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Abstract. Let E be a Banach lattice,T be a bounded operator onE. The Weyl essential spectrum
σew(T ) of the operatorT is a setσew(T ) = ∩

K∈K(E)
σ(T + K), whereK(E) is a set of all compact

operators onE. In particular for a positive operatorT next subsets of the spectrum

σ+
ew(T ) =

⋂

0≤K∈K(E)

σ(T + K), σ−ew(T ) =
⋂

0≤K∈K(E)≤T

σ(T −K)

are introduced in the article. The conditions by whichr(T ) 6∈ σef(T ) implies eitherr(T ) 6∈ σ+
ew(T )

or r(T ) 6∈ σ−ew(T ) are investigated, whereσef(T ) is the Fredholm essential spectrum. By this reason,
the relations between coefficients of the main part of the Laurent series of the resolventR(., T ) of a
positive operatorT around of the pointλ = r(T ) are studied. The example of a positive integral
operatorT : L1 → L∞ which doesn’t dominate a non-zero compact operator, is adduced. Applications
of results which are obtained, to the spectral theory of band irreducible operators, are given. Namely, the
criteria when the operator inequalities0 ≤ S < T imply the spectral radius inequalityr(S) < r(T ), are
established, whereT is a band irreducible abstract integral operator.
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1 Introduction

The perturbation theory studies the behaviour of the spectrum of a linear operatorT under
the perturbation ofT by ”small”, as a rule compact or like to it, operators. This theory was
strongly developed in many directions and plural applications were found to wide classes of
linear operators on Banach spaces (see, for example, [5, 4]). The notion of an essential spectrum
is important in the perturbation theory. So, essential spectra are subsets of the spectrum which
are invariant under a perturbation of the given operator by operators of the concrete form. These
spectra are obtained, for example, at the expense of the strengthening of the non-invertibility’s
definition.

On the other hand, the spectral theory of positive operators occupies a major place in the
general concept of operators on Banach lattices (see, for example, monographs [1, 10] which



can acquaint with main stages of the development and the achievements in this direction). How-
ever, in spite of numerous attempts the general operator theory is united and connected with the
theory of positive operators, the next question have receive almost no attentions. How can re-
sults of the perturbation theory be define more precisely and what form they receive in the case
of positive operators on Banach lattices? To make some contribution in this direction is main
purpose of this note.

Let E be an infinite dimensional Banach lattice,T be a linear bounded operator onE. As
usual, the spectrum of an operatorT will be denoted byσ(T ). Recall that theFredholm essential
spectrumof an operatorT is called the set

σef(T ) = {λ ∈ C : λ− T is not a Fredholm operator}
and theWeyl essential spectrumis called the setσew(T ) =

⋂
K∈K(E)

σ(T + K), whereK(E) is

the set of all compact operators onE. For a positive operatorT next subsets of the spectrum
are also introduced:

σ+
ew(T ) =

⋂

0≤K∈K(E)

σ(T + K), σ−ew(T ) =
⋂

0≤K∈K(E)≤T

σ(T −K).

It is clear that inclusions

σef(T ) ⊆ σew(T ) ⊆ σ−ew(T ) ∩ σ+
ew(T ) ⊆ σ−ew(T ) ∪ σ+

ew(T ) ⊆ σ(T )

hold. There exist wide classes of operators such that rarely the equalityσef(T ) = σ(T ) holds.
For example, ifT is a strictly singular operator onE, then ([1], p. 314)σef(T ) is equal{0},
thus, generally speaking, the inclusionσef(T ) ⊆ σ(T ) is strict. The forward shift operatorT
on the spacèp (1 < p < ∞), T (x1, x2, . . .) = (0, x1, . . .), gives the example of a positive
operator such that ([4], p. 72-73)

σef(T ) = {λ : |λ| = 1} ⊂ σew(T ) = {λ : |λ| ≤ 1}.
But among of points of the spectrum of a positive operator there exists one ”special”, namely
λ = r(T ), it is a point corresponding to the spectral radius of a positive operatorT (recall that
([1], p. 276) for a positive operatorT on a Banach latticeE the inclusionr(T ) ∈ σ(T ) always
holds). For example, in many cases by singularities of the spectrum at a neighbourhood of this
point, it can judge about properties of all spectrum or at least of the peripheral spectrum of a
positive operator.

