Л о м о в ц е в Ф. Е. Смешанная задача для многомерного линеаризованного уравнения КдФ с кусочно-постоянными граничными условиями // Доклады НАН Беларуси. 2008. Т. 52. № 4. С. 11–16.

Доказаны теоремы существования и единственности слабых решений следующей смешанной задачи. В области $G=]0,T[\times\Omega$ переменных $(t,x)=(t,x_1,...,x_n)$, где Ω — ограниченный параллелепипед в R^n , $n\geq 2$, с границей S, изучается уравнение $\frac{\partial u(t,x)}{\partial t}-\sum_{k=1}^n a_k(t)\frac{\partial^3 u(t,x)}{\partial x_k^3}=$ =f(t,x) при почти всех $t\in]0,T[$ с граничными

$$u\Big|_{S_t} = 0$$
, $(\partial u/\partial x_k)\Big|_{S_k^-} = 0$, $k = \overline{1, n}$, $\sum_{k=1}^n a_k(t)(\partial^2 u/\partial x_k^2)\cos(t(x'), e_k)\Big|_{S-S_t} = 0$

и начальным $u(0,x)=u_0(x), \quad x\in\Omega$, условиями. Здесь $\{S_t\}$ — неубывающее и кусочно-постоянное по t семейство частей границы S и S_k^- — множество всех точек $x'\in S$ с отрицательными косинусами углов между единичными векторами t(x') внешней нормали к S и e_k оси Ox_k .

Библиогр. 7 назв.

СМЕШАННАЯ ЗАДАЧА ДЛЯ МНОГОМЕРНОГО ЛИНЕАРИЗОВАННОГО УРАВНЕНИЯ КДФ С КУСОЧНО-ПОСТОЯННЫМИ ГРАНИЧНЫМИ УСЛОВИЯМИ

(Представлено академиком И.В. Гайшуном)

Белорусский государственный университет

Поступило 06.03.2007

Одномерные нелинейные волновые процессы моделируются уравнением Кортевега-де Фриса (КдФ) [1]. Одномерные линеаризованные уравнения КдФ высших порядков, вырождающиеся в параболические, изучались в [2]. В настоящей работе впервые установлена корректность смешанной задачи для многомерного линеаризованного уравнения КдФ третьего порядка.

1. Постановка задачи. Пусть $\Omega = \prod_{k=1}^{n}]0, g_{k}[$ — ограниченный параллелепипед в $R^{n}, n \geq 2,$

переменных $x = (x_1, ..., x_n)$ и S — его граница. В области $G =]0, T[\times \Omega$ изучается уравнение

$$\frac{\partial u(t,x)}{\partial t} - \sum_{k=1}^{n} a_k(t) \frac{\partial^3 u(t,x)}{\partial x_k^3} = f(t,x), \quad (t,x) \in G,$$
 (1)

при почти всех t (в дальнейшем при п. в. t) с граничными условиями

$$u|_{S_{t}} = 0; \quad (\partial u / \partial x_{k})|_{S_{k}^{-}} = 0, \ k = \overline{1, n}; \quad \sum_{k=1}^{n} a_{k}(t) (\partial^{2} u / \partial x_{k}^{2}) \cos(t(x'), e_{k})|_{S - S_{t}} = 0,$$
 (2)

где $\{S_t\}$ — семейство частей границы S , поверхностная мера которых положительна, и S_k^- — множество всех точек $x' \in S$ с отрицательными косинусами углов между единичными векторами t(x') внешней нормали к S в точке x' и e_k оси Ox_k , и начальным условием

$$u(0,x) = u_0(x), x \in \Omega.$$
 (3)

Докажем теоремы существования и единственности слабых решений этой смешанной задачи.

