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Abstract — Certain methods for numerical solving plane and axially symmetric
problems on equilibrium shapes of a capillary surface are presented. The methods
possess a high order of approximation on a nonuniform grid. They are easy to realize,
fairly universal and suitable for constructing not only simply connected but also dou-
bly connected and disconnected surfaces, including strongly curved ones. It is shown
that the iterative algorithms constructed are absolutely stable at each iteration. The
condition for convergence of iterations is obtained within the framework of a linear
theory. To describe peak-shaped configurations of a magnetic fluid in a high magnetic
field, an algorithm of generation of adaptive grid nodes in accordance with the surface
curvature is proposed. The methods have been tested for the well-known problems
of capillary hydrostatics on equilibrium shapes of a drop adjacent to the horizontal
rotating plate under gravity, and of an isolated magnetic-fluid drop in a high uniform
magnetic field. It has been established that they adequately respond to the physical
phenomenon of a crisis of equilibrium shapes, i.e., they can be adopted to investigate
the stability of equilibrium states of a capillary surface.
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1. Introduction

Just as the majority of practically important problems with a free boundary, the problems
on equilibrium shapes of a capillary surface, as a rule, have a complex nonlinear statement.
In the general case, we deal with a hydrodynamic problem whose unknown solution is sought
in the domain with a preliminarily unknown boundary determined by the unknown solution.
Exhaustive reviews of the theoretical methods for investigating equilibrium capillary surfaces
are presented in [9,10]. These reviews show that no methods for numerical modeling of
doubly-connected, disconnected as well as simply-connected strongly curved surfaces have
been developed in modern computational hydrodynamics.

In [2,3,11,12,14,15], the iteration-difference approach was developed. In [10], it is
presented as “rather universal because it is suitable for constructing equally both axially
symmetric simply- and doubly-connected equilibrium surfaces and cylindrical ones (plane
problem)”. Also, it should be added that it is efficient in the case of strongly curved surfaces
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and is easily extended to the class of disconnected surfaces. It can also serve for investigating
of the equilibrium-state instability as it adequately responds to a physical crisis of equilibrium
shapes.

The subject of this paper includes both a description of numerical methods which are
effective in a wide range of two-dimensional equilibrium states up to peak-shaped configu-
rations, and their justification consisting of a theoretical analysis and testing. The paper
is organized as follows. In Section 2, we formulate the parametric second-order differen-
tial equations of an equilibrium capillary surface in the cases of plane and axially symmetric
problems with regard for the gravitational and magnetic forces. A change of variables, which
plays an important part in constructing the iterative algorithms presented in the paper, is
introduced. In Section 3, a finite-difference scheme approximating the free surface equations
with the second order on a nonuniform grid is described. Iterative algorithins for its re-
alization are proposed. Section 4 presents a tangential method designed to solve modified
free-surface differential equations with a new unknown being a tangent inclination angle.
The computational stability and convergence of iterations are investigated. A spline-method
is proposed and analyzed in Section 5. It is based on the approximation of a free surface
by cubic splines exactly satisfying the parametric differential problem in grid nodes. In Sec-
tion 6, we show how to apply the tangential and spline methods in the irregular case where
the contact line of a capillary surface is preassigned. Section 7 proposes an a priori method
for constructing an adaptive grid whose density of nodes on the surface varies according to
the surface curvature. Finally, Section 8 is devoted to the testing of the above-mentioned
methods on the well-known magnetic- and nonmagnetic-fluid statics problems with a simply
connected surface.

2. Mathematical model of a capillary surface

2.1. General equations

Consider an equilibrium capillary surface I' of a viscous incompressible magnetic fluid that
contacts a nonmagnetic gas medium and is acted on by gravitational and magnetic forces f.
The steady-state motion of such a fluid both inside a volume and on a free surface is governed
by the equations [4,8,16]

Vp=—p(v-VIv+nViv+£f, V.v=0; a
f=pg+puMVH

where p is the fluid pressure, p is the density, v is the velocity vector, n = const is the dynamic
viscosity, g is the acceleration of gravity, uo is the magnetic constant, M = M(H, T) is the
fluid magnetization, H is the intensity of the magnetic field , T is the temperature.

Boundary conditions on the free surface are obtained from the general balance equations
for normal and shear stresses with regard for the capillary and magnetic pressure jumps.
If viscous stresses are neglected in the external (gas) medium, then the balance equation for
normal stresses on the surface I' assumes the form [4,8, 16]

H,

2
p—p0=0K~lé9(M—g—> +27}—5;l— (2)

where py = const is the external pressure, ¢ is the surface tension coeflicient, K is the sum
of principal surface curvatures that takes a positive value if the surface is convex, H, and vy,
are the normal components of the magnetic intensity and velocity vectors.
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The density p and the surface tension o of the isothermal fluid are given to be constant. In
the nonisothermal case, use is made of Boussinesque’s approximation taking into account the
dependence p(T') only in the right term f. For the problems of thermocapillary convection,
o = o(T) is assumed.

2.2. Axially symmetric surface

If T' is the surface of revolution, then its shape is determined by the equilibrium meridian
line. Introduce the cylindrical coordinates R, Z by bringing the OZ axis into coincidence
with the symmetry axis and directing it opposite to the gravity vector. Let S be an arc
length of an unknown meridian line that ranges from S = 0 to S = £. The meridian
shape will be described by the parametric functions R(S), Z(S). Then n = (-~Z', R'),
t = (R, Z’) are the normal and tangent unit vectors to the equilibrium line in the axial-
section plane (prime means differentiation with respect to S). Note that the tangent vector
t is oriented in the direction of increasing S. The surface curvature is defined by the formula
K = ¢(RZ')/(RR'), where we choose ¢ = —1 if, while moving along the meridian line in
the direction of increasing S, the fluid remains on the right, and ¢ = 1 if the fluid remains
on the left.

In the isothermal case, by means of simple manipulations with Eqs (1) with regard to
the equilibrium condition v, = v - n = 0, we have on the surface T’

op _ e R, 10(Ru)
35 = VP t=-5%s TPRY TR o

H
0
- ng’ + ,uo'a-“s-; /MdH
0

where vg and v, are the tangential and azimuthal velocity components, and

vz Ovg

OR 07

is the vorticity. Hence, for any points R(S), Z(S) of the free surface we find

p = IT + const,

(3)

o, R, 18Rw) #
= 2@5+f( 155, 097 dS+,u00fMdH.

By eliminating the pressure p from Eqs (2) and (3), we obtain a parametric differential
equation for the axially symmetric surface I’

Z'"=RF, 0<S</{

! H,\* Ovy, (4)
H Bn

Fz?i\ll-kconst-——z—, \II=H+@ M—) - 2n—.
o R 2

The natural condition R’ 242’2 = 1 serves as one more equation. By using differentiation,
it can be replaced by R” = —Z'F. For the natural condition in this case not to be violated,
it should be satisfied, at least, at one value of 5, e.g., at S=0o0r § = £.
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2.3. Cylindrical surface (plane problem)

In the case of the plane problem, the cylindrical equilibrium surface is determined by the
equilibrium line of the cross-section. Introduce into the cross-section plane the Cartesian
coordinates X, Y by directing the OY axis opposite to the vector g. In these coordinates
K=¢Y"/X' = ~¢X"]Y’, where X = X(S) and Y = Y(S) are the unknown parametric
functions describing the shape of the equilibrium line. By analogy with the axially symmetric
case, we arrive at the equations

Y'=X'F, X"=-Y'F, 0<S<¢

¢ H\?  Ov,
F== st. —9
U\I/+const, V= H+ MH M5

S
P 9 _va_avx
—3Vs +/( ng)dS+uo/7\/.f(iH W= T Ay
0

whose solution requires the condition X’? +Y’? = 1 to be satisfied.

The obtained differential equations are supplemented with the boundary conditions as
well as with the non-local (integral) condition of fluid volume conservation. By boundary
conditions can be understood either conditions where the fluid contacts a solid wall specified
by the wall geometry and a given wetting angle, or symmetry conditions.

