ЛИТЕРАТУРА

- 1. Gorczyca, I. Size effects in band gap bowing in nitride semiconducting alloys / I. Gorczyca [et. al.] // Phys. Rev. B. 2011. Vol. 83. №15. P. 153301.
- Wu, J. When group-III nitrides go infrared: New properties and perspectives / J. Wu // J. Appl. Phys. 2009. Vol. 106. №1. P. 011101.
- 3. *Thakur, J.S.* Influence of on the absorption edge of InN thin films: The band gap value / J.S. Thakur [et. al.]// Phys. Rev. B. 2007. Vol. 76. №3. P. 035309.

УПРАВЛЯЕМОЕ МАГНЕТРОННОЕ ОСАЖДЕНИЕ ПЛЕНОК ОКСИДА ИНДИЯ - ОЛОВА ІТО С ОПТИМАЛЬНЫМИ СВОЙСТВАМИ

В. А. Зайков, А. П. Бурмаков, В. Н. Кулешов, О. Р. Людчик

Белорусский государственный университет, valery48@tut.by

введение

Благодаря сочетанию высокой прозрачности и почти металлической проводимости пленки оксида индия – олова (ITO – Indium-Tin Oxide) широко применяются в качестве прозрачных электродов для фотоприемников, солнечных батарей, устройств отображения информации. Основной технологической проблемой формирования пленки ITO является выбор между проводимостью и прозрачностью, поскольку увеличение толщины и концентрации носителей заряда увеличивает проводимость материала, но уменьшает его прозрачность.

Следует отметить, что в работах, посвященных магнетронному осаждению ITO [1,2], процесс проводился при фиксированном расходе кислорода и аргона с использованием стабилизированных источников питания разряда при «оксидном» состоянии катода, что позволяло наносить пленки не любого, а только близкого к стехиометрическому оксиду состава. Осаждение пленок ITO стехиометрического состава можно проводить только в условиях стационарного поддержания неравновесного состояния катода, что приводит к необходимости управления в реальном времени расходом кислорода.

Основной задачей настоящей работы является определение оптимальных параметров осаждения, которые позволяют достичь высокой воспроизводимости химического состава пленок ITO, соответственно, их низкого удельного сопротивления и высокой степени прозрачности.

МЕТОДИКА МАГНЕТРОННОГО ОСАЖДЕНИЯ ПЛЕНОК ІТО

Воспроизводимость химического состава пленок оксидов можно обеспечить путем управления расходом кислорода и аргона при постоянной мощности разряда. Управление расходом аргона осуществлялось с помощью обратной связи между выходным сигналом вакуумметра и сигналом на натекатель аргона, что позволяет поддерживать в вакуумной камере постоянное давление аргонкислородной смеси. Для управления расходом кислорода можно использовать зависимость интенсивностей спектральных линий оптического излучения разряда от содержания кислорода в вакуумной камере [3]. Для управления процессом осаждения ITO использовалась спектрально чистая линия In 451,1 нм. Использование электрического сигнала пропорционального интенсивности линии In в качестве параметра управления позволило с большой точностью поддерживать состав осаждаемых пленок ITO. В данной работе контроль и управление процессом реактивного магнетронного нанесения пленок ITO проводили по одноканальному алгоритму работы прибора спектрального управления СПУ [3].

Для осаждения пленок ITO использован планарный магнетрон постоянного тока. В работе использовалась мишень следующего состава: In 85 % Sn 15 %. Остаточное давление в разрядной камере распыления равнялось 1×10^{-3} Па. Суммарное давление рабочего газа в разрядной камере поддерживалось на заданном уровне 0,5 Па (точность поддержания 2 %), путем управления расходом аргона по сигналу вакуумметра. Ток разряда составлял величину 2,0 А, точность поддержания - 5 %. Основным параметром, определяющим свойства пленок ITO, является степень реактивности процесса. Степень реактивности α определялась из спектроскопических характеристик разряда по формуле [3]:

$$\alpha = \frac{I_0 - I}{I_0 - I^*} \quad , \tag{1}$$

где I_{θ} - интенсивность атомной линии металла мишени (для индия $\lambda = 451,1$ нм); *I* - текущая величина интенсивности линии металла при осаждении; *I** - интенсивность линии металла для полностью оксидированной мишени.

В настоящей работе степень реактивности процесса α варьировалась от 0,60 до 0,80 (точность поддержания 1,5 %).