2. Определение слабых решений. Сначала введем пространства слабых решений и исходных данных. Пусть при п. в. t гильбертовы пространства (в дальнейшем г.п.) $H_{1/3,\,t}^+(\Omega)$ – замыкание множества всех функций пространства Соболева $W_2^3(\Omega)$, удовлетворяющих граничным условиям (2), по эрмитовым нормам $\left[\left|u\right|\right]_{1/3,\,t} = \left(\int\limits_{\Omega}\sum_{k=1}^n a_k(t)\left|\partial u/\partial x_k\right|^2 dx\right)^{1/2}$, эквивалентным норме $\left\|\cdot\right\|_1$. Символами $\left\|\cdot\right\|_s$ обозначаем нормы пространств Соболева $W_2^s(\Omega)$. Функции из пространства $H_{1/3,\,t}^+(\Omega)$ при п. в. t удовлетворяют условию $u\left|s_t=0\right|$ в обычном

смысле. Пространством слабых решений будет г.п. $\mathcal{H}^+_{1/3}(G) = L_2(]0,T[,H^+_{1/3,\,t}(\Omega))$ – измеримая и интегрируемая в квадрате по t сумма пространств $H^+_{1/3,\,t}(\Omega)$ [2, с. 62]. Пусть при п. в. t г.п.

 $H^{*-}_{1/3,\,t}(\Omega)$ с эрмитовыми нормами $|v|_{1/3,-t} = \left(\int\limits_{\Omega} |v|_{1/3,-t}^2 \,dx\right)^{1/2}$ — антидвойственные к г.п.

 $H^{*+}_{1/3,\,t}(\Omega)$, получающимся замыканием по норме $[\cdot]_{1/3,\,t}$ множества всех функций $v \in W^3_2(\Omega)$, для которых выполняются сопряженные граничные условия

$$v\Big|_{S_t} = 0; \quad (\partial v / \partial x_k)\Big|_{S_k^+} = 0, \quad k = \overline{1, n}; \quad \sum_{k=1}^n a_k(t)(\partial^2 v / \partial x_k^2) \cos(t(x'), e_k)\Big|_{S - S_t} = 0, \tag{4}$$

где S_k^+ — множество всех точек $x' \in S$ с $\cos(t(x'), e_k) > 0$. В качестве пространств правых частей уравнения (1) и условия (2) возьмем г.п. $\mathcal{H}_{1/3}^{*-}(G) = L_2(]0, T[, H_{1/3, t}^{*-}(\Omega))$ — измеримая и интегрируемая в квадрате по t сумма пространств $H_{1/3, t}^{*-}(\Omega)$, и $L_2(\Omega)$ соответственно.

Определение. Для исходных данных $f \in \mathcal{H}^{*-}_{1/3}(G)$ и $u_0 \in L_2(\Omega)$ функция $u \in \mathcal{H}^+_{1/3}(G)$ называется *слабым решением* смешанной задачи (1)-(3), если

$$-\int_{0}^{T} \int_{\Omega} \left\{ \sum_{k=1}^{n} a_{k}(t) \frac{\partial u}{\partial x_{k}} \frac{\partial^{2} \overline{j}}{\partial x_{k}^{2}} + u \frac{\partial \overline{j}}{\partial t} \right\} dxdt = \int_{0}^{T} \int_{\Omega} \left\langle f, \overline{j} \right\rangle_{1/3, t} dxdt + \int_{\Omega} u_{0}(x) \overline{j}(0, x) dx$$
 (5)

для любой функции $j \in \Phi(G) \equiv \{j \in W_2^{0,3}(G) : j \in (4) \ \textit{при п.в.} \ t; \ \partial j \ / \partial t \in L_2(G), \ j \ (T,x) = 0, \ x \in \Omega \}$, где $\langle \cdot, \cdot \rangle_{1/3,\,t}$ — полуторалинейная форма антидвойственности между пространствами $H^{*+}_{1/3,\,t}(\Omega)$) и $H^{*-}_{1/3,\,t}(\Omega)$), а черта над функцией — знак ее комплексного сопряжения.

3. Теорема существования слабых решений. Докажем существование ее слабых решений.

Теорема 1. Если $a_k(t) \in C[0,T]$, $a_k(t) \geq a_0 > 0$, $\partial a_k(t) / \partial t \in L_{\infty}(0,T)$, $k = \overline{1,n}$, и при п. в. t для семейства $\{S_t\}$ справедливо вложение $S_t \supset \overset{n}{\mathbf{U}} S_k^-$, тогда для каждых $f \in \mathcal{H}_{1/3}^{*-}(G)$ и $u_0 \in L_2(\Omega)$ существует слабое решение $u \in \mathcal{H}_{1/3}^+(G)$ смешанной задачи (1)—(3).