2.4. Test problems

To test the algorithms, two hydrostatics problems on axially-symmetric equilibrium shapes
of a simply-connected capillary surface were chosen. These are: 1) the problem on a drop
adjacent to a horizontal rotating plate under gravity, 2) the problem on an isolated magnetic-
fluid drop in a high uniform magnetic field. The first of them is the classical problem of
capillary hydrostatics [7,9,10}, and the second one is the well-known problem of magnetic-
fluid statics [4,8].

2.4.1. Problem 1. Place the origin of coordinates on the plate surface, namely in the
middle of the drop base, and let the arc length take the value S = 0 at the drop apex (i.e.,
at R =0) and S = ¢ at the point where the meridian contacts the plane Z = 0. Since the
magnetic forces are absent from Eq. (4), we have ¥ = II = —pg[Z — Z(0)] +0.50w R?, where
w is the angular rotational velocity of the drop. So, the equations for the drop surface are
obtained as

R'=-Z'F, Z'=RF, 0<S<{
(5)

2 '
F=¢ —«f)—gZ+f-)—u-j—~R2 ——Z—+const.
o 20 R

The boundary conditions follow from the symmetry ones at S = 0 and from the conditions
where fluid contacts a solid wall at S = ¢

R(0)=0, R(0)= Z'(0) =0,
Z(0) =0, R(f)=cosa, Z'({)=¢sinc

I

(6)
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where « is the wetting (contact) angle. Assuming that the drop volume V is prescribed, it
can be determined as the volume of the body of revolution

Z
V= —2m¢ / ZRR'dS. (7)
0

Thus, the mathematical statement of the problem for R(S) and Z(S) consists of the
differential Egs. (5), the boundary conditions (6), and the integral condition (7). The adopted
direction of increasing S owes us to choose ¢ = —1 if the drop is adjacent to the plate from
above (sessile drop) and ¢ = 1 if it is adjacent to the plate from below (pendent drop).

2.4.2. Problem 2. Consider a magnetic-fluid drop not contacting a solid wall and acted
on by a high uniform magnetic field under zero-gravity in the state of magnetic saturation.
Assume that the vector of the field intensity is collinear to the OZ symmetry axis. Then
f = uMVH = 0, H, = £HR’ and it should obviously be assumed in Eq. (4) that
U = 0.5u9M2 (R')?, where M, is the fluid saturation magnetization. Considering that the
drop is symmetric about the equatorial plane Z = 0, we restrict ourselves to the half-space
Z 2 0. Asin Problem 1, choose the point S = 0 on the OZ axis and the point S = £ on the
plane Z = 0. The choice is consistent with ¢ = —1. Hence, the drop shape is described by
the equations

R'=-2'F, Z'=RF, 0<S<¢

_MIUJOMgo /2_2 (8)
F = oo (R) = + const.

The boundary conditions are formulated with regard to the drop symmetry
R(0)=2Z'(0)=Z{)=R () =0, R(@0)=1, Z'({)=-1 (9)

The mathematical model is closed by an expression that relates the solution to the drop
volume V

v

il

£
4 / ZRR'dS. (10)
0

2.5. Change of variables

The specific feature of the parametric statement is that the length, ¢, of the equilibrium
line, i.e., the domain of definition of the problem is beforehand unknown. This causes great
difficulties for the numerical solution. The procedure of nondimensionalizing is an important
element for constructing algorithms of the iteration-difference approach.
Choose ¢ as a characteristic size and introduce dimensionless variables as
S R Z
s==, F==, z=°Z2, 11

£ 14 14 (11)
It allows us to move the unknown length into the equations and make computations on the
fixed interval {0, 1].
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2.5.1. Problem 1. In the new variables, problem (5) - (7) takes the form

M =-Z(f+C), Z=7(f+C), 0<5<l,

f=¢(~BoL?z + PL*7*) — 2?_' , (12)
7(0) =0, 7(0) =1, Z'(0) =0, (13
51) =0, (1) =cos(pa), #(1) = sin(¢a), )
1 -1/3
L=|-2r¢ [ zFFds : (14)
/

where Bo = ngz/ 3/ is the Bond number that characterizes the gravitational-to-capillary
force ratio, P = pw?V/(20) is the parameter having the meaning of the centrifugal-to-
capillary force ratio, L = £/ V1/3 C is the constant not yet defined.

To define the constant C, write down one of Egs. (12) as

(72) =77 [¢(—BoL’z + PL?) + C].

Then, having integrated it on the interval [0, 1] with regard to conditions (13) and (14), we

obtain 0 ) B
_ sinee 1,35 __Bo
C = qb( 1) 2PL T (1)) IP0) (15)

2.5.2. Problem 2. Now formulate problem (8) — 10 in the new variables:

==Z(f+C), Z=F(f+C), 0<35<1,

f — _VVL(,F/)2 . _i;, (16)

F(0)=Z(0) = 2(1)=7(1) =0, (0)=1, Z(1)=-1; (17)
1 -1/3 . ~1/3
L=|4r / z7r'ds = | 27 / #'r%ds : (18)
0 0
where W = 1oM2V/3/(20) is the dimensionless parameter that characterizes the ratio of
the magnetic pressure jump on a free surface to the capillary jump, L=2¢/V'/3,
The dependence of the constant C on the solution is defined as in Problem 1:

1

2
C=—— | —7(1) +WL/»f(f’)%§ : (19)
(1)
0

It should be noted that the main objective to use the change of variables (11) is that
we want to obtain an explicit stable formula for correction of the dimensionless length L in
iterations while solving the nonlinear free-surface equilibrium problem. This is achieved by
the integral condition, which in Problems 1 and 2 reduces to (14) and (18), respectively, and
is convenient for recalculating the length L at each iteration of the algorithm of successive

refinement of an unknown boundary.
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In the algorithm of the iteration-difference method we seek the solution 7(3), Z(3) that
corresponds to the unit length of the equilibrium free-surface line but not the prescribed fluid
volume, as the initial statement of the problem requires. Usually the variables r = R/V1/3,
z = Z/V1/3 nondimensionalized by the volume V are used to analyze the result obtained.
A transition from variables (11) to them is made by simple recalculation: r = 7L, z = ZL.

3. Finite-difference method

Let us formulate a two-dimensional problem on the equilibrium shape of a capillary surface
in the following general form:

2 +yF=0, ¢y"—-2F=0, 0<s<l; (20)

z(0) = a, y(1) =b,
2'(0) = cosa, ¥'(0) =sinay, 2'(1)=cosa;, ¥(1)=sing

(21)

where z(s) and y(s) are the unknown parametric functions; F' = f+C; f = f(z, y, 2, ¥, L)
is the assigned function; C and L are constants that are functionals of the known form of
the solution; a, ap, b, a; are the predetermined constants. Expressions for f and C can
also contain functions of a solution whose analytical form is unknown, but their numerical
values are determined by solving some additional problem, e.g., a problem on the magnetic
field distribution or a hydrodynamic process in the magnetic-fluid volume. In the case of
the plane problem z and y that appear here are the dimensionless Cartesian coordinates of
the surface, and in the case of the axially symmetric problem by them are understood the
cylindrical coordinates r, z.

The identity 2’2 +y'? = 1 is the natural property of the parametric functions z(s), y(s).
From the system (20) it can easily be obtained that if this equality is obeyed at some one
value of s, then it is also valid for all s € [0,1]. In virtue of this, when problem (20), (21)
is solved, any of the last four conditions of (21) can be neglected. In addition, one of the
remaining three conditions was formally needed to define the dependence of the constant C
on the solution (see Subsection 2.5).

