dHð�, �Þ stands for the Hausdorff metric on bccY.
It is easy to see that Aðx0j0Þ ¼ Fðx0Þ.
Without loss of generality we can assume that an affine multifunction Aðx0j�Þ satisfy-

ing Definition 4.1 is inextensible. In this case such a multifunction is uniquely deter-
mined by (10). To show it we observe that equality (10) is equivalent to the
following statement: for any ">0 there exists �>0 such that for all h2 �BX we have

F x0 þ h
� �

� A x0jh
� �

þ "khkBY ð11Þ

and

A x0 hj
� �

� F x0 þ h
� �

þ "khkBY : ð12Þ

Here BX and BY stands for unit balls in X and Y respectively.
Now let us suppose that two inextensible affine multifunctions

A1ðx
0 � j�Þ : X ! bccY and A2ðx

0j�Þ : X ! bccY satisfy Definition 4.1. Then it follows
from the above observation that for any ">0 there exists �>0 such that for all h2 �BX

we have

A1 x0
��h� �

� A2 x0
��h� �

þ "khkBY

and

A2 x0
��h� �

� A1 x0
��h� �

þ "khkBY :

Due to the Minkowski duality the last inclusions are equivalent to the following
inequality

sA1
x0; h, y�
� �

� sA2
x0; h, y�
� ��� �� � "khk y�



 

, ð13Þ
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where sAðx
0; �, �Þ : ðh, y�Þ ! maxy2Aiðx0jhÞhy, y

�i is the support function of the multifunc-
tion Aiðx

0j�Þ. Since sAi
ðx0; �, y�Þ : X ! Y , i¼ 1, 2, are affine functions and " is an

arbitrary positive real number then we deduce from (13) that sA1
ðx0; h, y�Þ ¼

sA2
ðx0; h, y�Þ for all h2 domA1 \ domA2 and all y*2Y*. It implies that A1ðx

0jhÞ ¼
A2ðx

0jhÞ for all h2 domA1 \ domA2. Thus, the inextensible affine multifunctions A1

and A2 coincide in some neighborhood of zero and, consequently, by Remark 3.16
they coincide everywhere in X.

The uniquely defined inextensible affine multifunction Aðx0j�Þ : X ! bccY satisfying
Definition 4.1 will be called the Fréchet differential approximation of the multifunction
F : X ! bccY at the point x0 and will be denoted by DF(x0| � ).

As it follows from Proposition 3.1, the Fréchet differential approximation DF(x0| � )
of a multifunction F : X ! bccY is a single-valued affine function, whenever the
multifunction F is Fréchet differentiable at a point x02 int(domA) and F(x0)¼ {y0}
is a singleton. It shows that for a single-valued mapping F : X ! Y the Fréchet differ-
entiability of F in the sense of the above definition is equivalent to the classical
notion of the Fréchet differentiability for single-valued mappings. In this case we
have DFðx0jhÞ ¼ Fðx0Þ þ F 0ðx0Þh, h2X, where DF(x0| � ) is the Fréchet differential
approximation of F at x0 and F 0ðx0Þ : X ! Y is the classical Fréchet derivative of F
at x0.

Example 4.2 Let � be an open subset of X and let f : �!Y be a single-valued
function, M a compact convex subset of Y.

The multifunction F : X ! bccY defined by

grF :¼ fðx, yÞ 2 X � Y jx 2 �, y 2 f ðxÞ þMg

is Fréchet differentiable at a point x02� if and only if the single-valued function
f : �!Y is Fréchet differentiable at x0 and the Fréchet differential approximation
of F at x0 is defined by

gr DF x0j�
� �

¼ ðh, yÞ 2 X � Y h 2 X , y 2 f x0
� �

þ f 0 x0
� �

hþM
��� �

:

Here f 0ðx0Þ : X ! Y is the classical Fréchet derivative of f at x0.

Example 4.3 Let Y be endowed with a partial order � defined by

y1 � y2 if and only if y2 � y1 2 C,

where C is a convex closed cone with intC 6¼ 6 0 and C \ ð�CÞ ¼ f0g.
Under these assumptions an order interval ½y1, y2	 :¼ fy 2 Y jy1 � y � y2g is a

compact convex subset of Y for each y1, y22Y. Without loss of generality we can
also suppose that the norm given on Y is such that BY ¼ ½�e, e	 for some e2 intC
(in other case we can renorm the space Y ).

Let � be an open subset of X and let f1 : � ! Y and f2 : � ! Y be single-valued
functions such that f2ðx

0Þ � f1ðx
0Þ 2 intC for some x02�.

The multifunction F : X ! bccY defined by

grF :¼ fðx, yÞ 2 X � Y jx 2 �, f1ðxÞ � y � f2ðxÞg
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is Fréchet differentiable at x0 if and only if the functions f1: � ! Y and f2: � ! Y are
classically Fréchet differentiable at the point x0. The Fréchet differentiable approxima-
tion of F at x0 can be defined by

gr DF x0j�
� �

¼ ðh, yÞ 2 X � Y h 2 X ,j
�
f1 x0
� �

þ f 0
1 x0
� �

h � y � f2 x0
� �

þ f 0
2 x0
� �

h
�
,

where f 0
1ðx

0Þ : X ! Y and f 0
2ðx

0Þ : X ! Y are the classical Fréchet derivatives of f1 and
f2 at x

0 respectively.