It will be show below that under the number of the additional assumptions the condition
r(T ) /∈ σef(T ) implies r(T ) /∈ σ−ew(T ) ∪ σ+

ew(T ) for a positive operatorT . The last part of
the note is devoted to the application of obtained results to the question whether the operator
inequalities0 ≤ S < T imply the spectral radius inequalityr(S) < r(T ), whereT is a band
irreducible abstract integral operator.

For terminology, notions, and properties on the theory of Banach lattices and positive oper-
ators not explained or proved in this note, we refer to [1, 3]; see also [10]. Throughout the note,
unless otherwise stated, a Banach latticeE will be assumed to be infinite dimensional and an
operatorT will be assumed positive.



2 When doesr(T ) 6∈ σef(T ) imply r(T ) 6∈ σ+
ew(T )?

Let r(T ) /∈ σef(T ). It is equivalent that ([1], p. 300-302)r(T ) > 0, the pointλ = r(T ) is a pole
of the resolventR(., T ) of the operatorT and the residuumT−1 of the functionR(., T ) at this
point presents the operator of a finite-rank. It is no loss of generality to assume thatr(T ) = 1.
Consider the Laurent series expansion of the resolvent functionR(., T ) aroundλ = 1

R(λ, T ) =
1

(λ− 1)m
T−m + . . . +

1

λ− 1
T−1 + T0 + (λ− 1)T1 + . . . ,

wherem ≥ 1 is the order of the pole ofR(., T ) at λ = 1. OperatorsTi (Ti = 0, when
i < −m) are defined on the complexificationEC of the Banach latticeE and are real maps.
The restriction ofTi to E will denote byTi again. In particular the operatorT−m ≥ 0 and the
relationsT−iT−j = T−i−j+1, i, j ≥ 1 andTiTj = 0, i ≥ 0, j ≤ −1 hold. Note also that all
operatorsT−i, i ≥ 1 are of a finite-rank, therefore ([3], p. 272) modules of them exist and
are compact operators, moreover ([10], p. 296)|T−i|∗ = |T ∗

−i|. In next lemmas the number of
necessary in the future properties of operatorsTi are adduced.

Lemma 1. Under the above assumptions the next equalities

T−m|T−1| = |T−1|T−m = T−m, |T−i|T−m = T−m|T−i| = 0

hold for everyi > 1.

Proof. In casesm = 1 andi > m ≥ 1 the assertions of lemma are obvious.
Let the Banach latticeE be Dedekind complete and the operatorT−m be order continuous.

Fix an arbitrary elementx ≥ 0. Then, with the help of the equalityT−mR(λ, T ) = 1
λ−1

T−m,
we have form ≥ 2

T−m|T−(m−1)x| = lim
λ↓1

(λ− 1)m−1T−m

∣∣∣∣R(λ, T )x− 1

(λ− 1)m T−mx

∣∣∣∣ =

= lim
λ↓1

(λ− 1)m−1T−m

∣∣∣∣R(λ, T )x− 1

(λ− 1)m−1T−mR(λ, T )x

∣∣∣∣ ≤

≤ lim
λ↓1

(λ− 1)m−1T−mR(λ, T )

∣∣∣∣x−
1

(λ− 1)m−1T−mx

∣∣∣∣ ≤ lim
λ↓1

(λ− 1)m−2T−mx.

