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Abstract—We study invariant metric f-structures on naturally reductive homogeneous spaces
and establish their relation to generalized Hermitian geometry. We prove a series of criteria char-
acterizing geometric and algebraic properties of important classes of metric f-structures: nearly
Kähler, Hermitian, Kähler, and Killing structures. It is shown that canonical f-structures on
homogeneous Φ-spaces of order k (homogeneous k-symmetric spaces) play remarkable part in this
line of investigation. In particular, we present the final results concerning canonical f-structures on
naturally reductive homogeneous Φ-spaces of order 4 and 5.
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1. INTRODUCTION

Affinor structures on smooth manifolds, i.e., smooth tensor fields of type (1, 1) realized as fields of
endomorphisms acting in the tangent bundle of a manifold, are classical objects of investigation in
differential geometry. There are very many types of such structures (see, e.g., the survey paper [1]),
and there arise many new structures. At the same time, traditionally, almost complex, almost product,
almost contact structures, and some other structures are intensively studied. Since 1960s, of great
concern are f-structures introduced by K. Yano [2] (f3 + f = 0), which generalize almost complex and
almost contact structures. The metric f-structures (manifolds with an f-structure and an agreeing
(pseudo)Riemannian metric) include the classes of almost Hermitian structures and metric almost
contact structures, which play an important role in differential geometry and many its applications. In
turn, metric f-structures are important objects of study in generalized Hermitian geometry, an area
of modern differential geometry developed since the middle of 1980s (see, e.g., [3–5]).

In the differential geometry of homogeneous manifolds of Lie groups, the study of invariant affinor
structures is a fundamental line of research. The classical theories of Riemannian and Hermitian
symmetric spaces (see, e.g., [6]) became the base in the search for new classes of homogeneous
spaces with invariant structures. In this respect, homogeneous Φ-spaces (see, e.g., [7–9]), which
are also called generalized symmetric spaces [10], play an important role. First of all, homogeneous
Φ-spaces of order 3 (homogeneous 3-symmetric spaces [10]) having a canonical almost complex
structure ([11], [8]) gave a wide range of invariant almost Hermitian structures which, in the case
of a naturally reductive metric, are nearly Kähler [12–14]. Later, it was discovered that regular
Φ-spaces (in particular, homogeneous k-symmetric spaces) have many canonical structures of classical
type including almost complex structures and f-structures [15, 16]. This gave a possibility not only to
enlarge the number of known homogeneous manifolds with invariant almost Hermitian structures but
also to present, with the use of canonical f-structures, first classes of invariant examples in generalized
Hermitian geometry [17–23]. Note that an important role here was played by homogeneous Φ-spaces
of order 4 and 5 endowed with naturally reductive metrics, and, in addition, a significant analogy was
established with classical results of N. A. Stepanov, J. A. Wolf, A. Gray, V. F. Kirichenko in Hermitian
geometry.
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2 BALASHCHENKO

The class of naturally reductive homogeneous spaces is intensively studied in differential geometry
and its applications. Being a wide generalization of Riemannian globally symmetric spaces, such spaces
possess the following property: All geodesics on these spaces are homogeneous, i.e., can be obtained as
trajectories of one-parameter subgroups of the isometry group [24]. Later it was established that there
are other spaces with the same property, which gave rise to a new line of research devoted to finding
geodesically orbital spaces (g. o. spaces). Not considering the history of this problem and the extensive
bibliography, we mention only the recent papers [25, 26]. Note that the majority of known invariant
Einstein metrics on compact homogeneous spaces are naturally reductive (see the survey paper [27]).

In this paper, we study invariant metric f-structures on naturally reductive homogeneous spaces.
We establish a series of criteria characterizing geometric and algebraic properties of important classes of
metric f-structures: nearly Kähler, Hermitian, Kähler, and Killing structures. We present the final results
concerning canonical f-structures on naturally reductive homogeneous Φ-spaces of order 4 and 5.

Some of results of this paper were partially announced in [17, 19].

2. METRIC f-STRUCTURES ON MANIFOLDS

First we consider briefly some facts of generalized Hermitian geometry concerning metric
f-structures on smooth manifolds. For detailed information and general approaches, we refer to
[3–5].

