EXCITATION OF ISOMERIC STATES IN REACTIONS (γ, \mathbf{n}) AND (n,2n) ON ${ }^{76} \mathrm{Ge},{ }^{82} \mathrm{Se}$ AND ${ }^{81} \mathrm{Br}$

Palvanov S.R. ${ }^{1,2}$, Kajumov M. ${ }^{3}$, Saydimov Y.A. ${ }^{1}$
${ }^{1}$ Department of Physics, National University of Uzbekistan, Tashkent, Uzbekistan;
${ }^{2}$ Institute of Applied Physics, National University of Uzbekistan, Tashkent, Uzbekistan;
${ }^{3}$ Institute of Nuclear Physics, Tashkent, Uzbekistan
E-mail: satimbay@yandex.ru

In the present work results of investigation of the isomeric yield ratios Y_{m} / Y_{g} and cross-section ratios $\sigma_{\mathrm{m}} / \sigma_{\mathrm{g}}$ of the ${ }^{76} \mathrm{Ge}(\gamma, \mathrm{n})^{75 \mathrm{~m}, \mathrm{~g}} \mathrm{Ge},{ }^{76} \mathrm{Ge}(\mathrm{n}, 2 \mathrm{n}){ }^{7 \mathrm{~mm}, \mathrm{~g}} \mathrm{Ge}$, ${ }^{82} \mathrm{Se}(\gamma, \mathrm{n})^{81 \mathrm{~m}, \mathrm{~g}} \mathrm{Se},{ }^{82} \mathrm{Se}(\mathrm{n}, 2 \mathrm{n}){ }^{81 \mathrm{~m}, \mathrm{~g}} \mathrm{Se}{ }^{81} \mathrm{Br}(\gamma, \mathrm{n}){ }^{80 \mathrm{~m}, \mathrm{~g}} \mathrm{Br}$ and ${ }^{81} \mathrm{Br}(\mathrm{n}, 2 \mathrm{n}){ }^{80 \mathrm{~m}, \mathrm{~g}} \mathrm{Br}$ are presented. The isomeric yield ratios were measured by the induced radioactivity method.

Samples of natural Se have been irradiated in the bremsstrahlung beam of the betatron SB-50 of Institute of Applied Physics of National University of Uzbekistan in the energy range of $10 \div 35 \mathrm{MeV}$ with energy step of 1 MeV . For 14 MeV neutron irradiation we used the NG-150 neutron generator of Institute of Nuclear Physics.

The gamma spectra reactions products were measured with a spectroscopic system consisting of HPGe detector CANBERRA with energy resolution of 1.8 keV at 1332 keV gamma ray of ${ }^{60} \mathrm{Co}$, amplifier 2022 and multichannel analyzer 8192 connected to computer for data processing.

The yields of the metastable state decays were evaluated by using the $254 \mathrm{keV}\left({ }^{73 \mathrm{~m}} \mathrm{Se}, J^{\pi}=1 / 2^{-}, \quad T_{1 / 2}=38.9 \mathrm{~m}\right)$ and $103 \mathrm{keV}\left({ }^{81 \mathrm{~m}} \mathrm{Se}, J^{\pi}=7 / 2^{+}\right.$, $\left.T_{1 / 2}=57.3 \mathrm{~m}\right) \gamma$-rays. The yields of the ground state decays were evaluated by using the $361 \mathrm{keV}\left({ }^{73 \mathrm{~g}} \mathrm{Se}, J^{\pi}=7 / 2^{+}, T_{1 / 2}=7.1 \mathrm{~h}\right)$ and $275 \mathrm{keV}\left({ }^{819} \mathrm{Se}, J^{\pi}=1 / 2^{-}\right.$, $\left.T_{1 / 2}=18.5 \mathrm{~m}\right) \gamma$-rays.