Introduce in the interval [0, 1] a nonuniform grid

L:Jh:{Si:Si_l‘(‘hi!7;:1,2,---,]\7; 50207 SN:ZI}

and further denote by z;, y; the difference analogs to the exact solution z(s;), y(s;) in the
grid nodes.
For problem (20), (21) let us construct the difference scheme

Az, y, F)i = Tosi + Y385 = 0, Ao(2,y, F)li = Yoo — @81 =0, i=1,2,..., N-1;
hn o
To =0, TsN-05 = COSQ + -—Q—FN S1n iy, (22)
. h
Ys,0.5 = S (g + —2—F0 cosap, YN =

where

-—1(93 Ts;i-05) 'r-—l Aim- +1+Aia;' ;
Lssi = hi 8,1+0.5 8,i-—-0.5/)y L& — 9 12h¢ $,i—0.5 2 127:% 5,1+0.51
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E:fz+c* fi:f(x:7y2(1x§,iay§,i3L)a 7/:172’,]\7'—13
.fO = f(a'7 Yo, COS Oéo,SiI]CY(), L)) fN = f(:EN7 b7 Cos ()fl,SinOf1,L);

1
Tsi-05 = i (x; — T4-1), ;= 3 (Ti1 + X + Tit1)

1
h; = E(hz + hit1), Di=hiy1 — hs

For any sufficiently smooth function z(s) the asymptotic expansions

3k
C; " Ai Ai
T(Sigy) = x(s;) + Z ]:,733(’6)(31) + O(h?% v=0,%1; ¢ = 3 Cix1 = Xh; + -Ei‘;
k=1
Z(Sz) — 13(81..1) Iy Citt g < ) /// 3
=1'(s;) — 2" (s7) + 1 )+ O(R),
h; 2 12
CL‘(Si.H) - 113(8;) oy Ci-1 _n ? /// 3
hi+1 =2z (32> 2 xZ (82> 2 + O(h )
1
g[(éz 1) + (s )+x51+1]—x ) O(h )
are valid at the point A
1 i
8] = 3 (8ic1 4 8i+8iq1) =8 + 3

which can be interpreted as the center of mass of the grid pattern.

As a result of applying these expansions to the functions z(s), y(s), it is obtained that
the difference scheme (22) provides the second order of local approximation on an arbitrary
nonuniform grid wy,.

To solve the nonlinear difference problem (22), consider two two-layer iterative schemes

4

1
S —an )+ M(at g Pl =0, =12, N—1,

88,1
T k)
; . (23)
n+1 n+1 .
gt =a, TUN_os = COS(X1T7FVSH).C¥1,

1
(ygs+tl—yqsz)+A2( 7yn,Fn)|i:0, i—“—l,Q,.,,,N—]_,

< : en
Yoty = sinog + —21-F0" cosag, yn'=">
\
and -
;(x?+1 —a}) = 7::11 +ystz , 1=12,...,N-1,
. L (25)
it =a, 2P 5 =cosa + —in—F]\,’ sin oy,
\ N=0.

1
(y:l+1_yi)_y:s+zl_‘ann i:1>29"'7N_1’

h
yrds =sinag + 5 I’ cos ag, yrtt = b,
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where n = 0,1,2,... is the iteration number; 7 > 0 is the relaxation parameter; F* =
fr+cCn

In the two schemes, the decomposition of the difference operators on iterative layers is
carried out so that the upper layer contains only the linear part of the difference equation,
namely the second difference derivative with respect to either the coordinate z or the coor-
dinate y of the free surface. Both scheme (23), (24) and scheme (25), (26) are implemented
at each iteration by means of the three-point elimination method (Thomas algorithm) ap-
plied to problems (23)-(26) which are linear tridiagonal systems. As a result, new iterative
approximations 2"*! and y™*! are determined, then fm+! Cntl Frtl — frtl L OnF1 gre
calculated. The Thomas algorithm for each of problems (23)-(26) is absolutely stable.

Scheme (23), (24) was successfully used to compute equilibrium shapes of simply-
connected (3, 6,12] and doubly-connected [2,5,18, 19} surfaces both in the presence of
gravitational, centrifugal and magnetic forces and in their absence under zero-gravity. By
means of this scheme, the problem of capillary hydrostatics with an essentially disconnected
free surface was solved for the first time [13]. Scheme (25), (26) was adopted to investigate
the equilibrium states of a drop rotating in a gravitational field [11].

4. Tangential method

4.1. Description of the algorithm

Introduce into our consideration a new unknown 5(s) being an angle between the tangent to
the equilibrium line z(s), y(s) and the Oz axis. Bearing in mind that 2’ = cos 3, ¥ = sin 3.
problem (20), {21) can be reformulated as

g =F, B(0) = ap, B(1) =o;

27)
z =cosf, z(0)=aq; y =sin@3, y(l)=>. (1)

In such a statement, the identity ' + y* = 1 is satisfled irrespective of the boundary
conditions. Assuming that the conditions 3(0) = ag and (1) = a; have been already used
to describe the constant C, it is enough to leave only one of them in problem (27).

On the grid &y for problem (27) we consider a difference scheme of the fourth-order
approximation

Bi — Bi-1 _ _FatE ko,
T = @, ®; = 5 12(fi fic1)s
Zi — Ti-1 Uim1 + U Ry
o - X i = + = LV — [i-1V-1),
hi X(ﬁ) F)l't’ (/B? F” 2 + 12(FU F lv 1) (28)
yi"'yl—l__ . ‘_vi_1+vi____]?i L — F .
T - Y(ﬁaF)|z, Y(/Bv F)lz — 9 12<F‘zut F‘z—luz-l)a

2:152a5N~ ﬁ():a/(): /8N:O~/17 Zp = a, yN:b

where
F=f+C, f=f(=yuv,1L),
af of of af

/=———— —— ————-F' ———F == N == 1 R
f 8mu+6yv 50 L~|~av u, u=-cosfl, v=sinf

If in the expressions for ®;, X;, Y; the h;-containing terms are omitted, then the obtained
system will be of the second-order approximation with respect to problem (27).
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In view of (28), the iterative algorithm for computating free surface coordinates will be
constructed as

{ Bt = Br = higa @y + (L= 7) (B — B + hiv1 %), (20)
i=N-1,N-2..1 pB¥l=a, G =a,
=g hXE, F i= 120 N gt = (30)
{ gl = gyt — b Y(BM F)i, t=N-1,N - 2,...,0, (31)
yy =b.
Instead of (29), it is possible to use the following procedure:
AP = grtl 4 @7+ (1= 1) (6 = L, — h®]), i=1,2,.. N -1 (32)

n+1l __ n+1 __
O =, By =

Computations at each iteration are conducted by recurrence formulas. First, the recur-
rence rules (29) or (32) are used to compute the grid values of g**!. Then, by employing
procedures (30) and (31), new iterative approximations are determined for the free surface
coordinates. And, finally, the grid functions F+Yand @7F! are formed by the found values
of a7, Y B, The direction of the passage through the nodes in algorithms (30) and
(31) obeys the particular statement of the differential problem on a capillary surface shape.
For other statements it can be otherwise, not changing the essence of the method.

Bearing in mind the constructive features of the method presented, we shall name it the
tangential or the T-method. The obvious advantages of the T-method are: a high order of
approximation on a nonuniform grid, an exact approximation of the boundary conditions,
a simple design of the algorithm. Unlike the iteration-difference schemes (23), (24) and
(25), (26), the T-method provides the difference analog of the condition z'? +y'? = 1 to
be satisfied at all nodes, at each iteration and at any 7. In so doing, a better agreement
between the iterative solution and the exact solution of the differential problem is attained.

The following second-order approximation scheme is an important modification of the

T-method:

i — Bi- AV JAY ‘
6__’:’9;%"?—9;?‘ = Qia (I)i - f <xi+74—ui>yi+2"vivui7vivll> +C) Z=172a e 7N—1a

Bo = o, By = au;

. b, Bx B hx
Bos — Po Lp  EN 7 PNZ0D = fh

— F o . e T F, — —JN 33
0.5k, 0o TRy el »
LT Tl _ cos Bisos, %2 —sinfios =12,

Ry h;
Xy = Q, Yn = b

where
o8 Bi—os + Bitos Bi—os + Bivos
) P .

2 2

The characteristic feature of the scheme (33) is that the grid function J is defined not on
the main grid, but on the auxiliary one consisting of the midpoints 8405 = 0.5(s; + si41) =
s; + 0.5h;. The definition of the variables on different grids allows to hope for improvement
of the main characteristics of the method.