Recall that an f-structure on a manifold M is a field of endomorphisms f acting in the tangent
bundle of M and satisfying the condition f3 + f = 0 [2]. The number r = dim Im f is constant for all
points of M [28], it is called the rank of the f-structure. In addition, the number dimKer f = dimM − r
is usually called the defect of an f-structure and denoted by def f . One can easily see that the particular
cases def f = 0 and def f = 1 of f-structures lead to almost complex and almost contact structures
respectively.

Let M be an f-manifold and X(M) the module of smooth vector fields on M . Then X(M) =
L ⊕M, where L = Im f and M = Ker f are complementary distributions, which are usually called
the first and the second fundamental distributions of an f-structure, respectively. It is clear that the
endomorphisms l = −f2 and m = id +f2 are the complementary projectors onto the distributions L
and M, respectively. Note that the restriction F of an f-structure to L is an almost complex structure,
i.e., F 2 = − id.

The Nijenhuis tensor of an f-structure is defined by [5]

N(X,Y ) =
1
4
([fX, fY ] − f [fX, Y ] − f [X, fY ] + f2[X,Y ]), (1)

where X,Y ∈ X(M). The condition N = 0 is a criterion of integrability of an f-structure ([29], P. 20).
Consider now some notions used in generalized Hermitian geometry. Such a geometry appeared

(see, e.g., [3] and [4]) as a natural consequence of the development of the Hermitian geometry and the
theory of almost contact metric structures together with their numerous applications. The basic object
of study in this geometry is a generalized almost Hermitian structure (briefly, GAH-structure) of
arbitrary rank r on a (pseudo)Riemannian manifold (M,g) [3, 4]. We will not formulate here the detailed
definition of this general notion and restrict ourselves to consideration of an important special case of
GAH-structures of rank 1, metric f-structures, which contain the class of almost Hermitian structures.

Recall that an f-structure on a (pseudo)Riemannian manifold (M,g = 〈·, ·〉) is called a metric
f-structure if 〈fX, Y 〉 + 〈X, fY 〉 = 0, X,Y ∈ X(M) [4]. In this case, the triple (M,g, f) is called a
metric f-manifold. It is clear that the tensor field Ω(X,Y ) = 〈X, fY 〉 is skew-symmetric, i.e., Ω is a
2-form on M . Ω is called the fundamental form of a metric f-structure [3, 4]. One can easily see that
the partial cases def f = 0 and def f = 1 of metric f-structures lead to almost Hermitian structures
and almost contact metric structures, respectively.

Let M be a metric f-manifold. Then the first and the second fundamental distributions L = Im f and
M = Ker f are mutually orthogonal. Note that, in the case when the restriction of the metric g to L is
nondegenerate, the restriction (F, g) of the metric f-structure to L is an almost Hermitian structure,
i.e., F 2 = − id, 〈FX,FY 〉 = 〈X,Y 〉, X,Y ∈ L.
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A fundamental part in the geometry of generalized almost Hermitian structures (in particular, in the
geometry of metric f-structures) is played by a special tensor T of type (2, 1) called the compositional
tensor. Using the tensor T , one can introduce in X(M) the structure of so-called associated Q-algebra
by the formula [3, 4]

X ∗ Y = T (X,Y ).

Based on natural properties of the associated Q-algebras [3, 4], this enables us to introduce into consid-
eration certain classes of GAH-structures. Note that, for metric f-manifolds, the explicit expression of
the tensor T was given in [4]:

T (X,Y ) =
1
4
f(∇fX(f)fY −∇f2X(f)f2Y ), (2)

where ∇ is the Levi-Civita connection of the (pseudo)Riemannian manifold (M,g), X,Y ∈ X(M).
Below we list the main classes of metric f-structures and indicate the properties defining these

classes:

Kf Kähler f-structure ∇f = 0;

Hf Hermitian f-structure T (X,Y ) = 0, i.e., X(M) is an abelian
Q-algebra;

G1f f-structure of class G1 or
G1f-structure

T (X,X) = 0, i.e., X(M) is an anticommu-
tative Q-algebra;

QKf quasi-Kähler f-structure ∇Xf + TXf = 0;

Kill f Killing f-structure ∇X(f)X = 0;

NKf nearly Kähler f-structure ∇fX(f)fX = 0.
or NKf-structure

The classes Kf , Hf , G1f , and QKf (in a more general situation) were introduced in [4] (see also
[30]). Killing f-manifolds Kill f were defined and studied in [31], [32]. The class NKf was defined in
[19, 20].