Доказательство осуществляется с помощью проекционной теоремы 2 из [3, с. 37].

Те о рем а 2. Пусть F — гильбертово пространство с эрмитовой нормой $\|\cdot\|_F$ и Φ — предгильбертово пространство с эрмитовой нормой $\|\cdot\|_F$, непрерывно вложенное в F, т.е. существует постоянная $c_1 > 0$ такая, что $\|\mathbf{j}\|_F \le c_1 \|\mathbf{j}\|_F \|\mathbf{j}\|_F$

На г.п.
$$F = \mathcal{H}_{1/3}^+(G)$$
 с эрмитовой нормой $\|u\|_F = \left(\int\limits_0^T \int\limits_{\Omega} \sum\limits_{k=1}^n a_k(t) \left|\partial u/\partial x_k\right|^2 dx dt\right)^{1/2}$ и

предгильбертовом пространстве $\Phi = \Phi(G)$ с эрмитовой нормой $\|j\| = \left(\|j\|_F^2 + \iint_{\Omega} j(0,x) \|^2 dx \right)^{1/2}$

возьмем следующие полуторалинейную форму и антилинейный функционал

$$E(w,j) = -\int_{0}^{T} \int_{0}^{T} e^{c\langle x \rangle} \left\{ \sum_{k=1}^{n} a_{k}(t) \frac{\partial w}{\partial x_{k}} \frac{\partial^{2} \overline{j}}{\partial x_{k}^{2}} + c \sum_{k=1}^{n} a_{k}(t) w \frac{\partial^{2} \overline{j}}{\partial x_{k}^{2}} + w \frac{\partial \overline{j}}{\partial t} \right\} dxdt, \quad c > 0,$$

$$L(\boldsymbol{j}) = \int_{0}^{T} \int_{\Omega} \left\langle f.\boldsymbol{j} \right\rangle_{1/3,\,t} dxdt + \int_{\Omega} u_0(x)\boldsymbol{j}(0,x)dx, \quad \left\langle x \right\rangle = x_1 + \dots + x_n.$$

Тогда пространство Φ непрерывно вложено в пространство F с постоянной $c_1=1$. Форма E(w,j) при каждом $j\in\Phi$ непрерывна по w на F. Оценим снизу $\mathrm{Re}\ E(j,j)$ $\forall j\in\Phi(G)$. Ввиду соответственно второго условия из (4) и равенства j (T,x)=0, $x\in\Omega$, верны неравенства

$$-\operatorname{Re} \int_{0}^{T} \int_{\Omega} e^{c\langle x \rangle} \sum_{k=1}^{n} a_{k}(t) \frac{\partial j}{\partial x_{k}} \frac{\partial^{2} \overline{j}}{\partial x_{k}^{2}} dx dt \geq \frac{c}{2} \int_{0}^{T} \int_{\Omega} e^{c\langle x \rangle} \sum_{k=1}^{n} a_{k}(t) \left| \frac{\partial j}{\partial x_{k}} \right|^{2} dx dt,$$
 (6)

$$-\operatorname{Re}\int_{0}^{T}\int_{\Omega}e^{c\langle x\rangle}j\frac{\partial\overline{j}}{\partial t}dxdt = \frac{1}{2}\int_{\Omega}e^{c\langle x\rangle}|j(0,x)|^{2}dx.$$
 (7)

 Π е м м а. Если в параллеленинеде Ω при п. в. t имеет место вложение $S_t \supset \overset{n}{\mathbf{U}} S_k^-$, то при п. в. t для каждой функции $v \in W_2^{0,2}(\Omega)$, удовлетворяющей граничным условиям $(\partial v/\partial x_k)\Big|_{S_k^+} = 0$, $k = \overline{1,n}$, при п. в. t выполняется условие $\sum_{k=1}^n a_k(t)(\partial v/\partial x_k)\cos(\overset{\mathbf{r}}{\mathbf{t}}(\mathbf{x}'), e_k)\Big|_{S-S_t} = 0$.