U; = C v; = sin
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According to (29) - (31), we construct the iterative algorithm for solving the difference
problem (33) as

= By — RO+ (1 7) (Bl o5 — Blvos + R®Y),i=N-1,N—-2,.,2

] Y P hn B2
it maos e g, e S i .
x:‘“ =o' + by cosﬁ"+015, i= 1,2, .., N; ot = a;

gl =yl hysin B, i=N-1L,N-2,...,0; yy =0
As we can see in Subsection 6.1, scheme (34) can be applied not only to problems with
a moving boundary, i.e., with given wetting angles as in (27), but to problems with given
contact points as well.

4.2. Computational stability

Assume that a computational error appears at the (n-+1)-th iteration in the boundary con-
ditions so that the conditions B%*! = o) + 8y, #57' = a + &, gy = b+ ny are in fact
utilized in algorithms (29) — (31). When aﬂected by small errors On, & and my at the
(n+1)-th iteration, we obtain the following solution Bpt' = g/ + 6, &7 = 2™ + &.
gl =y 4, 0= 0,1,..., N. Considering that the grid functions gl gntt gt also
obey Egs (29) — (31), a computational error at grid nodes is described by the relations

0 = 8ip1 = Ojp0 = ... = On; (35)

- Tlihi [Fin (Sin Gitt — sin 51”“) - (sm Artt —sin ”“)] }
i (36)
O 8 O e O
~6-% i o Bt (3t 252 ) s on i (3 + 3 )]
i 5
+ % [Fk , sin 6k2 cos ( R @“2_3> — FP'sin -zﬁcos ( s %)} };
M-t =1 = h{-;— [(sin B! = sin 70) + (sin 7+ = sin g+
— —l—hi E™ | cos B.”“ —cos A1) — F™ . (cos anl oS n+1
12 ¢ ¢ 4 i—1 i
(37)

- Ok~ ntl Ok . O a1, Ok
=77N“Z b, SIHTCOS ﬁ 2 -l-sm—é—cos . +—2—

k—z

Ok n+l Ok-1 Ok ntl 5k
[Fk 1sm—§——sm (ﬂ 5 ) F7 sin — 5 sin (6 0

where1=1,2,...,N.
Equalities (35) point to the absolute stability of procedure (29) in the sense of boundary
conditions. Based on relations (36) and (37) with regard to (35), it is easy to make the
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following rough estimates:

61 < ol ol (1+ 3 max, (sl 2D

1 . .
i < bl 6] (1 max, (el D). P01 N

They mean that procedures (30) and (31) are also stable. Hence the algorithm for the
realization of the tangential method at each iteration is absolutely stable. The influence of
the function F on the computational errors £ and 7; is not dangerous because the value of
|6n] is close to zero and, as a rule, the product Fihy, is small at the grid nodes. What is
more, the estimates are improved on the uniform grid of spacing h

h? h?
el <+ il (14 ma 1) il < vl 1ol (1 7).

6 1<k<N 1<kgN

4.3. Convergence of iterations

The convergence of the iterative process (29) — (31) as n — oo can be investigated, assuming
that the function F does not depend on a solution, i.e., ®7 = @; at alln =0,1,2,... In this
case, iterations are made only according to algorithm (29). Let §; be an unknown difference
solution. Designate the iterative error as ;' = gr—pBi,i=0,1,...,N,n=0,1, 2, ... where
¢0 is the initial iterative approximation. Assuming ef = €’ = 0 and substituting g = [+e"
into (29) yield for the error the problem

ettt — (1 —7)ey = —(1-7ely, i=N-1LN-=-2....1 et =0
which is decomposed into a system of equalities

€n+1—(1—7)5?207 7'21277N~—1

1

Hence the error at the n-th iteration is related to the error of the initial approximation by

67‘:(1—7)5?'1=(1—7)26?'22...:(1——7)”5?, i=0,1,...,N.

1

From this it follows that the condition
D<r<t =2 (38)

is necessary and sufficient for convergence of the iterations as n — 00.

Condition (38) results from the linear approximation. Experience shows (see Subsec-
tion 8.2) that as the nonlinearity grows, the convergence domain (0, 7*) gradually narrows,
tending to zero (7* — 0).

It is similarly possible to prove that the iterative scheme (34) also is absolutely stable
in the sense of boundary conditions, and its convergence in the linear case is ensured by
condition (38).
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5. Spline-method

Consider the problem on equilibrium capillary-surface shapes in formulation (20), (21), using
for brevity its matrix representation

y p | xa(s) 10 -1 _
x" = FIx, X~[m2(s)], I—[l 0 J, 0<s<1;
(39)

COS (x, COS &
a0} =0, ml)=b x{0)= { sinap J » ¥)= [ sin ]

where z;(s), z2(s) are the unknown parametric functions, F = f + C, f = f(x,x/, L).

5.1. Description of the algorithm

The construction of the spline-method (S-method) is based on the approximation of the
functions ;1 (s) and z5(s) by cubic splines satisfying the differential problem (39) on the grid
wp. So, let

. — )3 — . )3 2 o
X(S) ~ P(S) :{mi_l (Sl 8) -+ m; (S Sz_1> + <X1‘_1 - —}—limi_1> 5 i

6h; 6h; 6 h;

h? S — 81
X _G—mi h;

Py(s) Loy My

At inner nodes, the unknown vectors x; and m; are connected by the smoothness condition
of spline (40)

(40)

s € {81‘_1,82‘], 1= 1,2,...,N}

where

p2 hy n hist
P/ i) = - — ...?_.rn - _imz = X — ..li'.l_ i — _..li_..mi .
(3 ) Xs,i—0.5 6 5,0—0.5 + 9 ,14-0.5 6 mg;i05 9 ) (41)

1=1,2,...,N—-1.

In the following, we use the notation

K2 hi hi Jp—
G = Xs,i-0.5 — —61"1'115,71—0-5 =P'(s;) — 5 M = P'(s5i-1) + oM, 1= 1, N;
h h
qo = P'(0) - —2qu =q —himg, qn=P(1)- "”QN'“va ho = ha.

With this notation,
hi h; 1 R
m; = "ﬁi—iqs,i-é-o.fn P'(s;)) =aqi + = o (hi1@i + hiQig1), 1=0,N-1;
6 hiq

According to the idea of the method, let us require that the spline P(s) satisfies exactly
the boundary-value problem (39) on the grid wy,

mi::FiIP'(si), ?:0,1,,N.

hi (b hs o
Xsi0.5 = Qi + = (%}_qs,i-H).S - “qu,i—0.5> , t=1LN-1
)
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P/(0) = x(0), P'(1)=x(1), P(0)=a, Py(1)=b.

From here we obtain the difference problem for q; and x;

1
Us,i4-0.5 = ﬁqul+p,Iq, , 7::0,1,...7]\/'——1
+0.5 i1 ( +1) (42)

Qo = XI(O) - O.Shgmg, qNn = X’(l) - 0‘5thN

Xs,i—05 = q: + ‘é‘ (mz — m,v_l) s 1= 1, 2, ey ]V; T1,0 = @, IyN = b (43)
where
1 A 1
p; = 'élliFi: pi = ’2‘hi+1Fi;
h; S
m; = f;.lqs,wo.s, i=1,N—1; my=FlIx'(0), my=FyIx'(1).