There are the following obvious inclusions between the classes of metric f-structures:

Kf = Hf ∩QKf ; Kf ⊂ Hf ⊂ G1f ; Kf ⊂ Kill f ⊂ NKf ⊂ G1f .

It is important to note that, in the case f = J , we obtain the corresponding classes of almost Hermitian
structures [33]. For example, for f = J , classes Kill f and NKf coincide with the well-known class
NK of nearly Kähler structures.

Note that a Kähler f-structure is always integrable, which coincides with the case of classical Kähler
structure J . Indeed, since the connection ∇ is torsion-free, we have ∇XY −∇Y X − [X,Y ] = 0. Then
the Nijenhuis tensor N(X,Y ) for the f-structure can be written in the form ([5], P. 410)

N(X,Y ) =
1
4

(∇fX(f)Y − f∇X(f)Y −∇fY (f)X + f∇Y (f)X),

which implies that, for a Kähler f-structure, N(X,Y ) = 0.
At the same time, generally speaking, a Hermitian f-structure is not integrable, which differs it

essentially from a classical Hermitian structure. Recall in this connection that the fact that an almost
Hermitian structure (g, J) is Hermitian is equivalent to the fact that it is integrable (see, e.g., [33]).

We also note that Killing f-structures are often defined by the requirement that the fundamental
form Ω is a Killing form, i.e., dΩ = ∇Ω [31, 34]. It is easy to show that this requirement is equivalent to
the above given condition ([5], P. 419).

For particular classes of metric f-structures, the compositional tensor T can be written in a simpler
form. More exactly, the following statement holds.
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Lemma 1. The compositional tensor T of any NKf-structure on a smooth manifold
(M, 〈·, ·〉, f) is of the form

T (X,Y ) =
1
2

f∇fX(f)(fY ), (3)

where X,Y ∈ X(M).

Proof. On polarization, the condition defining NKf-structures can be written in the form

∇fX(f)(fY ) + ∇fY (f)(fX) = 0.

In addition, one can easily check that any f-structure satisfies the identity (see, e.g., [34])

f∇X(f)(f2Y ) + f2∇X(f)(fY ) = 0.

Using the above indicated equalities, we obtain

−f∇f2X(f)(f2Y ) = f2∇f2X(f)(fY ) = −f2∇fY (f)(f2X) = f3∇fY (f)(fX) = f∇fX(f)(fY ).

The latter equality allows us rewrite (2) in the form (3).

Note that formula (3) generalizes a formula obtained earlier (with the use of the same method) in [34]
for Killing f-manifolds (see also [5]).

3. NATURALLY REDUCTIVE SPACES WITH INVARIANT METRIC f-STRUCTURES

Now we pass to consideration of invariant metric f-structures on (pseudo)Riemannian homoge-
neous spaces.

Let G be a connected Lie group, H its closed subgroup, and g = 〈·, ·〉 an invariant (pseudo)Rieman-
nian metric on the homogeneous space G/H . As usual, we denote by g and h the Lie algebras of the
Lie groups G and H , respectively. Assume that G/H is a reductive homogeneous space, and g = h ⊕ m

is the reductive decomposition of the Lie algebra g. We identify m with the tangent space To(G/H) at
o = H . Then an invariant metric g is completely determined by its value at o. For convenience, we will
use the same notation for an invariant metric 〈·, ·〉 on G/H and its value at o. This agreement will also
be used for all other invariant structures on G/H , in particular, for invariant f-structures.

Any invariant f-structure on G/H gives a decomposition m = m1 ⊕ m2, where the subspaces
m1 = Im f and m2 = Ker f determine completely the first and the second fundamental distributions,
respectively.