С помощью этой леммы и неравенства Буняковского получается неравенство

$$-\operatorname{Re}\int_{0}^{T}\int_{\Omega} e^{c\langle x\rangle} \sum_{k=1}^{n} a_{k}(t) \mathbf{j} \frac{\partial^{2} \overline{\mathbf{j}}}{\partial x_{k}^{2}} dx dt = \int_{0}^{T}\int_{\Omega} e^{c\langle x\rangle} \sum_{k=1}^{n} a_{k}(t) \left| \frac{\partial \mathbf{j}}{\partial x_{k}} \right|^{2} dx dt + c \operatorname{Re}\int_{0}^{T}\int_{\Omega} e^{c\langle x\rangle} \sum_{k=1}^{n} a_{k}(t) \mathbf{j} \frac{\partial \overline{\mathbf{j}}}{\partial x_{k}} dx dt \geq \\ \geq \left(\int_{0}^{T}\int_{\Omega} e^{c\langle x\rangle} \sum_{k=1}^{n} a_{k}(t) \left| \frac{\partial \mathbf{j}}{\partial x_{k}} \right|^{2} dx dt \right)^{1/2} \left[\left(\int_{0}^{T}\int_{\Omega} e^{c\langle x\rangle} \sum_{k=1}^{n} a_{k}(t) \left| \frac{\partial \mathbf{j}}{\partial x_{k}} \right|^{2} dx dt \right)^{1/2} - c \left(\int_{0}^{T}\int_{\Omega} e^{c\langle x\rangle} \sum_{k=1}^{n} a_{k}(t) \mathbf{j} \right|^{2} dx dt \right)^{1/2} \right],$$

$$0 \le \sqrt{a_0} \left[\sqrt{a_0} - c_4 \left(\max_{t \in [0,T]} \sum_{k=1}^n a_k(t) \right)^{1/2} \exp\left\{ \frac{c_4}{2} \sum_{k=1}^n g_k \right\} \sqrt{c_3} \right] \int_0^T \int_{\Omega} e^{c\langle x \rangle} \sum_{k=1}^n \left| \frac{\partial j}{\partial x_k} \right|^2 dx dt.$$
 (8)

Поскольку сумма правых частей формул (6)–(8) не меньше $(c_4/2) \| \boldsymbol{j} \|^2$, то тем более абсолютная величина $|E(\boldsymbol{j},\boldsymbol{j})| \geq (c_4/2) \| \boldsymbol{j} \|^2 \ \forall \ \boldsymbol{j} \in \Phi(G)$.

Таким образом, согласно теореме 2 уравнение $E(w,j) = L(j) \ \forall j \in \Phi(G)$ имеет решение $w \in \mathcal{H}^+_{1/3}(G)$ и, следовательно, смешанная задача (1)–(3) имеет слабое решение $u = \exp\{c_4\langle x\rangle\}\ w \in \mathcal{H}^+_{1/3}(G)$. Теорема 1 доказана.

4. Теорема единственности слабых решений. Пусть семейство $\{S_t\}$ не убывает почти всюду по $t \in [0,T]$, т.е. при п.в. t_1 и t_2 справедливо вложение $S_{t_1} \subset S_{t_2}$, $0 < t_1 < t_2 < T$. В

этом случае для семейства г.п. $\{H^+_{1/3,\,t}(\Omega)\}$ при п.в. t_1 и t_2 имеет место вложение $H^+_{1/3,\,t_1}(\Omega)\supset H^+_{1/3,\,t_2}(\Omega)$, $0< t_1< t_2< T$. Докажем единственность слабых решений задачи (1)–(3).

Теорема 3. Пусть выполняются предположения теоремы 1 и семейство $\{S_t\}$ не убывает u кусочно-постоянное почти всюду по $t \in [0,T]$. Тогда для каждых $f \in \mathcal{H}^{*-}_{1/3}(G)$ и $u_0 \in L_2(\Omega)$ слабое решение $u \in \mathcal{H}^+_{1/3}(G)$ смешанной задачи (1)-(3) единственно.