THEOREM 4.4 If a multifunction F : X ! bccY is Fréchet differentiable at a point
x0 2 int(domF ) then it is continuous in Hausdorff sense at the point x0.

Proof Fix a positive real number ">0. Since F is Fréchet differentiable at the point
x02 int(domF ) then there exists �>0 such that �BX � domDFðx0j�Þ \ domF and

dH F x0 þ h
� �

,DF x0 hj
� �� �

� "khk for all h 2 �BX :

On the other side, the multifunction DFðx0j�Þ : X ! Y is Lipschitzian on domDF(x0| � )
and hence for some L>0 we have

dH DF x0 hj
� �

,DF x0 0j
� �� �

� Lkhk for all h 2 dom DF x0 �j
� �

:

Since DF(x0|0)¼F(x0) we get from these inequalities that

dH F x0 þ h
� �

,F x0
� �� �

� dH F x0 þ h
� �

,DF x0 hj
� �� �

þ dH DF x0 hj
� �

,DF x0 0j
� �� �

� ð"þ LÞkhk for all x 2 �BH :

It shows that F is Hausdorff continuous at x0. The proof of the theorem is
complete. g

4.2. Characterization of differentiability of multifunctions via differentiability of their
support functions

Definition 4.5 [1,28] A multifunction F : X ! bccY is called weakly differentiable at a
point x02 int(domF ) if for each y*2Y* the real-valued function sF ð�, y

�Þ : domF ! R

is classically Fréchet differentiable at x0.

It means that for each y*2Y* there exists a linear functional s0F ðx
0, y�Þ 2 X� such

that

lim
h!0

sF x0 þ h, y�
� �

� sF x0, y�
� �

� h, s0F x0, y�
� �� �

khk
¼ 0: ð14Þ

Whenever a multifunction F : X ! bccY is weakly differentiable at a point x02
int(domF ) it generates the single-valued mapping s0F ðx

0, �Þ : Y� 3 y� ! s0F ðx
0, y�Þ 2 X�

which is called a conjugate derivative [2] of the multifunction F at the point x0.
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It follows immediately from (14) that for each h2X the function y� ! hh, s0F ðx
0, y�Þi

is the pointwise limit of positively homogeneous functions:

h, s0F x0, y�
� �� �

¼ lim
t!0

sF x0 þ th, y�
� �

� sF x0, y�
� �

t
¼ 0 ð15Þ

and hence it is also positively homogeneous.
Thus the following theorem is true.

THEOREM 4.6 [2] If a multifunction F : X ! bccY is weakly differentiable at a point
x02 int(domF ) then its conjugate derivative s0F ðx

0, �Þ : Y� ! X� is a positively homoge-
neous mapping from Y* into X*.

Definition 4.7 [2] A multifunction F : X ! bccY is called R-differentiable at a point
x02 int(domF ) if

(i) F is weakly differentiable at x0;
(ii) for any ">0 there exists �>0 such that for all h2 �BX and all y*2Y* the

inequality

sF x0 þ h, y�
� �

� sF x0, y�
� �

� h, s0F x0, y�
� �� ��� �� � "khk y�



 


is satisfied.

The condition (ii) means that the limit in (14) is uniform with respect to y* on the unit
ball BY*. It implies that, whenever a multifunction F : X ! bccY is R-differentiable at
a point x0 2 intðdomF Þ, the limit in (15) is uniform with respect to y* on BY*. Hence
for each h 2 X the function y� ! hh, s0F ðx

0, y�Þi is continuous on BY* since it is the uni-
form limit of continuous functions.

Thus for R-differentiable multifunctions Theorem 4.6 can be strengthened as follows

THEOREM 4.8 [2] If a multifunction F : X ! bccY is R-differentiable at a point
x0 2 intðdomF Þ then its conjugate derivative s0F ðx

0, �Þ : Y� ! X� is a positively homoge-
neous continuous mapping.

As it was observed in section 2 one can associate with a multifunction F : X ! bccY
the single-valued mapping ~FF : domF ! HðY�Þ (H(Y*) is the Banach space of positive
homogeneous and continuous functions from Y* into R) defined by ~FFðxÞ ¼ sF ðx, �Þ for
all x 2 domF . Identifying the multifunction F with the mapping ~FF we can get the
following characterization of R-differentiability.

THEOREM 4.9 A multifunction F : X ! bccY is R-differentiable at a point x0 2
intðdomF Þ if and only if the single-valued mapping ~FF : domF ! HðY�Þ is classically
Fréchet differentiable at the point x0.

Moreover, the conjugate derivative s0F ðx
0, �Þ : Y� ! X� of a multifunction

F : X ! bccY and the Fréchet derivative ~FFðx0Þ : X ! HðY�Þ are related by the equality

h, s0F x0, y�
� �� �

¼ ~FF 0 x0
� �

h
� �

y�ð Þ ð16Þ

which is satisfied for all h 2 X and all y� 2 Y�.