Let now (G/H, g = 〈·, ·〉, f) be a homogeneous reductive space with invariant (pseudo)Riemannian
metric 〈·, ·〉 and invariant f-structure. This means that, for all X,Y ∈ m,

〈fX, Y 〉 + 〈X, fY 〉 = 0. (4)

In addition, in this case, the subspaces m1 and m2 are orthogonal with respect to the metric 〈·, ·〉.
Recall that (G/H, 〈·, ·〉) is called a naturally reductive space with respect to a reductive decompo-

sition g = h ⊕ m [24] if

〈[X,Y ]m, Z〉 = 〈X, [Y,Z]m〉 (5)

for all X,Y,Z ∈ m. Here the index m denotes as usual the projection of vectors from g to m with respect
to the indicated reductive decomposition.

Consider now some of the above listed classes of invariant metric f-structures on naturally reductive
homogeneous spaces.
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3.1. Invariant NKf-Structures

Let (G/H, 〈·, ·〉, f) be a homogeneous reductive space with invariant naturally reductive metric 〈·, ·〉
and invariant metric f-structure.

As it is known [20], in the case of a naturally reductive space, the fulfillment of the condition
[fX, f2X]m = 0 for all X ∈ m is a criterion for an invariant metric f-structure to belong to the class
NKf . Polarizing the above equality, we arrive at the criterion

[fX, f2Y ]m = [f2X, fY ]m, (6)

where X,Y ∈ m. This equality is equivalent to the following one:

[f2X, f2Y ]m = −[fX, fY ]m. (7)

Lemma 2. For an invariant NKf-structure on a naturally reductive space (G/H, 〈·, ·〉, f), the
following relation holds:

f([X, fY ]m) = f2([X, f2Y ]m), (8)

where X,Y ∈ m.

Proof. Using (4), (5), and (7), we obtain, for all X,Y,Z ∈ m, 〈f([X, fY ]m), Z〉 = −〈[X, fY ]m, fZ〉 =
−〈X, [fY, fZ]m〉 = 〈X, [f2Y, f2Z]m〉 = 〈[X, f2Y ]m, f2Z〉 = 〈f2([X, f2Y ]m), Z〉.

Since the metric 〈·, ·〉 is nondegenerate on m, this implies (8).

Let us compute the compositional tensor T for an NKf-structure in the case under consideration.

Theorem 1. The compositional tensor T of an invariant NKf-structure on a naturally
reductive space (G/H, 〈·, ·〉, f) is of the form

2T (X,Y ) = −f2([fX, fY ]m) = f2([f2X, f2Y ]m), (9)

where X,Y ∈ m.

Proof. The expression of the tensor T for an NKf-structure on a smooth manifold is indicated in
Lemma 1. Since ∇X(f)Y = ∇XfY − f∇XY for smooth vector fields X and Y , in the case of a reductive
homogeneous space, using the traditional technique of special vector fields in a neighborhood of the point
o = H ∈ G/H , we obtain

∇X(f)Y = α(X, fY ) − fα(X,Y ).

Here α is the Nomizu function of an invariant affine connection ∇ on G/H and X,Y ∈ m [35]. Since the
Levi-Civita connection, for naturally reductive spaces, is defined by the formula α(X,Y ) = 1

2 [X,Y ]m,
we arrive at the equality

∇X(f)Y =
1
2
([X, fY ]m − f([X,Y ]m)), X, Y ∈ m.

Using now Lemma 2, we obtain ∇fX(f)fY = 1
2([fX, f2Y ]m − f([fX, fY ]m)) = 1

2([fX, f2Y ]m −
f2([fX, f2Y ]m)) = 1

2 (1 − f2)([fX, f2Y ]m). Taking into account the latter equality and applying
Lemmas 1 and 2 and Eq. (7), we have 2T (X,Y ) = f∇fX(f)fY = 1

2f(1 − f2)([fX, f2Y ]m) =
f([fX, f2Y ]m) = f2([fX, f3Y ]m) = −f2([fX, fY ]m) = f2([f2X, f2Y ]m), which proves (9).

As usual, we will denote by the indices 1 and 2 the projections of vectors from g to m1 and m2,
respectively, with respect to the decomposition g = h ⊕ m1 ⊕ m2.