Therefore bym > 2 T−m|T−(m−1)x| = 0 and bym = 2 T−2|T−1x| ≤ T−2x. Using the relation
([3], p. 15, theorem 1.16)

{
n∑

i=1

|T−(m−1)xi| :
n∑

i=1

xi = x, xi ≥ 0} ↑ |T−(m−1)|x,

we have form > 2 T−m|T−(m−1)| = 0 and form = 2 T−2|T−1| ≤ T−2. With the help of the
elementary induction and the equality (k ≥ 1)

T−(m−k) = lim
λ↓1

(λ− 1)m−k

(
R(λ, T )− 1

(λ− 1)m T−m − . . .− 1

(λ− 1)m−k+1
T−(m−k+1)

)



we prove analogously that form > k+1 T−m|T−(m−k)| = 0, for m = k+1 T−m|T−1| ≤ T−m.
On the other hand, obviouslyT−m = |T−mT−1| ≤ T−m|T−1| thusT−m = T−m|T−1| for all
m > 2.

In the general case, the equalities

T ∗
−m = T ∗

−m|T ∗
−1| = (|T−1|T−m)∗, T ∗∗

−m = T ∗∗
−m|T ∗∗

−1| = (T−m|T−1|)∗∗

hold as Banach latticesE∗ andE∗∗ are Dedekind complete and operatorsT ∗
−m andT ∗∗

−m are
order continuous, henceT−m = |T−1|T−m = T−m|T−1|. The proof of the remain part of the
lemma is entirely analogous. ¤

With the help of the matrix 


1
2

0 0 0
a1 1 0 0
a2 a3 1 0
a4 a5 a6

1
2




we can show that, generally speaking, the next equalities

|T−1|2 = |T−1|, |T−1|T−1 = T−1, T−1|T−1| = |T−1|
don’t hold.

Lemma 2. For arbitrary real numbersβ1, . . . , βm−1 the equality

T−m(T−1 + β1T−2 + . . . + βm−1T−m)+ = T−m

holds.

Proof. The desired assertion follows from lemma 1 and the next chain of the relations

T−m = T−m(T−1 + β1T−2 + . . . + βm−1T−m) ≤ T−m(T−1 + β1T−2 + . . . + βm−1T−m)+ ≤
≤ T−m|T−1 + β1T−2 + . . . + βm−1T−m| ≤ T−m|T−1| = T−m. ¤

Lemma 3. Under the assumptions thatE is eitherAM - or AL-space andm > 1, there
exist sequencesa(1)

n , . . . , a
(m−1)
n that converge to+∞ and

lim
n→∞

(T−1 + a(1)
n T−2 + . . . + a(m−1)

n T−m)
−

= 0. /!/

Proof. We can assume thatE is AL-space. Using the elementary induction we show more:
for eachk, 1 ≤ k < m there exist sequencesa(1)

n , . . . , a
(m−k)
n that converge to+∞ and

lim
n→∞

(T−k + a(1)
n T−(k+1) + . . . + a(m−k)

n T−m)
−

= 0. /!!/

Hence byk = 1 we obtain the desired assertion /!/. First of all we show that the assertion /!!/ is
true fork = m− 1. Fix a naturaln. Findλn, 1 + 1

n
≥ λn > 1 such that

∥∥∥∥T−(m−1) −
(

(λn − 1)m−1R(λn, T )− 1

λn − 1
T−m

)∥∥∥∥ ≤
1

n
.



Then putan = 1
λn−1

and with the help of the relationsR(λn, T ) ≥ 0 and‖S‖ = ‖|S|‖ for

everyS ∈ L(E) we have‖(T−(m−1) + anT−m)−‖ ≤ 1
n
. Let us assume that /!!/ is proved for

k + 1, . . . ,m − 1, where1 ≤ k < m − 1. We show that it is true fork. For n ∈ N find λn,
1 + 1

n
≥ λn > 1 such that

∥∥∥∥T−k −
(

(λn − 1)kR(λn, T )− 1

(λn − 1)m−k
T−m − . . .− 1

λn − 1
T−(k+1)

)∥∥∥∥ ≤
1

2n
.

