EXCITATION OF ISOMERIC STATES IN REACTIONS (γ,n) AND (n,2n) ON ⁷⁶Ge, ⁸²Se AND ⁸¹Br

Palvanov S.R.^{1,2}, Kajumov M.³, Saydimov Y.A.¹

¹Department of Physics, National University of Uzbekistan, Tashkent, Uzbekistan; ²Institute of Applied Physics, National University of Uzbekistan, Tashkent, Uzbekistan; ³Institute of Nuclear Physics, Tashkent, Uzbekistan E-mail: satimbay@yandex.ru

In the present work results of investigation of the isomeric yield ratios Y_m/Y_g and cross-section ratios σ_m/σ_g of the $^{76}\text{Ge}(\gamma,n)^{75\text{m,g}}\text{Ge}$, $^{76}\text{Ge}(n,2n)^{75\text{m,g}}\text{Ge}$, $^{82}\text{Se}(\gamma,n)^{81\text{m,g}}\text{Se}$, $^{82}\text{Se}(n,2n)^{81\text{m,g}}\text{Se}$ $^{81}\text{Br}(\gamma,n)^{80\text{m,g}}\text{Br}$ and $^{81}\text{Br}(n,2n)^{80\text{m,g}}\text{Br}$ are presented. The isomeric yield ratios were measured by the induced radioactivity method.

Samples of natural Se have been irradiated in the bremsstrahlung beam of the betatron SB-50 of Institute of Applied Physics of National University of Uzbekistan in the energy range of 10÷35 MeV with energy step of 1 MeV. For 14 MeV neutron irradiation we used the NG-150 neutron generator of Institute of Nuclear Physics.

The gamma spectra reactions products were measured with a spectroscopic system consisting of HPGe detector CANBERRA with energy resolution of 1.8 keV at 1332 keV gamma ray of ⁶⁰Co, amplifier 2022 and multichannel analyzer 8192 connected to computer for data processing.

The yields of the metastable state decays were evaluated by using the 254 keV ($^{73\text{m}}$ Se, J^{π} =1/2 $^-$, $T_{1/2}$ =38.9 m) and 103 keV ($^{81\text{m}}$ Se, J^{π} =7/2 $^+$, $T_{1/2}$ =57.3 m) γ -rays. The yields of the ground state decays were evaluated by using the 361 keV ($^{73\text{g}}$ Se, J^{π} =7/2 $^+$, $T_{1/2}$ =7.1 h) and 275 keV ($^{81\text{g}}$ Se, J^{π} =1/2 $^-$, $T_{1/2}$ =18.5 m) γ -rays.