Theorem 2. Let (G/H, 〈·, ·〉, f) be a naturally reductive homogeneous space with invariant
NKf-structure. f is a Hermitian f-structure if and only if the following relation holds:

[m1,m1] ⊂ m2 ⊕ h. (10)
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Proof. Note first of all that formula (9) for the compositional tensor T can be written in the form

2T (X,Y ) = −[X1, Y1]1. (11)

Indeed, for any X,Y ∈ m, we obtain 2T (X,Y ) = f2([f2X, f2Y ]m) = f2([−X1,−Y1]m) = −[X1, Y1]1.
Hermitian f-structures are defined by the condition T (X,Y ) = 0 for all X,Y ∈ m. By (11), this
condition takes the form [X1, Y1]1 = 0, which is equivalent to the inclusion [m1,m1] ⊂ m2 ⊕ h.

As a particular case of the above statement, we obtain the following corollary.

Corollary 1. An invariant NK-structure on a naturally reductive homogeneous space (G/H, 〈·, ·〉, J)
is a Kähler structure if and only if G/H is a locally symmetric space (i.e., [m,m] ⊂ h).

Proof. In fact, in the case f = J , condition (10) takes the form [m,m] ⊂ h, i.e., G/H is a locally
symmetric space. Therefore, a Hermitian structure J on G/H is a Kähler structure.

Note that the statement of Corollary 1 was first proved (in somewhat other formulation) in [13].

Remark 1. One of the statements of Theorem 2 is valid in a stronger formulation. More precisely, as
it has been proved in [22], condition (10) implies that an invariant metric f-structure on any reductive
homogeneous space (G/H, g) is Hermitian for an arbitrary invariant (pseudo)Riemannian metric g (not
necessarily naturally reductive).

3.2. Invariant Kähler f-Structures
Consider invariant Kähler f-structures on naturally reductive homogeneous spaces. Several charac-

teristic conditions take place.

Theorem 3. Let (G/H, 〈·, ·〉, f) be a naturally reductive homogeneous space with invariant
metric f-structure. The following conditions are equivalent:

1) f is a Kähler f-structure;
2) [X, fY ]m = f([X,Y ]m) for all X,Y ∈ m;
3) [m,m1] ⊂ h and [m,m] ⊂ m2 ⊕ h.

Proof. 1) ⇐⇒ 2). The condition ∇f = 0 for an invariant f-structure on a reductive homogeneous
space, in terms of the Nomizu function α of the invariant affine connection ∇, takes the form α(X, fY )−
fα(X,Y ) = 0, where X,Y ∈ m. Since the space under consideration is naturally reductive, we have
α(X,Y ) = 1

2 [X,Y ]m. Therefore, 1
2 [X, fY ]m − f(1

2 [X,Y ]m) = 0, which is equivalent to condition 2).
2) ⇐⇒ 3). Let condition 2) hold. Note that condition 2) implies the equality

[X, fY ]m = [fX, Y ]m. (12)

Indeed, letting Y = X in 2), we have [X, fX]m = 0 for all X ∈ m. Polarization of this equality gives
(12). On the other hand, using (4), (5), and (12), for any X,Y,Z ∈ m, we obtain 〈f([X,Y ]m), Z〉 =
−〈[X,Y ]m, fZ〉 = −〈X, [Y, fZ]m〉 = −〈X, [fY,Z]m〉 = −〈[X, fY ]m, Z〉. Hence, by virtue of the non-
degeneracy of the metric 〈·, ·〉 on m, we arrive at the equality

f([X,Y ]m) = −[X, fY ]m. (13)

Now, from condition 2) and Eq. (13) it follows that f([X,Y ]m) = 0 = [X, fY ]m. Since X and Y are
arbitrary, this implies the inclusions: [m,m1] ⊂ h and [m,m] ⊂ m2 ⊕ h. Conversely, if relations 3) hold,
then, obviously, equality 2) also holds.

Remark 2. Condition 3) of Theorem 3 can be written in an equivalent form

[m1,m1] ⊂ h, [m1,m2] ⊂ h, [m2,m2] ⊂ m2 ⊕ h.

Considering the special case f = J of Theorem 3, we arrive at the following statement.