There exist numbersa1, . . . , am−(k+1) ≥ 0 for which the inequality

‖(T−(k+1) + a1T−(k+2) + . . . + am−(k+1)T−m)−‖ ≤ 1

2n

holds. Then put

a(1)
n =

1

λn − 1
+ 1, a(i)

n = ai−1 +
1

(λn − 1)i , 1 < i ≤ m− k,

we obtain

‖(T−k + a(1)
n T−(k+1) + . . . + a(m−k)

n T−m)
−‖ ≤ 1

n

and the proof is finished. ¤
From lemma 3 follows that in the casem = 2 lim

n→∞
(T−1 + nT−2)

− = 0. When a Banach

lattice E is a finite dimensional it can assert more, namely by sufficiently largen it is the
positivity of matricesT−1 + nT−2 .

As far as the author knows, lemmas 1 - 3 seems to be new even for case of matrices. Note
also that the assertions in these lemmas have an algebraic form, therefore it must stay true for
elements of an arbitrary Banach algebra which is equipped with a partial order by a positive
cone.

Theorem 4. Let T be a positive operator on a Banach latticeE such thatr(T ) 6∈ σef(T ).
Then each of the following conditions ensures thatr(T ) 6∈ σ+

ew(T ):
(a) the residuumT−1 of the resolventR(., T ) at the pointλ = r(T ) is a positive operator.

In particular it is true in the case, whenλ = r(T ) is a simply pole ofR(., T );
(b) r(T ) is a simply eigenvalue of the operatorT , i.e. dim N(r(T )− T ) = 1;
(c) the Banach latticeE is eitherAM - or AL-space andλ = r(T ) is a pole ofR(., T ) of

an order two.

Proof. Suppose thatr(T ) = 1.
(a) It is enough to prove that1 6∈ σ(T + T−1). Assume by the way of a contradiction. Then

the pointλ = 1 is a pole of a finite-rank of the resolventR(., T + T−1) of the operatorT + T−1

as1 6∈ σef(T + T−1). Therefore there exists a non-zerox for which Tx + T−1x = x, hence
T−mx = T−m(Tx + T−1x) = 2T−mx, soT−mx = 0. By the induction it is easily to show that
T−(m−1)x = . . . = T−1x = 0 thusTx = x and the equalitiesx = T−1x = 0 follow. We get a
contradiction.

(b) There exist a functionalz∗ ≥ 0 and an elementz ≥ 0 such thatz∗(T−mz) > 0. Show
that1 6∈ σ(T + z∗ ⊗ z). Assume by the way of a contradiction, choose a non-zerox for which
x = Tx + (z∗x)z. This equality implies(z∗x)T−mz = 0 whencez∗x = 0, so x = Tx.



On the other hand,T−mz ∈ N(T − I) or T−mz = βx for someβ. As a result, we have
z∗(T−mz) = βz∗x = 0, it contradicts to the choice ofz∗ andz.

(c) If 1 ∈ σ+
ew(T ) then for everyn there existsxn, ‖xn‖ = 1 such thatxn = Txn +

(T−1 + nT−2)
+xn. Use lemmas 2 and 3 we haveT−2xn = 0 andxn − Txn − T−1xn → 0

whence
T−1xn = T−1(T−1xn + Txn − xn) → 0, /!/

so
xn − Txn → 0. /!!/

The operatorT − I is a Fredholm operator, therefore ([4], p. 56; see also [5], p. 233) the
sequencexn has a convergent subsequence. It is no loss of generality to assume thatxn → x0,
‖x0‖ = 1. Then /!/ and /!!/ imply, respectively,T−1x0 = 0 and Tx0 = x0, that gives a
contradiction. ¤

The condition of the part (b) is equivalent to the condition thatm is equal to the algebraic
multiplicity k of the eigenvaluer(T ) of T (recall thatk = dim R(T−1) = dim N((r(T )− T )m)).
As showed in the proof of theorem 4, in this case we can perturb the operatorT by a rank-
one positive operatorK such thatr(T ) 6∈ σ(T + K) (note that this follows easily also from
the firstW-A formula ([5], p. 244-250)). By this reason we note that if there exists an op-
eratorK of a rank not greatert (not necessary positive) for whichr(T ) 6∈ σ(T + K) then
dim N(r(T )− T ) ≤ t. If R(T−m) = N(r(T ) − T ) then the adverse is true. It follows
that we can perturbT by an operatorK of the rank-one such thatr(T ) 6∈ σ(T + K) iff
dim N(r(T )− T ) = 1.

