Synthesis and structure of Bi_{0,95}La_{0,05}FeO₃ solid solutions using Bi_{1.8}La_{0.2}Fe₄O₉ as a precursor

A. <u>A. Zatsiupa</u>, L. A. Bashkirov, G. P. Dudchik, G. S. Petrov Belarusian State Technological University, Minsk, Belarus, e-mail: zatsiupa@mail.ru

Synthesis of polycrystalline ferrite $Bi_{1,8}La_{0,2}Fe_4O_9$, which is a precursor in the preparation of ferroelectric Bi_{0.95}La_{0.05}FeO₃, was carried out by solid-state method using Bi₂O₃, Fe₂O₃, La₂O₃ oxides calcined in the air at $T = 800^{\circ}$ C for 8 hours. Prepared solid solution Bi_{1.8}La_{0.2}Fe₄O₉ with the structure of the orthorhombically distorted perovskite contained extremely small amount of impurity phase BiFeO₃. This may be due to the fact that in the range 25-800°C Bi₂Fe₄O₉ formation from oxides is thermodynamically more favorable than BiFeO3 formation, but these processes are competing. For the synthesis of Bi_{0.95}La_{0.05}FeO₃ ferrite powders of Bi_{1.8}La_{0.2}Fe₄O₉ precursor and Bi_2O_3 oxide were mixed in a stoichiometric ratio according to the reaction: $Bi_{1,8}La_{0,2}Fe_4O_9 +$ $Bi_2O_3 =$ $4Bi_{0.95}La_{0.05}FeO_3$ and calcined three different regimes: at $I - T = 830^{\circ}$ C, 30 min; $II - T = 900^{\circ}$ C, 30 min; $III - T = 900^{\circ}$ C, 4 h. At the selection of the synthesis temperature we took into account the temperatures of the incongruent melting of the compounds Bi₂Fe₄O₉ (960°C) and BiFeO₃ (930°C), which limited the upper limit value of the annealing temperature (900°C). The figure shows the diffraction patterns of the Bi_{0.95}La_{0.05}FeO₃ and BiFeO3 samples. Bi0.95La0.05FeO3 solid solutions were prepared under different heat treatment conditions, as well as non-substituted ferrite BiFeO₃, was synthesized by the reaction: $Bi_2O_3 + Fe_2O_3 =$ 2BiFeO₃ [1].

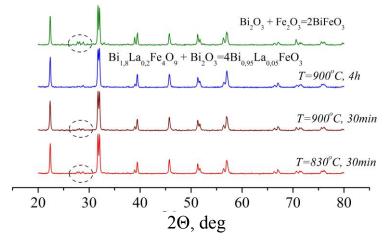


Fig. X-ray diffraction patterns of ferrites $Bi_{0.95}La_{0.05}FeO_3$ prepared using regimes (I – III) and $BiFeO_3$

Analysis of the diffraction patterns showed that $Bi_{0.95}La_{0.05}FeO_3$ samples had crystal structure of rhombohedrally distorted perovskite, unit cell parameters of which were in a good agreement with the literature data. Note, that diffractograms of the $Bi_{0.95}La_{0.05}FeO_3$, heated at T = 830°C for 30 min and at T = 900°C for 30 min, contained trace amounts of impurity phases such as antiferromagnetic $Bi_2Fe_4O_9$ of mullite phase and paramagnetic $Bi_{25}FeO_{39}$ of sillenite phase. The regions of existence of these impurity phases are marked by dotted lines in the diffraction patterns. Synthesis conducted at longer heating time (4 h at T = 900°C) led to the production of the practically single-phase $Bi_{0.95}La_{0.05}FeO_3$ samples. Thus we can conclude that this time-temperature regime is the best for preparation of substituted ferroelectric $Bi_{0.95}La_{0.05}FeO_3$ using $Bi_{1.8}La_{0.2}Fe_4O_9$ as precursor.

References

1. A.A. Zatsiupa.: Diss. ...PhD: 02.00.04, 02.00.21. Minsk, 2013. 196 p.