Corollary 2. An invariant almost Hermitian structure J on a naturally reductive homogeneous
space (G/H, 〈·, ·〉, J) is a Kähler structure if and only if G/H is a locally symmetric space (i.e.,
[m,m] ⊂ h).

Note that this statement is a sharpening of Corollary 1.
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3.3. Invariant Killing f-Structures

Now we consider invariant Killing f-structures on a naturally reductive space (G/H, 〈·, ·〉). As it is
known [20], for such a space, the fulfillment of the condition [X, fX]m = 0 for all X ∈ m is a criterion
for an invariant metric f-structure to be a Killing structure. Polarizing this equality, we write the above
mentioned criterion in the form

[X, fY ]m = [fX, Y ]m, X, Y ∈ m. (14)

Lemma 3. For an invariant Killing f-structure on a naturally reductive space (G/H, 〈·, ·〉, f),
for all X,Y ∈ m, the following relations hold:

f([X,Y ]m) = −[X, fY ]m = −[fX, Y ]m. (15)

Proof. The arguments that establish the validity of the first equality, in fact, repeat a part of the proof of
Theorem 3. Namely, using (4), (5), and (14), for any X,Y,Z ∈ m, we obtain

〈f([X,Y ]m), Z〉 = −〈[X,Y ]m, fZ〉 = −〈X, [Y, fZ]m〉 = −〈X, [fY,Z]m〉 = −〈[X, fY ]m, Z〉.
Since the metric 〈·, ·〉 is nondegenerate on m, taking into account criterion (14), we arrive at Eqs. (15).

Theorem 4. For an invariant Killing f-structure on a naturally reductive space (G/H, 〈·, ·〉, f),
the Nijenhuis tensor N and the compositional tensor T are of the form

N(X,Y ) = [fX, fY ]m = −[f2X, f2Y ]m = f2([X,Y ]m) = 2T (X,Y ),

where X,Y ∈ m.

Proof. For an invariant metric f-structure on a reductive homogeneous space, the Nijenhuis ten-
sor N defined by Eq. (1) is computed by the formula N(X,Y ) = 1

4 ([fX, fY ]m − f([fX, Y ]m) −
f([X, fY ]m) + f2([X,Y ]m)), where X,Y ∈ m. Taking into account Eqs. (14) and (15), for a Killing
f-structure, we obtain

N(X,Y ) =
1
4

([fX, fY ]m + [fX, fY ]m + [fX, fY ]m + [fX, fY ]m) = [fX, fY ]m.

Let us compute now the compositional tensor T . Since Kill f ⊂ NKf , we will use Lemma 1.
Similarly to the reasoning from Theorem 1, using (15) and (14), in the case under considera-
tion, we obtain ∇X(f)Y = 1

2([X, fY ]m − f([X,Y ]m)) = −f([X,Y ]m), X,Y ∈ m. Then 2T (X,Y ) =
f∇fX(f)fY = f(−f([fX, fY ]m)) = −f2([fX, fY ]m) = −[fX, f3Y ]m = [fX, fY ]m. Another ex-
pression for the tensor T can be obtained, for example, with the use of Eq. (7): 2T (X,Y ) = [fX, fY ]m =
−[f2X, f2Y ]m. Finally, in accordance with (15), we have one more representation 2T (X,Y ) =
[fX, fY ]m = −f([fX, Y ]m) = f2([X,Y ]m).

Theorem 5. Let (G/H, 〈·, ·〉, f) be a naturally reductive space with invariant Killing
f-structure. Then the following relations hold:

[m1,m1] ⊂ m1 ⊕ h, [m2,m2] ⊂ m2 ⊕ h, [m1,m2] ⊂ h.

In particular, each of the fundamental distributions of a Killing f-structure defines an invariant
totally geodesic foliation of the manifold G/H .

Proof. Let us prove the first relation. The subspace m1 is characterized by the condition f2|m1 = − id.
Taking any X,Y ∈ m and using Lemma 3, we obtain f2([fX, fY ]m) = [f3X, fY ]m = −[fX, fY ]m.
Hence it follows that [fX, fY ]m ∈ m1, i.e., [fX, fY ] ∈ m1 ⊕ h. Since X and Y are arbitrary, we have
[m1,m1] ⊂ m1 ⊕ h.