At given values of Fy, Fi,..., Fy, problem (42), (43) is a system of lincar algebraic
equations which decomposes into several subsystems with triangular matrices. Moreover,
the solution q; = [q1.s, g2:]7 of system (42) does not depend on the solution x; = (€14, To)T
of system (43) consisting of two independent subsystems with respect to 2y and zo,;. Taking
into consideration the peculiar features of the difference problem, the iterative algorithm for
calculating the grid vector-functions g; and x; is organized as

{ @ =Bram ¢ (-7 (@ = Biala), i=N-LN-2.0000
@t = (E- gD ¥(0), oy’ =(E-FD)x(1),
n+1 __ ,..n+l h n-+1 _}_7’_12_ n+l n+1
Ty =Tyt Gy T 6 (ml;i ml;i~1)’ (45)
i=1,2,...,N; 21} =a,
n n i+1 n n
3’231 = 32;&1 - hz’+1qg-,ﬁ1 - ”_g'“ ( 2;:4{1 - mz;jl) , (46)
i=N-1N-=-2...,0 :Ugjvl:b,
where E is the identity matrix;
g | ¥ 0] e loeh o _pth
[ __bl bO ) [ Az ’ T A9 1
B 14 1+ 0
h; [ —— 2 2
m; = —Fqeises, i=1,N—1; my=-—[x(0)—qo, my=;— [x'(1) —an].
h; ho hn

Notice that in algorithm (44) the boundary conditions are given on both the right side
and the left side. This enables us to go from one node to another not only in the direction
from right to left but from left to right as well. In the latter case, the values of gt are

calculated at inner nodes by the rule
n n T n n n T n . T AT 1
= (B a1 =) [ar - (BL) al], i=TN-1 (47)

The constructed iterative scheme is economical and easy to realize. At the (n+1)-th
iteration, first the vector recursive procedure (44) (or the alternative procedure (47)) is
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fulfilled and, as a result, the couples q’ffl, q;‘j’l are determined at all ¢ = 0,1,...,N. Then

these values are used in the scalar recursive procedures (45) and (46) Wthh are executed
independently of one another, and yield new iterative approximations a:”“ and xg“:l of the
free-surface coordinates. With the found vectors gt and x}*' the nonlinear grid function

F*1 is calculated, thus completing the (n-+1)-th iteration.

5.2. Stability and iterative convergence

It is possible to analyze the stability of the iterative spline-scheme and the convergence of
iterations by analogy with those for the tangential method. .

First we consider the computational stability of the recursive procedures (44) — (46) in
the sense of boundary conditions. Let ¢ = a; + 61, & = a + Ny0, b=b+ ne,n De the
perturbed boundary values at the (n+1)-th iteration under which problem (44) — (46) has
the solution &+ = q*! + &, &7 = 27 +my, F3tt = a3t + myu. The grid functions &.
Miyiy M2y TEPTESENt computational errors at the grid nodes at the (n+1)-th iteration resulting
from the small perturbations 8y, 71,0, 72,5 of the boundary conditions. As problems (44) and
(45) are linear with respect to q”Jrl "“ , the errors & and 71,; obey the equations

gz:B?£i+1a Z:N"]-aN_'Qa)la
cos &y — cosay + Py (sindy —sinay) }

Ev = (E- R K1) —x(1)] = {

sind; — sina; — pf (cos @ — cosay)

S 1_}_]11&”___(512“ '51;1‘_51;1‘—51;2'—1)’ i=12,.. N—-1;

6 hi Ri1

h? 2 ~ N —ELN=

TN = NuN-1 + hyéyy + N | “(cos@; —cosa; — &iN) — fuy — Sunn :
6 |hn Rn-1

In view of the linearity of problem (46) with respect to q"“L1 m’;{l similar equations can also

be written for the error ny;.
Using these relations, we can estimate the computational error &; in the Euclidean norm

Iénll = 4/&n + & = 201 |sin(0.56,)] < c1]01], e = /14 (K})%

&1 = [IBF il = Lo I€iaall = \/1 to Lt p’“ €l

14 p? 1+ p2 1+ p2,

_11 z '
T 2lI€NH i=12...,N-1
k=i P

The inequality 1 + = < exp(z) applied to the right side of the previous equality gives

b

N—11+}2€ N~1 )
T2 S 11 Q+18 - il) <exp Zl - oh

2
k=1 k k=i k=1

4 1<k<N—-1

<c2_ep(1 max (F,S]Ak|)>.
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Thus, it has been proved that

0B | &l < ez |[En]] < crca |da] .-
In the case of a uniform grid, we have ¢, = 1, i.e. ||&] = [lénll at allé =1, N — 1

Based on the foregoing and taking into consideration the step property
hy+ho+...+hy = 1 it is not difficult to estimate the error 7y

Insi1] + hica €N < Imi-2] + (Riey + Bi)ez [[En]]
...<1n1;0|+02”£1\rn, i=1,2,...,]\7—1;

7] <
<

2 h .
man] < Imuv-a] + ghaes [Enll+ 57 (cos @y — cosen)

2 0 arta
< Imol + c2 |En] + é’hN sm-—%sm-—l 5 !

< ol + 2 [|énll + 1841

The estimate for n,; is deduced analogously and is of the form
max 7] < [mn] + 2 HEwll + 1011

The estimates obtained show that small perturbations of the boundary conditions at the
(n+1)-th iteration lead to small errors in the calculation of q'*! and x*' at any step of
the grid. It means that the recursive procedures (44) - (46) are absolutely stable at each
iteration.

The convergence of the iterative process (44) — (46) has been investigated in a linear
approximation as n — oo. It is assumed that F(s) does not depend on the solution and
is the known function of the arc length s. Under this assumption, iterations are carried
out only by algorithm (44). Let &} = qf — q; be the iterative error at the node s; at
the n-th iteration where q; is the exact solution of the difference problem, q’ is the initial
iterative approximation, and €? is the error of the initial approximation. If we assume that
the boundary data a, b, ap, oy are given exactly and substitute q = q; + €} into the linear
Eq. (44), then we obtain the following problem for the iterative error:

et — (1 —71)e} = By [s?fll —(1-7)el] =...=BBiy1... By [ent —(1- T)eN]
i=1,2,...,N=1; etfl=el=0, eff'=ex=0.

From here it follows that

5? = (1 - T)E,:-Lml = (1 —_ 7')267‘1*2 - ,.., = (]_ — T)”g?’

)

i=1,2,....N—1, g =¢ex=0.

Consequently, the condition 0 < 7 < 2 is necessary and sufficient for the convergence of
the iterative spline-scheme at n — oo. Notice that the same condition of convergence was
previously obtained for the tangential method.
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6. Surfaces with a given contact line

The methods described in Sections 3 - 5 are adapted for solving problems on equilibrium
capillary surface with an unknown contact line. The contact line position on a smooth solid
wall is defined by the given wetting angles oy and «, the fluid volume and external forces.
It is customary to call problems of this kind moving boundary problems.

Problems with a given contact line also occupy an important place in the capillary hydro-
dynamics and its applications. For example, the well-known problem of applied hydrome-
chanics on the purification of materials and growing of monocrystals aboard space stations
under zero-gravity [10] fits into this category. For definiteness, we shall name such problems
fixed boundary problems. The boundary conditions for them are of the form z(0) = ay,
z(1) = a1, y(0) = by, y(1) = by. Such conditions can take place if the contact points are not
regular on a solid surface, i.e., the solid surface has a fracture at them.

6.1. Tangential method
Consider the formulation of the fixed boundary problem in the variables z(s), y(s), 3(s)

3 =F, x' = cos f3, y' = sin 3;

z(0) = ay, ’C(l) = q1, y(()) = by, y(l) = by (48)

We approximate the differential problem (48) on the grid @y, by means of the modified
tangential second-order scheme (33)

_ — B AV A
M__B—Zoﬁ == q)i, (D‘i = f (mqj + — Ui, Yi + _zIUi7 Uiy Uy, L) + C’

h; 4 4
Bi—o5 + Bitos . Bi—os + Bitos
i: AT, 'l:= _..._._______..._.__.__7 —1’27 '7N——1’
U; = COS 5 . v; = sin 5 (49)
L cos f;-o.5, L sinf;_05, t=12,...,N;
hi hz

To=ag, TN =0a1, Yo=~by, YN =bi.

Notice that the difference scheme (49) not only does not require any additional approxi-
mations in comparison with (33), but is saved from the difference equations approximating
the differential equation §' = F' at the points s = 0 and s = 1.