Proof Straightforward. g
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Since ~FFðxÞ 2 CHðY�Þ � DCHðY�Þ for all x 2 domF then one can also consider ~FF as
a mapping from domF into the normed vector space of difference-sublinear functions
DCH(Y*). Using this fact Tyurin [3] introduced the following notion of differentiability
of multifunctions.

Definition 4.10 [3] A multifunction F : X ! bccY is �-differentiable at a point x0 2
intðdomF Þ if the single-valued mapping ~FF : domF ! DCHðY�Þ is classically Fréchet
differentiable at the point x0.

�-differentiability of multifunctions was also studied by Banks and Jacobs [4] and
Pecherskaya [26,27]. Notice that the term of �-differentiability was first introduced
by Banks and Jacobs [4].

THEOREM 4.11 A multifunction F : X ! bccY is �-differentiable at a point x0 2
intðdomF Þ if and only if it is R-differentiable at x0 and its conjugate derivative
s0F ðx

0, �Þ : Y� ! X� is a difference-sublinear mapping.

Proof It easily follows from Theorem 4.9 and the inclusion DCHðY�Þ � HðY�Þ. g

The next theorem gives a characterization of Fréchet differentiability of multifunc-
tions via differentiability properties of support functions.

THEOREM 4.12 A multifunction F : X ! bccY is Fréchet differentiable at a point
x0 2 intðdomF Þ if and only if it is R-differentiable at x0 and the function

y� ! sF x0, y�
� �

þ h, s0F x0, y�
� �� �

ð17Þ

is sublinear for every h in some neighborhood of zero.
The Fréchet differential approximation DFðx0j�Þ : X ! bccY of F at x0 and the

conjugate derivative s0F ðx
0, �Þ : Y� ! X� are related to each other with the equality

ðDF Þ
� x0, y�
� �

¼ s0F x0, y�
� �

for all y� 2 Y�: ð18Þ

Here ðDF Þ
�
ðx0, �Þ : Y� ! X� stands for the conjugate mapping to the affine multifunction

DFðx0, �Þ : X ! bccY .

Proof Necessity Let F : X ! bccY be Fréchet differentiable at x0 2 intðdomF Þ

and DFðx0j�Þ : X ! bccY the Fréchet differential approximation of F at x0. Using
the equality

dH F x0 þ h
� �

,DF x0jh
� �� �

¼ max
ky�k�1

sF x0 þ h, y�
� �

� sDF x0; h, y�
� ��� ��

and the representation of the support function sDF (x
0; � , � ) of DFðx0j�Þ : X ! bccY in

the form

sDF x0; h, y�
� �

¼ sDF x0; 0, y�
� �

þ h, ðDFÞ� x0, y�
� �� �

h 2 dom DFðx0j�Þ, y� 2 Y�
� �

we get that the equality (10) is equivalent to

lim
h!0

max
ky�k�1

sF x0 þ h, y�
� �

� sF x0, y�
� �

� h, ðDFÞ� x0, y�
� �� ��� ��

khk

� �
¼ 0:
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It shows that the multifunction F is R-differentiable at x0 with ðDF Þ
�
ðx0j�Þ : Y� ! X�

being the conjugate derivative of F at x0. Besides we have that

sF x0, y�
� �

þ h, s0F x0, y�
� �� �

¼ sDF x0; 0, y�
� �

þ h, ðDFÞ� x0, y�
� �� �

¼ sDF x0; h, y�
� �

for all y� 2 X and h 2 X :

Hence, the function y� ! sF ðx
0, y�Þ þ hh, s0F ðx

0, y�Þi is, in fact, the support function
of the affine multifunction DFðx0j�Þ : X ! bccY with 0 2 intðdomDFðx0j�ÞÞ.
Consequently, y� ! sF ðx

0, y�Þ þ hh, s0F ðx
0, y�Þi is a sublinear function for all h in

some neighborhood of zero.

Sufficiency If a multifunction F : X ! bccY is R-differentiable at x0 2 intðdomF Þ

and the function defined by (17) is sublinear for each h in some neighborhood of
zero then the function ðh, y�Þ ! sF ðx

0, y�Þ þ hh, s0F ðx
0, y�Þi is the affine extension of

the support function (see Remark 3.15) of some inextensible affine multifunction
Aðx0; �Þ : X ! bccY which satisfies Definition 4.1 and the equality (18). It completes
the proof of the theorem. g

Remark 4.13 From the assumption that the function defined by (17) is sublinear for
each h in some neighborhood of zero it follows that the conjugate derivative
s0F ðx

0, �Þ : Y� ! X� is difference-sublinear mapping. It shows that Theorem 4.12
can be improved as follows: a multifunction F : X ! bccY is Fréchet differentiable
at x0 2 intðdomF Þ if and only if it is �-differentiable at x0 and the function defined
by (17) is sublinear for each h in some neighborhood of zero.

Remark 4.14 Theorem 4.12 can be considered as an extension of Theorem 4.2 of [20]
to multifunctions defined on arbitrary finite-dimensional vector spaces.
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