Note also that lemma 3 is true for the case of an arbitrary Dedekind complete Banach lattice
E such that for every order bounded operatorS ‖S‖ = ‖|S|‖. It follows that in the part (c)
of theorem 4 sufficiently only this property is assumed. Moreover it is clear that theorem 4 is
true whenE is a finite dimensional space.It is not known if theorem 4 is valid for an arbitrary
Banach latticeE.

3 When doesr(T ) 6∈ σef(T ) imply r(T ) 6∈ σ−ew(T )?

Theorem 5. Let T be a positive operator on a Banach latticeE such thatr(T ) 6∈ σef(T ) and
there exists a net of compact operatorsKα such that

0 ≤ Kαx ↑ Tx (A)

for all x ≥ 0. Then each of the following conditions ensures thatr(T ) 6∈ σ−ew(T ):
(a) the pointλ = r(T ) is a simply pole of the resolventR(., T ), moreover the residuum at

this point is a strictly positive operator;
(b) E is a Banach lattice with order continuous norm.

Proof. Suppose thatr(T ) = 1.
(a) Assume by the way of a contradiction that is1 ∈ σ−ew(T ). Then for allα the equalities

r(T −Kα) = 1 hold, therefore there exist elementsxα > 0 such thatTxα −Kαxα = xα. We
haveT−1xα − T−1Kαxα = T−1xα whence

Kαxα = 0, /!/



soTxα = xα. ThusT−1xα = xα or
xα ∈ T−1(E). /!!/

The projectionT−1 is a strictly positive, it follows thatT−1(E) is a sublattice ofE ([1], p. 216).

Let e1, . . . , el ≥ 0 be a basis ofT−1(E) such that(T−1(E))+ = {
l∑

i=1

βiei : βi ≥ 0} (such basis

exists; in fact ([10], p. 70),T−1(E) is order isomorphicRl, wherel = dim T−1(E)). Then
Kαei ↑ Tei = ei for all i = 1, . . . , l, so for someα0 operatorsKα, α ≥ α0, are strictly positive
on the latticeT−1(E). As a result, from /!/ and /!!/ we concludexα = 0 by α ≥ α0, which is a
contradiction.

(b) The main idea of the underlying arguments is borrowed from the proof of Lotz-Schaefer
theorem ([10], p. 331-332, theorem 5.5). For the proof we use induction on an orderm of a pole
of the resolventR(., T ) at the pointλ = 1. Let m = 1. ThroughJ is denoted a null ideal of
the operatorT−1, J = {x : T−1|x| = 0}. Introduce the operatorTJ on the Banach latticeE/J ,
TJ(x + J) = Tx + J . Then the operatorTJ is well defined and satisfies all conditions of the
part (a), that is positive,r(TJ) = 1, the pointλ = 1 is a simply pole of the resolventR(., TJ),
the residuum at this point is a strictly positive, moreover the equality(TJ)−1 = (T−1)J holds.
We explain the latter statement. Indeed, ifx + J ≥ 0 then

(TJ)−1(x + J) = lim
λ↓1

(λ− 1)R(λ, TJ)(x + J) =

= lim
λ↓1

(λ− 1)(R(λ, T )x + J) = lim
λ↓1

(λ− 1)R(λ, T )x + J = T−1x + J > 0

(if T−1x + J = 0 then for somez ∈ J 0 ≤ T−1(x + z) ∈ J andx + z ≥ 0, it follows that
0 = T−1|T−1(x + z)| = T−1(x + z) whencex + z ∈ J or x ∈ J).