From the boundary relations 1 — ag = hycosfBys and y; — by = hysinfFys, it is not
difficult to deduce a formula for the calculation of Gy 5

y1 — bo

= 2arctan ———————,
/80'5 hl -+ I — Qg

From the viewpoint of computational siability, it is better to use this formula at x; —ag > 0.
Otherwise its following modification is preferable

Y1 — bo

= 2arccot ——————.
ﬁO.S h1 -~ T + ag

Analogous formulas are valid for By—o5.
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Using them in scheme (34), we obtain the iterative algorithm for solving the difference
problem (49). Let us write it for the case a; —ay-1 20

5?—%1.5 = 67;613 - 97+ (1-7) (/3?—0.5 = Blos T hi@?) )

b —yn-1
hN + an 'L‘Rr 1, (50)
gpt = 2T 4 hycos B, i=T1,N —1; a3 = aq, ot = ay;

ntl n+l n+l A e v NS | n+l
Yyt =y 4+ hysin G s, i=1,N-1;, y" =bo, yy = b;.

i=N-1,N=2,...,1; Brtl=2arctan

The constant C can be calculated in the iterations of algorithm (50) by the formula

1-0.5h N

C=|Bn-os—0os— / [ ds /<1--h-1jé’@l>

0.5h1

which is obtained as a result of the integration of the equation ' = F on the interval

[50.5, SN -0, 5.
The absolute stability of scheme (50) in the sense of boundary conditions is proved as

in Subsection 4.2. The nonlinearity of the formulas for calculating fos and By_o5 hinders
the analysis of the convergence of iterations. Apparently, condition (38) is only necessary
for the convergence.

6.2. Spline-method
Formulate the fixed boundary problem in the matrix form

x" = FIx, x(0)=a, x(1)=b; x-x'=1,

= .731(8) _ 0 -1 . ay _ b1 (51)
S E R R I M IR I

We approximate the solution x(s) by the cubic spline P(s) of form (40) which satisfies
Eq. (51) at all grid nodes, i.e., it is assumed that the equalities P"(s;) = FIP'(s;) are

realized at all ¢ = 0,1,..., N. Let us write these equalities in detail using the smoothness
condition (41)

h; h; h; h;
m;_; = Fi_41 (xs,i—0.5 - gmi—l - 'é'm1.> , my=FI (Xs,i—o.s + 'é‘mi—l + §m1> )

i=12,... N

Considering that the pair of these equations at each number ¢ as a linear system with respect
to vectors m;_; and m; and solving it, we find

F F
m;.; = d2V IXs 05, Mip1 = —*"%—‘UHJXS,HO.&
Z+1 + 141 (52)
F F, —
m; = UIXSZ —~—Z* Vl Ixsi 5 ‘izl,N*l
C + d2 05— H—l + dH_l +1 ,i+0.5 ’

where U; = uy ;E + ug ;I and V; = vy, E + vg,;1 are nonsingular matrices 2 x 2,

9 1 1 1
c= (o= P, di=14 piapn pi=hF, = shiaF
c 3(0 pi-1). d + 3PP P =g pi = Shini Fi,
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U =di — Pic1Ciy, U = ¢+ Piadi, Vi = di + pici, Vo = ¢ — pid;.
Substitution of expressions (52) into the smoothness condition (41) results in the system
hi(e} + d2) Vi (Xis1 = %0) — hawa(cfyy + d21)Us (% — x521) = 0,
1=1,2,...,N—-1, xgo=a, xy=Db

(53)

in which the unknowns are the vectors x;, 1 =1,2,...,N — 1.
It is possible to improve the matrix of system (53) by multiplying the ¢-th equation of
the system by the nonsingular matrix

hisa (G + di) U + b (& + dF) Vi,
atalli=1,2,...,N — 1. As a result, an equivalent system of the form
(Ai — o) xi—1 — Cixi + (Bi + pil) X340 = 0,
i=12,...,N—1, xp=a, xy=Db

(54)

is obtained, where

A=A+, A= h;:l (1 + /3?—1) (Cz?ﬂ + dz2+1) >0,

Bi:B¢+¢i, Bi= b (1+,0?+1) (C?+dl-2)>0, C;=A;+ B; >0,
1

P = U,V25+1 — U2,4V1,i+1, P = Uy V14541 + U2,iV2 541+

We construct the iterative algorithm for solving problem (54) choosing the values of the
coefficients A;, B;, v; and ;, which depend in a complicated way on the solution, from the
previous iteration

(A} — o' D) X — OPxP™! + (BR + o) xJ =0,

(55)
i=12,...,.N=1;, xt'=a, x3'=0.

System (55) is linear with respect to the unknowns x?*1 at the upper iterative layer and

is of canonical form for the block-elimination method [17]. But, in general, the sufficient
stability condition of the method is not satisfied in this case. Considering that the matrix
of the system is very sparse, the standard Gaussian elimination procedure may be efficient.

From the viewpoint of the organization of computations, the following algorithm is sim-
pler:

(A7 + ()" (A" + B+ 2()*) <+ (B + (1)) xi
- —(PzI ( i+l 1,-— ) (wn) ( i-—l + X'H-l 2X:L) ’ i = 17 2) LR N — 1, (56)
xgrl =a, x?;j+1 b
where ¢ = 0.5(¢ % |¢|). At the upper iterative layer, we have two independent linear
tridiagonal systems (for :c"“ and x”“ respectively). Each of them is solved by the Thomas
algorithm which is absolutely stable here.
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To improve the convergence of the iterative algorithms (55) and (56), it is expedient to
use a relaxation procedure similar to the iterative schemes described above.

It should be noted that the construction of spline-scheme (54) does not ensure the natural
identity x' - x' = 1. It is possible to eliminate this deficiency by a suitable evaluation of the
constant C. Let us integrate the equation x’ - x’' = 1 on the interval [0, 1] in view of Eqs (51)

1 1 1

/x’-x’ds: (x'x')|é—/x-x”ds:b~x’(1)~a-x’(0)—/x'(f+C)Ix’ds:1.

0 0 0

From here we obtain the formula

1
C = % b. P’(l) — a-P'(O) - /fP . (IP')ds -1
0
where
1 1
D= /P . (IP’)ds = /(——P1P2’ + PgP{)ds.
0 0

In solving concrete problems, it is not difficult to make the coefficient D distinct from zero
by appropriately choosing the origin of coordinates.

7. Adaptive grid

Numerical modeling of a free magnetic-fluid surface subjected to a high magnetic field
presents a considerable difficulty because of the peak-shaped structures arising on the surface.
With strengthening field, curvature at some points of the surface can increase thousands of
times. Computing such configurations requires specific approaches based on the application
of adaptive grids.

Introduce a new independent variable ¢t € [0,1] and assume that it is related to the
dimensionless arc length s by the one-to-one transformation s(t) € G, where G is the set
of functions ¢(t) increasing on the interval {0,1] such that g(0) = 0, g(1) = 1. Further we
denote by dots the derivatives with respect to t. Then problem (20), (21) can be written
with respect to (1), y(t) as

(z/8) +9(f+C) =0, (9/8) —2(f+C)=0, 0<t<]
z(0) =a, y(1)=10b; #(0)=35(0)cosag, ¥(0)=5(0)sinay, (57)
£(1) = §(1) cosay, @(1) = 5(1)siney

where f = f(z,y,%/$,9/$, L).

For the variable ¢, let us build a uniform grid wy, = {t; =ih |i=0,1,...,N; h= 1/N}.
The transformation s(t) maps it into the grid &, which is nonuniform with respect to the
natural variable s. At a fixed partition number N the accuracy of the difference solution of
a surface-shape problem strongly depends on the distribution of nodes s;. We thus arrive at
a problem on the optimal choice of nodes to minimize the error of the difference solution.