Определение удельного электрического сопротивления проводилось на пленках ITO, нанесенных на стеклянные подложки. Удельное электрическое сопротивление рассчитывалось по значению слоевого сопротивления \mathbf{R}_{\Box} и толщины пленки \mathbf{h} . Измерение \mathbf{R}_{\Box} проводилось с помощью четырехзондового прибора "Omnimap RS30", а толщина пленки определялась с помощью сканирующего профилометра " α -step" с алмазной иглой. Коэффициент пропускания пленки измерялся с помощью спектрофотометра "UV-vis". Компонентный состав пленок исследовался методами обратного резерфордовского рассеяния.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В сводной таблице приведены результаты по компонентному составу, электрофизическим характеристикам и коэффициенту оптического пропускания пленок ITO.

Таблица

Данные спектроскопии обратного резерфордовского рассеяния, электрофизические и оптические характеристики пленок ITO

N⁰	α,	0,	In,	Sn,	толщ,	толщ.	R ,	ρ, 10 ⁻⁴	Τ,
обр.	от.ед.	ат.%	ат.%	ат.%	ат/см ²	HM.	Ом/□	Ом.см	%
1	0,58	57,2	36,5	6,5	$2,30 \times 10^{18}$	295	150,0	43,2	42,4
2	0,63	57,8	35,8	6,4	$1,90 \times 10^{18}$	243	95,2	23,1	58,5
3	0,69	58,4	35,4	6,2	$1,70 \times 10^{18}$	218	52,0	11,3	85,5
4	0,715	59,5	48,4	6,1	$1,40 \times 10^{18}$	178	32,5	5,8	93,0
5	0,75	59,8	34,2	6,0	$1,30 \times 10^{18}$	165	80,3	13,2	94,4

Зависимость удельного сопротивления пленок ITO от степени реактивности **a** имеет четко выраженный минимум. Минимальное значение слоевого сопротивления $\mathbf{R}_{\Box\min} = 32,5 \text{ Om}/\Box$ для пленок толщиной 180 нм. При этом величина реактивности $\mathbf{a} = 0,71$. Минимальное значение удельного сопротивления $\mathbf{\rho} = 5,8 \times 10^{-4} \text{ Om}/\Box$.

Вторым по значению параметром, определяющим свойства ITO в процессе нанесения, является температура подложки. Удельное электрическое сопротивление пленок ITO в интервале температур от комнатной до 200 - 210 °C имеет резкий линейный спад, который меняется на пологую линейную зависимость в диапазоне 300-450 °C. Степень реактивности **α** влияет на величину спада и на предельное значение удельного сопротивления. Наименьшие значения удельного сопротивления получены в диапазоне 320 - 360 °C при степени реактивности **α** = 0,715.

Структурные и фазовые исследования тонкопленочных слоев ITO проводились методами просвечивающей электронной микроскопии и электронной дифракции с помощью электронного микроскопа ЭМ-125. Пленки ITO, осажденные при комнатной температуре являются аморфными. Кристаллическая структура проявляется при температуре подложки порядка 200 - 250 °C. Наибольшее кристаллическое совершенство (однородная мелкодисперсная структура с размером зерна 20-30 нм, минимум дефектов и резко очерченные границы) соответствует пленкам ITO, полученным при степени реактивности $\alpha = 0,715$.

На рисунке 1 представлены зависимости спектрального коэффициента пропускания слоев ITO на стеклянных подложках для оптимального значения **а**.

Подбором толщины пленки можно повысить коэффициент пропускания в узком спектральном диапазоне порядка 50 70 нм до 95%. Увеличение толщины пленки ведет к росту поглощения в ближней ИК области спектра.

ЗАКЛЮЧЕНИЕ

Показано, что оптическое управление расходом кислорода в процессах магнетронного распыления позволяет воспроизводимо получать пленки ITO в широком диапазоне их электрических и оптических характеристик. Проведенные исследования позволили выбрать оптимальные режимы формирования прозрачного электрода к приборным светоизлучающим структурам.

ЛИТЕРАТУРА

- Youn J. Kim Effect of oxygen flow rate on ITO thin films deposited by facing targets sputtering / Su B. Jin, Sung I. Kim, Yoon S. Choi // Thin Solid Films. 2010. Vol.518. P. 6241.
- 2. Смирнова И. П. Оптимизация технологии нанесения тонких пленок ITO, применяемыхв качестве прозрачных проводящих контактов / Марков Л.К., ПавлюкА.С., Кукушкин М.В. // Физика и техника полупроводников 2014.Тю 48. № 1. С. 61. 2003. Т. 33. №1. С. 57.
- Бурмаков А. П. Контроллер расходов газов для процессов нанесения пленок сложного состава / БурмаковА.П., Кулешов В.Н. // Электроника. 2006. №5. С. 59.

Толщина *h* равна: 1 – 420 нм, 2 – 360 нм; **α** = 0,715; температура осаждения 290 °С. *Рис. 1.* Спектральный коэффициент пропускания слоев ITO различной толщины