The relationsT−1|Kαx| ≤ T−1Kα|x| ≤ T−1|x| imply Kα(J) ⊆ J for all α, so operators
(Kα)J : E/J → E/J are well defined and are compact. Further, by the order continuity of
the normKαx → Tx in E henceKαx + J → Tx + J in E/J , it follows that (Kα)J ↑ TJ .
By the proven abover(TJ − (Kα)J) < 1 by α ≥ someα0. On the other hand, the inequalities
r(T |J −Kα|J) ≤ r(T |J) < 1 hold, whereT |J , Kα|J are restrictions of operatorsT andKα to
the idealJ , respectively. Finally, from the inclusion ([10], p. 352)

σ(T −Kα) ⊆ σ((T −Kα)J) ∪ σ((T −Kα)|J)

we haver(T −Kα) < 1 by α ≥ α0.
Consider the case of a pole of orderm > 1. PutJ = {x : T−m|x| = 0}. Then the function

R(., T |J) has at the pointλ = 1 a pole of order< m while onE/J R(., TJ) has at the point
λ = 1 of a first order pole. ClearlyKα|J ↑ T |J and(Kα)J ↑ TJ whencer(T − Kα) < 1 by
α ≥ someα0. ¤

In the proof of theorem 5 (the part (b)) only an order continuity of the canonical lattice
homomorphismE → E/J for an arbitrary closed idealJ is used. However, this, in it’s turn,
implies that ([3], p. 94) every closed ideal is a band, it follows that by Ando theorem ([9], p.
355) the Banach latticeE has an order continuous norm. If the condition (A) is replaced by
stronger: there exists a sequence of compact operatorsKn such that

0 ≤ Knx ↑ Tx (A′)



for all x ≥ 0 then, as to see from the proof,the assertion of theorem 5 remains true if only the
σ-order continuity of homomorphismE → E/J for every closed idealJ is assumed. It means
([3], p. 94) that every closed ideal inE is aσ-ideal. The latter is equivalent ([9], p. 353-355)
to theσ-order continuity of a norm onE. It is not known if theorem 5 is valid for an arbitrary
Banach latticeE.

By the reason of the part (a) of theorem 5 note that the next statement is valid:if for the
operatorT the conditions of the part(a)andr(T ) 6∈ σef(T ) hold then the operator inequalities
0 ≤ S ≤ T , under the condition of the strictly positivity of the operatorS on T−1(E), imply
r(T − S) < r(T ).

Clearly that in the case of a Dedekind complete Banach latticeE the conditions (A) and
(A′) denote the order convergence in the space of order bounded operatorsLb(E). In some
cases the condition (A) implies the compactness ofT . For example, it is when the operatorT
on a Dedekind complete Banach latticeE has order continuous norm that by Dodds-Fremlin
theorem is equivalent toM - andL-weak compactness ofT (see [3],§18). By the reason of
example 6 below we note that such operator can’t act on non-atomic spaces eitherL1 or L∞.

Not every positive operatorT satisfies the condition (A). For example, this condition doesn’t
hold when [8]:

(i) E = L1 on a space with non-atomic measure,T > 0 is either a lattice homomorphism or
an interval preserving operator;

(ii) E = L∞ on a space with non-atomic measure,T > 0 is an orthomorphism.
In these cases we can assert even more, namely, the next condition doesn’t hold for a positive

operatorT : there exists a compact operatorK for which

0 < K ≤ T. (B)

Clearly that forT > 0 the condition (A) implies (B). Moreover ([3], p. 283) ifE is an arbitrary
Dedekind complete Banach lattice then for every operatorT > 0 the condition (B) holds iffE
is a discrete Banach lattice; in this case also the condition (A) is valid for everyT > 0.