An adaptive grid can be constructed in a simpler way if one can find the appropriate
transformation s(t) only on the basis of preliminary information or intuitive assumptions
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on the structure of the solution sought. So, concerning problem (16) ~ (19), it is known

[4,8] that as W grows, the drop of the magnetic fluid extends along the direction of the
magnetic field and forms a peak-shaped vertex. In addition, the surface curvature decreases
monotonically as we come down from the peak. Thus, if we assume that the density of
the nodes s; in [0, 1] varies according to the curvature, then the transformation s(t) can be
assigned by the formula [1]

2(a+1)
1+ (1 +2/a)™"

s(t) = s(t,a) = —a+ a = const > 0. (58)

The function s(t) of the form of (58) is defined and ranges over the interval [0,1]. It
performs the contraction mapping in the direction of the drop vertex s = 0 at the expense of
the extension of the domain adjacent to the equatorial line s = 1. The degree of contraetion
is controlled by the parameter a. The lesser a, the higher the degree of contraction. Hence
transformation (58) maps the uniform grid wy, = {t;} into the nonuniform grid w, = {s; =
s(t;)} which is denser near the vertex. This corresponds to the expected structure of the
difference solution to problem (16) — (19). Since §(t) > 0 and 5(¢) is bounded on the interval
[0, 1], this grid {s;} belongs to the family of so-called quasi-uniform grids.

The parameter a depends on the drop shape and is determined so that the product of
the dimensionless curvature, k(0) = WL —C, at the vertex by the step by = s1—s0 = s(h,a)
is constant for any W and is equal to the product of the curvature, ko = 7, of the spherical
drop at W = 0 by the step h of the uniform grid. This condition results in the equation for a

2(a+1) _
(WL - C) (——a+ e 2/a)1"h) = h. (59)

In using transformation (58) and (59), problem (16) — (19), which is of the form of (57),
can be approximated on the grid wy by the difference second-order scheme

1 (744405  Tti-05 1 .
— 3 _ ? g 3 7 4 i C — 0’
h ( 8405  Si-05 3 (205 + 21+0.5) (fi + C)

1 (25405  Zt,i-05 1
1 (Zavos  Fiz0s) 2 ; +C) =0,
3 ( B E. 5 (rei—05 + reiv0s) (fi +C) ;

Tei-05+T 2 205+ 2ic0s

t,i~0.5 T Tt,i+0.5 1i~0.5 T 2t,i+0. .

fi=—-WL — - _ ., i=12,...,N—-1;
281' 27'¢Si

h? 1
ro=0, TN=TN-1— —é—s%, (;; +C’> :

hz
zg=21+—4—s'(2)(WL-C), ZN=0

where for convenience bars over variables are omitted. The integrals in expressions for L
and C are approximated by a quadrature formula of second-order accuracy. For the scheme
realization it is possible to use iterative algorithms of the type of (23), (24) or (25), (26). As
the magnetic parameter W increases, Eq. (59) can be solved at each its value by the Newton
method with L and C corresponding to the previous value of W.
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8. Tests

8.1. Organization of computational experiment

The iterative schemes were tested on problems (12) — (15) and (16) — (19). It is known that
the existence of equilibrium states in Problem 1 is limited by the small values of the rotation
parameter P < P.(, Bo) and in the case of a pendent drop (¢ = 1) also of the Bond number
Bo < Bo.{a, P), at whose excess an equilibrium crisis occurs. The choice of Problem 1 as a
test one is explained by our wish to compare the critical values of Bo. and P, obtained by a
sign of computational instability of the iterative schemes with the known data of the linear
theory for stability of equilibrium capillary surfaces. It was assumed that a value of the
Bond number or the rotation parameter exceeded the critical one if at this value iterations
diverged. The critical values of Bo, and P were refined by the dichotomy method unless
their error became less than § = 5-107*.

As for Problem 2, the mechanism of physical collapse of equilibrium shapes was revealed
neither theoretically nor experimentally [4,8]. As the parameter W grows, the magnetic-
fluid drop is elongated along the field direction, without breaking. In this case, the surface
curvature K increases at the drop apexes and decreases near the equatorial line. Problem 2
is a good tool to test iterative schemes for “strength”, since the onset of instability when
schemes are implemented, may be only computational in nature. It has been found [12]
that as the parameter W grows, the apex curvature K(0) increases almost according to the
linear law so that the influence of the parameter W on the convergence of iterations can be
interpreted as the influence of the curvature.

Hereinafter in this section, for brevity, the iteration-difference schemes (23), (24) and
(25), (26) are referred to as schemes A and B, respectively, the tangential fourth-order ap-
proximation method (29) ~ (31) as scheme T-4, its simplified version of the second-order
approximation (see Subsection 4.1) as scheme T-2, the modified tangential method (34) as
scheme TM-2, and the iterative spline-scheme (44) — (46) as scheme S. Taking into consid-
eration the statement of the test problems, in the algorithms it was assumed that z ~ T,
y~Zz a=b=ay =0, =¢afor Problem 1 and o; = —m/2 for Problem 2. The integrals
in L and C were approximated by the same order as the differential equations: the schemes
A, B, T-2, TM-2 used analogs of the midpoint and trapezoid rules, and schemes T-4 and
S — the Euler rule. So, e.g., in the case of a uniform grid the constants L and C at each
iteration of algorithm T-/ were calculated by the formulas

N-1 h2 1 -1/3
L= {——27T¢ 1:}1 Z Z;T; COS 61 + E (:Z_() - '2—¢f1v sin 2&)] } ,
i=1

2sina 1 Bo
= — ZPL372, } — —
C=9¢ ( TN 2 rN) 7TL7712V ’

N-1 1 ~-1/3
L= {—Zﬂh ( S Fisin§; — 57*,2\,)} :
ie=1

2 N-1 h2
C = —5 {“FN + WL (h Z T COSB;Bi + -—):|

TN =1 12
where the first two formulas refer to Problem 1 and the other two — to Problem 2. The
corresponding formulas for scheme T-2 differ from the above by the absence of the terms
containing h?.
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As a criterion for accuracy of an iterative solution, consideration was made of the dis-
crepancy value of the difference equations. For example, iterations A and B continued unless
the condition

max | Ap(F™, 2" F™) ||< e = 1074

was satisfied, and iterations T-2 and 7-4 — unless the condition

n - g
max |- @7 | <e=10""
0<i<N hi+1

was satisfied at any number n = n(e), where the operators Ay are of the form of (22).
Computations were made on uniform grids with steps A = 1/100 and 1 /20. Moreover,
Problem 2 was solved on the adaptive grid with the number of partitions N = 100,

8.2. Results of tests

As the calculations have shown, because of the simplification of the recurrence procedures
and the reduction of their number, in going from one iteration to another, both tangential
schemes T-4, T-2, TM-2 and the spline-scheme S spent for one iteration a machine time
smaller by a factor of 1.5-2 than the time spent by the schemes A and B.

8.2.1. Problem 1. Comparison with the known data of the stability theory has shown
that a crisis of the computational process occurs at the same Bo. and P, as a collapse of
equilibrium shapes. So, for an immovable pendent drop (P=0,¢=1)at a = 45° the
theoretical value is Bo, = 4.988 and we have obtained numerically Bo, = 4.982 at h = 1/100
by using the scheme A; at o = 90° both theoretical and numerical values appeared to be
equal to 2.265; and at a = 135° they turned out to be 0.579 and 0.580 respectively. It should
be noted that the theoretical results presented were calculated by means of cubic-spline
interpolation by the tabular data from [9,10]. To avoid the influence of an interpolation
error, the angle o = 1.523 was considered in more detail. The exact value of Bo, = 2.407 for
this angle is given in [9,10]. -As a result of the numerical experiment at h = 1 /20, critical
values of Bo, = 2.3970+0 (schemes A and B), 2.4185+8 (scheme T-2), 2.4058+4 (scheme T-
/) were obtained. At h = 1/100 all the schemes showed the same result Bo. = 2.4058 £ 6.
The unremovable 0.001 difference between the analytical and numerical values of Bo, can be
caused by an error of the linear theory, which occurs due to the neglect of the second-order
infinitesimal disturbances. We draw the attention to the high efficiency of the tangential
scheme T-4 which provides the required accuracy ¢ not only at h =1 /100 but also on a
rough grid at h = 1/20. '

The equilibrium stability of a rotating drop has been studied theoretically only at Bo =
0, a = 90°. The critical value of the rotation parameter P, = 4.7613 = d found numerically
at h = 1/100 in fact does not differ from the theoretical one P = 4.763 [9,10].