Доказательство. Если $\mathcal{H}^+_{1/3}(G)$ э u – слабое решение смешанной задачи (1) – (3) для f=0 и $u_0=0$, то из тождества (5) имеем тождество

$$\int_{0}^{T} \int_{\Omega} \left\{ \sum_{k=1}^{n} a_{k}(t) \frac{\partial u}{\partial x_{k}} \frac{\partial^{2} \overline{j}}{\partial x_{k}^{2}} + u \frac{\partial \overline{j}}{\partial t} \right\} dxdt = 0 \quad \forall j \in \Phi(G) .$$
 (9)

В случае семейства $\{S_t\} = S_0$ при п.в. $t \in [0,t_1[$, $0 < t_1 < T$, здесь можно положить j $(t,x) = -\int_t^{t_1} e^{-2cs} A^{s-1}(s) u(s,x) ds$, $0 \le t < t_1$, j (t,x) = 0, $t_1 \le t \le T$, $x \in \Omega$, или тоже самое $u = e^{2ct} A^*(t) (\partial j / \partial t)$ для $t \in [0,t_1[$ и j (t,x) = 0 для $t \in [t_1,T]$, $x \in \Omega$, где $A^{s-1}(t) - 0$ ограниченные обратные операторы в $L_2(\Omega)$ операторов $A^*(t)$, порожденных в $L_2(\Omega)$ дифференциальными выражениями $A^{s}(t)v = \sum_{k=1}^n a_k(t)\partial^3 v / \partial x_k^3$ на всех функциях множества $D(A^*(t)) = \{v \in L_2(\Omega) : v \in (4) \text{ при п.в. } t$, $A^{s}(t)v \in L_2(\Omega) \}$. В силу постоянства семейства $\{S_t\}$ почти всюду на $[0,t_1[$, такая функция j удовлетворяет граничным условиям (4) при п.в. $t \in [0,t_1[$, так как $A^*(t)\int_t^{t_1} e^{-2cs} A^{s-1}(s) u(s,x) ds = \int_t^{t_1} e^{-2cs} A^*(t) A^{s-1}(s) u(s,x) ds$ при п.в. $t < t_1$, ввиду замкнутости операторов $A^*(t)$ и ограниченности операторов $A^*(t)$ $A^{s-1}(s) \in L_{\infty}([0,t_1[\times]0,t_1[$, $\mathcal{L}(L_2(\Omega)))$ [4, лемма 7.1, с. 176].

Для этой функции j из тождества (9) после интегрирования по частям имеем равенство

$$\int_{0}^{t_{1}} \int_{\Omega} e^{2ct} \left\{ -A^{*}(t) \frac{\partial j}{\partial t} A^{*}(t) \overline{j} + A^{*}(t) \frac{\partial j}{\partial t} \frac{\partial \overline{j}}{\partial t} \right\} dx dt = 0.$$
 (10)

Поскольку операторы $A^*(t)$ являются сужением операторов $A^*(t)$ на $D(A^*(t))$, то

$$-\operatorname{Re}\int_{0}^{t_{1}} \int_{\Omega} e^{2ct} A^{*}(t) \frac{\partial j}{\partial t} A^{*}(t) \overline{j} \, dx dt = \frac{1}{2} \int_{\Omega} \left| A^{*}(0) j \left(0, x \right) \right|^{2} dx + c \int_{0}^{t_{1}} \int_{\Omega} e^{2ct} \left| A^{*}(t) j \right|^{2} dx dt + \operatorname{Re}\int_{0}^{t_{1}} \int_{\Omega} e^{2ct} \frac{\partial \mathring{A}^{*}(t)}{\partial t} j A^{*}(t) \overline{j} \, dx dt \ge (c - c_{5}) \int_{0}^{t_{1}} \int_{\Omega} e^{2ct} \left| A^{*}(t) j \right|^{2} dx dt,$$

так как существует $c_5 > 0$, что $\left\| \left(\frac{\partial \mathcal{M}}{\partial t}(t) / \frac{\partial t}{\partial t} \right) A^{*-1}(t) g \right\|_0 \le c_5 \|g\|_0 \ \forall g \in L_2(\Omega)$ при п.в. $t \in \left] 0, t_1 \right[$ [4, лемма 7.1, с. 176] . Поэтому, оценивая вещественную часть равенства (10) снизу и учитывая

положительность операторов $A^*(t) \ge 0$, приходим к неравенству $(c-c_5) \int_0^{t_1} \int_{\Omega} e^{2ct} \left| A^*(t) \mathbf{j} \right|^2 dx dt \le 0$, из которого при $c > c_5$ заключаем, что $\mathbf{j} = 0$ и, значит, u = 0 при п.в. $t \in \left] 0, t_1 \right[$.