What can say about the validity of the condition (B) in the case whenT is a positiveintegral
operator on some Banach function spaceX? It is not known if always an integral operator
T : X → X, T > 0, dominates some non-zero positive compact operator. It is true, for
example, whenX = Lp (1 < p < ∞). For the case of an integral operatorT : L1 → L∞ the
answer is negative. Here is a corresponding

Example 6. Consider the segment[0, 1] equipped with its Lebesgue measureµ. There
exists [11] a measurable setE ⊆ [0, 1]× [0, 1] such that for all setsE1, E2 ⊆ [0, 1], µ(Ei) > 0,
i = 1, 2, the inequalities

(µ× µ)(E ∩ (E1 × E2)) > 0, (µ× µ)((E1 × E2) \ E) > 0 /!/

hold. Then the positive integral operatorT with the kernelχE,

Tx(t) =

1∫

0

χE(t, s)x(s) dµ(s),

acts from the spaceL1[0, 1] into the spaceL∞[0, 1]. LetK be some compact operator for which
the inequalities0 ≤ K ≤ T hold. Then by Bukhvalov-Schep theorem ([1], p. 184)K is an



integral operator. Denote the kernel of it byk(t, s) and show thatk(t, s) = 0. Assume by
the way of a contradiction, choose a measurable setE0 ⊆ E such that(µ × µ)(E0) > 0 and
k(t, s) ≥ ε > 0 on E0. By the compactness ofK the functionω(t) = k(t, .), t ∈ [0, 1],
with values into the spaceL∞[0, 1] is a essentially compact ([6], p. 107), that is there exists a
measurable setΩ0 ⊆ [0, 1], µ(Ω0) = 1 such that the set of functions{ω(t) : t ∈ Ω0} is relatively
compact inL∞[0, 1]. Next, take a disjoint partition of the segment[0, 1] on measurable sets
B1, . . . , Bn such that ([6], p. 4)

ess sup
s1,s2∈Bi

|k(t, s1)− k(t, s2)| < ε /!!/

for all i = 1, . . . , n and everyt ∈ Ω0. For somei0 (µ × µ)(([0, 1] × Bi0) ∩ E0) > 0. The
relations

Bi0 ∩ (E0)t = (([0, 1]×Bi0) ∩ E0)t

and

(µ× µ)(([0, 1]×Bi0) ∩ E0) =

1∫

0

µ((([0, 1]×Bi0) ∩ E0)t) dµ(t) > 0

imply the validity of the inequalityµ(Bi0 ∩ (E0)t) > 0 for all t from some setA ⊆ [0, 1]
with the positive measure (recall that forD ⊆ [0, 1] × [0, 1] Dt = {s ∈ [0, 1] : (t, s) ∈ D},
wheret ∈ [0, 1]). PutC = (A × Bi0) \ E. Then from /!/(µ × µ)(C) > 0 andµ(Ct∗) > 0
for somet∗ ∈ A ∩ Ω0. Note thatCt∗ ⊆ Bi0. Moreover setsCt∗ and (E0)t∗ are disjoint.
Actually if s ∈ (E0)t∗ then(t∗, s) ∈ E0 ⊆ E, hence(t∗, s) /∈ (A × Bi0) \ E = C, that is
s 6∈ Ct∗. Since for everys ∈ Ct∗ k(t∗, s) = 0 and for everys ∈ (E0)t∗ k(t∗, s) ≥ ε, we have
ess sup
s1,s2∈Bi0

|k(t∗, s1)− k(t∗, s2)| ≥ ε, which is the contradiction with /!!/.

Mention that the operatorT is neitherM - norL-weakly compact. Moreover to note that by
Dunford theorem ([1], p. 207) every bounded operator fromL1 into L∞ is integral. ¤

By Lozanovsky theorem ([1], p. 199) for an arbitrary positive integral operatorT : X → Y ,
whereX andY are Banach function spaces associated withσ-finite measures, there exist a
sequence of compact operatorsKn and a sequence of positive operatorsSn such that0 ≤ Sn ↑ T
andSn ≤ Kn. It is true, when only sequences goes over into nets, and for an arbitrary abstract
integral operatorT : E → F , whereE andF are Banach lattices,F is Dedekind complete. By
this reason, anLozanovsky essential spectrumof a positive operatorT : E → E is named the
set

σel(T ) =
⋂

0≤Q≤T
Q≤K∈K(E)

σ(T −Q).

Clearlyσel(T ) ⊆ σ−ew(T ). Under assumptions of theorem 5, it follows that the inclusionr(T ) 6∈
σef(T ) impliesr(T ) 6∈ σel(T ). Turn out the opposite is true.