An equally perfect agreement between theoretical and numerical values of the critical
parameters was also observed in the problem on the magnetic-fluid seal stability [13,19], for
whose solution the scheme A was used, as well as in other problems. Thus, as a result of the
numerical experiment, it has been found that all iterative algorithms presented adequately
respond to a crisis of the equilibrium state of a free surface: if at some values of the problem
parameters the equilibrium shapes collapse due to plane or axially symmetric disturbances,
then a computational instability appears at the same critical values. Possibly, the point
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is that the iterative process simulates a suitable unsteady-state process of development of
perturbations.

8.2.2. Problem 2. Comparison of the algorithms by the most important convergence
indices of the iterative process was made mainly in Problem 2. Table 1 contains the data on
the convergence rate and computational stability as W grows. The left columns at each 7
correspond to scheme A; the middle ones — to scheme B; and the right ones — to scheme T-4.
The crosses stand for divergence of the iterative process; the sign oo marks situations, where
the iterative process is of an oscillatory type with a bounded amplitude which does not damp
at n — 0o. The exhaustion of the W values was made at a step of 2.5. For each new variant,
the solution obtained for the previous W served as an initial iterative approximation. The
initial approximation for W = 2.5 is an exact solution at W = 0. As is seen, the scheme T-4
compares with the schemes A and B in the convergence rate but is much superior to’them
in stability.

Table 1. Indices of the convergence rate and stability of the iterative schemes on the uniform grid at
h = 1/100 for Problem 2

Iteration number n(e)
AW T =05 T=0.1 T =0.05 T =0.01
2.5 19 30 42 113 14 2391231 30 484 | 1167 151 2449
) 210 x 38 | 123 29 219|249 21 444 | 1262 135 2246
7.5 x — 41 1129 oo 197 (261 101 401 | 1320 114 2032
10 60 | 132 — 1771268 oo 363 | 1357 88 1847
125 | — — 141{134 — 159|273 — 330 | 1377 58 1694
15 —  — oo | 136 — 145|276 — 295 | 1391 oo 1530
275 | — — — 209 — 170|274 — 260 | 1381 — 1143
30 — —  — | 417 — 191}272 — 265 | 1370 — 1188
325 | — — — | x — 216|270 — 249 | 1357 — 1127
40 - — | — — 496|268 — 256 |1313 — 1127
25| — — — | -— — 992138 — 257 | 1301 — 1086
45 - - — | = — 00|83 -— 261 |1292 — 1044
475 | — — — | — — — | x — 2631|1295 — 1068
55 - - — | - = — | - — 307 |2260 — 1039
575 | — — — | — — — | -— — 3323424 - 1094
60 - = - - - — - — 374 o0 — 1132
75— — — | — — —]— — 1691 — — 1145
8 | — — — | — — —|— — 4438 — — 125
85| — — — | — — —|— = oo | — — 1141
145 | — — — | — — —|— — — ] - — 3933
1475 — — — | — — == = — | — = 472
50 | — — — | — — —|— — — | = — >5000
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Let us emphasize the inconsistency of the scheme B in the case of strongly curved (locally
disturbed) surfaces characteristic of magnetizing and electrically conducting fluids in high
fields. Indeed, the stability domain of the scheme B is limited by the value W =~ 15 at
which the curvature K(0) only 5.5 times exceeds the curvature, Ky, of the spherical drop at
W = 0. For comparison: at W = 150 limiting for the scheme 7-4 at h =1 /100 the relative
curvature attains K (0)/ Ky = 47.6.

At the same time, when capillary surfaces are calculated in a gravitational field, the
scheme B can be fairly efficient [11]. In this case, the maximum value of the curvature K,
as a rule, does not differ considerably from the spherical surface curvature realized under
zero-gravity, and the physical instability occurs earlier than the computational one. So, in
Problem 1 at P =0, ¢ = 1, o = 1.523 the equilibrium crisis that occurred at Bo = Bo, is
defined by the critical curvature K(0)/Ko = 1.61, which in Problem 2 corresponds to the
value of W = 2.5 belonging to the stability domains of all the schemes.
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Figure 1. Boundaries of computational stability of the iterative schemes on the uniform grids at h = 1/20
(a) and h = 1/100 (b). Problem 2

Fig. 1 plots the computational stability boundaries of the iterative schemes. Each curve
divides the domain (W, ) into two subdomains: the computational stability domain lies
below the curve while the computational instability domain lies above it. Note that the
stability domain of the scheme B does not depend on the step h, and the stability of the
remaining schemes is considerably improved as h decreases. It is seen that at both h = 1/20
and h = 1/100 the tangential schemes T-4, T-2, and TM-2 as well as the spline-scheme S are
stable over a much wider range of values of the magnetic parameter W than the iteration-
difference schemes A and B. And this advantage becomes more and more perceptible as
the grid is refined. The fact that the scheme 7-2 has shown better stabilizing properties
on the rough grid than the scheme T-4 of the same type can be explained by the higher
order of approximation of the latter, because an increase in the order of approximation
usually leads to more severe restrictions on the grid step in stability conditions. Also, let us
note good stabilizing properties of the scheme TM-2 shown on the two grids. The spline-



Methods for numerical modeling of two-dimensional capillary surfaces 91

scheme S compares somewhat unfavorably with the tangential schemes in stability. Possibly,
the reason is that the test problem is classified with moving boundary problems, and the
tangential method is most adapted to them.

8.2.3. Adaptive grid. The adaptive grid has proved to be a powerful tool for stabilizing
iterations as the surface curvature grows. If on a uniform grid with a step h =1 /100 the
stability domain of the scheme T-4 is limited by the value of W = 150 (see Table 1), then
on the adaptive grid the stability boundary moves to W = 4800. Because of the optimal
distribution of the nodes s;, a high accuracy of results is provided, allowing the peak-shaped
apex formation to be described as W grows (Fig. 2). A close-up view of such an apex is
shown in Fig. 2,e. Its curvature 1491 times exceeds that of the spherical drop at W = 0. It
is interesting that more than half of the nodes s; are concentrated on the depicted fragment
of the surface meridian, although its length is less than 1/400 of the total meridian length.
As the apex is approached, the monotonic increase in the curvature is accompanied by a
decreasing in the steps h; = §;, — 8;-1. So, at W = 4800 the minimal step attains a value of
h, = 8-1077 and the maximal one — hy = 0.06.

z
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b
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c
d

0 0.01

Figure 2. Drop deformation with increasing magnetic parameter W: a, W = 0; b, 100; ¢, 10005 d, 4800; e,
peak-shaped apex of the drop at W = 4800. Problem 2

For the scheme A, the limiting values of the magnetic parameter have proved to be much
lower: W 2 60 (uniform grid) and W = 150 (adaptive grid). However, the stabilizing prop-
erties of the scheme A are considerably improved by means of the coordinate-wise relaxation
procedure described below: due to it a solution was obtained within W < 750. However, in
the case of the scheme T-4, this procedure did not yield a positive result.

8.2.4. Coordinate-wise relazation. On the basis of the known theoretical results con-
cerning the overrelaxation method, it is reasonable to assume that the optimal values of 7 in
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the above iterative algorithms depend on the grid step. Namely, the optimal value increases
in the range of admissible values 0 < 7 < 7* < 2 as the grid is refined. In solving equilibrium
capillary-surface problems on nonuniform grids, the dependence of the parameter 7 = 7; on
the step h; can be assigned in the approximate form

hi—h
=’i=— 1-—- : 5 ’:7,...71;
T=T 7‘( A+B(hi——h)> 1=1,2 N
A—’:Th(l—:h), B:T(l——h)_——v"'
™ -7 T — T

where 7* and 7 are coefficients evaluated from the numerical experiment, 7 is some average
value in the range of admissible values which is appropriate to the average step h; = h = 1/N.
Notice that the maximum 7; = 7* and the minimum 7; = 0 of the relaxation parameter are
attained only in the limiting cases h; = 0 and h; = 1.
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