Тогда из тождества (9) получаем тождество

$$\int_{t_{1}}^{T} \int_{\Omega} \left\{ \sum_{k=1}^{n} a_{k}(t) \frac{\partial u}{\partial x_{k}} \frac{\partial^{2} \overline{j}}{\partial x_{k}^{2}} + u \frac{\partial \overline{j}}{\partial t} \right\} dxdt = 0 \quad \forall j \in \Phi(G) .$$

$$(11)$$

В случае семейства $\{S_{_t}\} = S_{_{t_1}}$ при п.в. $t \in [t_1, t_2[$, $t_1 < t_2 < T$, здесь можно положить

$$j(t,x) = \begin{cases} 0, & t \in [t_2, T], \ x \in \Omega, \\ -\int_{t}^{t_2} e^{-2cs} A^{*-1}(s) u(s, x) ds, \ t \in [t_1, t_2], \ x \in \Omega, \\ y(t, x), & t \in [0, t_1], \ x \in \Omega, \end{cases}$$
(12)

где y(t,x) — сильное решение (обратной) смешанной задачи

$$\frac{\partial y(t,x)}{\partial t} - \sum_{k=1}^{n} a_k(0) \left(\frac{\partial^3 y(t,x)}{\partial x_k^3} + \frac{\partial^2 y(t,x)}{\partial x_k^2} \right) = 0, \quad (t,x) \in \left] 0, t_1 \right[\times \Omega,$$

$$y \in (4)$$
 npu n.e. $t \in]0, t_1[; y(t_1, x) = -\int_{t_1}^{t_2} e^{-2cs} A^{*-1}(s) u(s, x) ds, x \in \Omega,$

которая заменой $t'=t_1-t$ сводится к соответствующей (прямой) смешанной задаче. Согласно теореме 3 гладкости из [5], примененной к этой смешанной задаче в г.п. $H=L_{2,r}(\Omega)$ с весом $r(x)=\exp\{\langle x \rangle\}$, $\mathbf{H}^q=L_2(]0,t_1[,W^q)$ и W^q — область определения $D(A^{*q}(0))$ оператора $A^{*q}(0)$ с нормой $|v|_q=\|A^{*q}(0)v\|_0$, при q=2/3 и $q_0=1/3$, ее сильное решение $y\in W_2^{0,3}(]0,t_1[\times\Omega)$, y удовлетворяет граничным условиям (4) при п.в. $t\in]0,t_1[$ и $\partial y/\partial t\in L_2(]0,t_1[\times\Omega)$, так как $y(t_1,x)\in D(A^{*2/3}(0))$. Действительно, очевидные неравенства $\|A^*(0)v\|_0 \le c_6\|v\|_3$, $c_6>0$, и $\|A^{*-1}(0)A^*(0)v\|_0 = \|v\|_0$ $\forall v\in D(A^*(0))$ означают, что оператор $p=A^*(0)\in \mathcal{L}(W_2^3(\Omega),L_2(\Omega))$ \mathbf{I} $\mathcal{L}(L_2(\Omega),W^{-1})$ и, следовательно, по теореме 5.1 об интерполяции $p\in \mathcal{L}([W_2^3(\Omega),L_2(\Omega)]_{1/3}=[L_2(\Omega),W^{-1}]_q)$, 0< q< 1, [6, c. 41]. При q=1/3 промежуточные пространства $[W_2^3(\Omega),L_2(\Omega)]_{1/3}=W^{-1/3}$ по определению 2.1 из [6, c. 23]. Итак, непрерывный оператор $p\in \mathcal{L}(W_2^2(\Omega),W^{-1/3})$, т.е.

$$||A^{*2/3}(0)v||_{0} = ||A^{*-1/3}(0)A^{*}(0)v||_{0} \le c_{7} ||v||_{2}, \quad c_{7} > 0, \quad \forall v \in D(A^{*2/3}(0)).$$
(13)

С другой стороны, во-первых, по определению дробных степеней операторов для $\forall v \in D(A^{*2/3}(0)) \; \exists v_n \in D(A^*(0))$, что $v_n \to v$ и $A^{*2/3}(0)v_n \to A^{*2/3}(0)v$ в $L_2(\Omega)$ при $n \to \infty$ [4, с. 140].