Theorem 7. Let T be a positive operator on a Banach latticeE. If r(T ) ∈ σef(T ) then
r(T ) ∈ σel(T ).

Proof. If r(T ) = 0 thenσel(T ) = {0}, sor(T ) ∈ σel(T ). Thus we can supposer(T ) = 1.
Assume by the way of a contradiction, that is1 6∈ σel(T ). There exist a positive operatorQ
and a compact operatorK such thatQ ≤ T , Q ≤ K and the operatorR = I − (T − Q)
has the inverse. Thenr(T − Q) < 1 henceR−1 ≥ 0, it follows that0 ≤ R−1Q ≤ R−1K. By



Aliprantis-Burkinshaw theorem ([3], p. 275) the operator(R−1Q)
3 is compact, so [7]I−R−1Q

is a Fredholm operator. The relationsI − T = R(I − R−1Q) and the index theorem ([1], p.
158) implyI − T is a Fredholm operator, that is1 6∈ σef(T ), a contradiction. ¤

It is not known if the inclusionσef(T ) ⊆ σel(T ) holds. Note that by Dodds-Fremlin theorem
([3], p. 279) if Banach latticesE andE∗ have order continuous norms thenσel(T ) = σ−ew(T ),
thereforeσef(T ) ⊆ σel(T ).

4 Applications to the theory of band irreducible operators

Band irreducible operators are one of most studied and important class of positive operators
with the point of view of the spectral theory. As it should be results which are obtained above,
are could be define more precisely for such operators. Moreover questions which are considered
above, turns out closely connected with the next problem:when the inequalities0 ≤ S < T
imply the spectral radius inequalityr(S) < r(T ), whereT is band irreducible operator? It is
true when a space is a finite dimensional. In the general case, the answer is negative even when
T is a band irreducible integral operator on any from spaces`1, `2, `∞ [2]. The next theorem
completely closes this problem for the case of band irreducible abstract integral operators.

Theorem 8.LetT be a band irreducible abstract integral operator on a Dedekind complete
Banach latticeE, the dimension ofE is at least two and theσ-order continuous dualE∼

c 6= {0}.
Then the next conditions are equivalent to each other:

(a) r(T ) 6∈ σef(T );
(b) r(T ) 6∈ σew(T );
(c) r(T ) 6∈ σ+

ew(T );
(d) r(T ) 6∈ σel(T );
(e) the pointλ = r(T ) is a pole of the resolventR(., T );
(f) for every operatorS the inequalities0 ≤ S < T imply r(S) < r(T );

Moreover ifT satisfies the condition(B), then(a) - (f) are equivalent to:
(g) r(T ) 6∈ σ−ew(T ).

Proof. Implications (c)⇒ (b) ⇒ (a)⇒ (e), (f)
(B)⇒ (g) ⇒ (b), (f) ⇒ (d) are obvious, (d)

⇒ (a) follows from theorem 7, (e)⇒ (f) is proven in [2]. The condition (e) implies [2] the
condition (a) and the pointλ = r(T ) is a simply pole of the resolventR(., T ), by theorem 4 it
implies (c). ¤

In the more general case, whenT is aσ-order continuous band irreducible operator, the next
theorem holds.

Theorem 8
′
. LetE be a Banach lattice, the dimension ofE is at least two and theσ-order

continuous dualE∼
c 6= {0}. Assume thatT is a band irreducibleσ-order continuous operator

onE. Then next implications are valid(see theorem 8):

(a)⇐⇒ (b)⇐⇒ (c)⇐⇒ (e)=⇒ (f)
(B)
=⇒ (g) =⇒ (d) =⇒ (a).

If T is an arbitrary positive operator, implications (c)⇒ (b)⇒ (a)⇒ (e), (f)
(B)⇒ (g)⇒ (d)

⇒ (a) and (g)⇒ (b) hold. Simply examples show that implications (a)⇒ (f), (e)⇒ (b) and (e)
⇒ (d) don’t hold.
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