Во-вторых, ясно, что замыкание области $D(A^*(0))$ в норме $\|\cdot\|_2$ равно множеству $\mathbf{D}(t) = \{v \in W_2^2(\Omega) : v \Big|_{S_t} = 0; \; (\partial v / \partial x_k) \Big|_{S_k^+} = 0, \; k = \overline{1,n}, \}$ при t = 0. Поскольку по построению функция $y(t_1, x) \in \mathbf{D}(t_1)$ и ввиду не убывания $\{S_t\}$ по t множества $\mathbf{D}(0) \supset \mathbf{D}(t_1)$, то $y(t_1, x) \in D(A^{*2/3}(0))$, в силу оценки (13). Аналогично доказывается вложение $L_2(]0, t_1[, H_{1/3, 0}^{*+}) \subset W^{1/3}$ при $q_0 = 1/3$.

Для функции j, заданной формулой (12), тождество (11) превращается в равенство

$$\int_{t_1}^{t_2} \int_{\Omega} e^{2ct} \left\{ -A^*(t) \frac{\partial j}{\partial t} A^*(t) \overline{j}^- + A^*(t) \frac{\partial j}{\partial t} \frac{\partial \overline{j}}{\partial t} \right\} dx dt = 0,$$

из которого также как из равенства (10) выводится, что u=0 при п.в. $t\in]t_1,t_2[$ и т.д. Таким образом, за конечное число шагов мы заключаем, что u=0 при п.в. $t\in]0,T[$. Случай счетного количества интервалов постоянства $\{S_t\}$ по $t\in [0,T]$ сводится к их конечному числу, если воспользоваться определением множества нулевой меры в [0,T]. Теорема 3 доказана.

Замечание. Для всех слабых решений $u \in \mathcal{H}^+_{1/3}(G)$ задачи (1)–(3) выполняется оценка

$$\int_{0}^{T} \int_{\Omega} \sum_{k=1}^{n} a_k(t) \left| \frac{\partial u(t,x)}{\partial x_k} \right|^2 dx dt \leq \frac{4}{c_4^2} \left(\int_{0}^{T} \int_{\Omega} \left[f(t,x) \left[\int_{1/3,-t}^2 dx dt + \int_{\Omega} \left| u_0(x) \right|^2 dx \right] \right).$$

О существовании слабых решений задачи (1)–(3) докладывалось на конференции [7].

Литература

- 1. Korteweg D. J., de Vries G. // Phyl. May. 1895. Vol. 39. P. 422 443.
- 2. Юрчук Н. И. // Докл. АН СССР. 1986. Т. 287. № 3. С. 560 563.
- 3. Li o n s J.-L. Equations différentielles opérationnelles et problèmes aux limites. Berlin, 1961.
- 4. К р е й н С. Г. Линейные дифференциальные уравнения в банаховом пространстве. М., 1967.
- 5. Ломовцев Ф. Е. // Дифференц. уравнения. 1995. Т. 31, № 7. С. 1132 1141.
- 6. Л и о н с Ж.-Л., Мадженес Э. Неоднородные граничные задачи и их приложения. М., 1971.
- 7. Л о м о в ц е в Ф. Е. // Международн. математ. конференц. "Еругинские чтения X": Тез. докл., Могилев, 24—26 мая, 2005 / Могилевск. гос. ун-т. Могилев, 2005. С. 165 166.

F. E. LOMOVTSEV

A MIXED PROBLEM FOR LINED MANY-DIMENSION KDV EQUATION WITH PIECE-CONSTANT BOUNDARY CONDITIONS

The existence and uniqueness theorems of weak solutions of the new mixed problem for lined many-dimension KdV equation with the piece-constant boundary conditions are proved.