Let us prove the second relation. Let X∈m2, Y ∈m. Then f([X,Y ]m) = −[fX, Y ]m = −[0, Y ]m = 0.
This means that [X,Y ]m ∈ m2 = Ker f , i.e., [m2,m] ⊂ m2 ⊕ h, which implies, in particular, the second
inclusion.
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Finally, let us prove the third relation. For any fX ∈ m1 and Y ∈ m2, from the above obtained
relation [m2,m] ⊂ m2 ⊕ h it follows that [fX, Y ] ∈ m2 ⊕ h. On the other hand, we have f2([fX, Y ]m) =
[f3X,Y ]m = −[fX, Y ]m. Consequently, [fX, Y ]m ∈ m1, i.e., [fX, Y ] ∈ m1 ⊕ h. The two inclusions
obtained imply [m1,m2] ⊂ h.

Let us discuss now the properties of the fundamental distributions of an f-structure defined by the
subspaces m1 and m2. As it is known, any f-structure generates on a manifold an almost product
structure P as follows: P = 2f2 + id. In addition, the vertical and the horizontal distributions of the
structure P are defined by the subspaces m2 and m1, respectively. What is more, one can easily show
that, for a metric f-structure on a (pseudo)Riemannian manifold, the above constructed structure P
is a (pseudo)Riemannian almost product structure, i.e., 〈PX,PY 〉 = 〈X,Y 〉. Note that, the obtained
inclusions, in the case of a naturally reductive space, are precisely the criterion [36] of the fact that each
of the distributions generates an invariant totally geodesic foliation on G/H .

Remark 3. It is known [31] that the second fundamental distribution of an f-structure on an
arbitrary Killing f-manifold M is involutive and its leaves are totally geodesic submanifolds in M . In
other words, the information on this distribution obtained in Theorem 5 is valid in the general situation.
On the other hand, it is mentioned in [31] that the first fundamental distribution on a Killing f-manifold
of the so-called basic type [31] is not involutive. Since, by Theorem 5, the distribution generated by the
subspace m1 is involutive, we arrive at the following conclusion.

Corollary 3. There are no nontrivial invariant Killing f-structures of basic type on a naturally
reductive homogeneous space (G/H, 〈·, ·〉).

The above mentioned fact is a wide generalization of the corresponding result of A. S. Gritsans
obtained for Riemannian globally symmetric spaces.

Remark 4. The expression of the compositional tensor T for invariant Killing f-structures in
Theorem 4 can also be obtained by means of a detailed consideration of the result of Theorem 1 with
the use of the first inclusion of Theorem 5. In fact, 2T (X,Y ) = −f2([fX, fY ]m) = [fX, fY ]m.

The following theorem is one of the basic results on invariant Killing f-structures.

Theorem 6. Let (G/H, 〈·, ·〉, f) be a naturally reductive space with invariant Killing
f-structure. The following conditions are equivalent:

1) f is a Hermitian f-structure;
2) [m1,m1] ⊂ h;
3) [m,m] ⊂ m2 ⊕ h;
4) f is integrable;
5) f is a Kähler f-structure.

Proof. 1) ⇐⇒ 2). From Theorem 4 it follows that T (X,Y ) = 0 if and only if [fX, fY ]m = 0 for all
X,Y ∈ m, which is equivalent to the inclusion [m1,m1] ⊂ h.

1) ⇐⇒ 3). Using Theorem 4, consider the following representation of the tensor T : 2T (X,Y ) =
f2([X,Y ]m). Now the condition T (X,Y ) = 0 is equivalent to the equality f2([X,Y ]m) = 0 for all
X,Y ∈ m, which is equivalent to the inclusion [m,m] ⊂ m2 ⊕ h.

1) ⇐⇒ 4). This assertion is obvious since, by Theorem 4, the tensor T equals zero if and only if
N = 0.

2) ⇐⇒ 5). Assume that condition 2) holds. Since the f-structure under consideration is a Killing
structure, by Theorem 5, we have the inclusions [m1,m1] ⊂ m1 ⊕ h, [m2,m2] ⊂ m2 ⊕ h, [m1,m2] ⊂ h.
Thus, we arrive at the inclusions [m,m1] ⊂ h and [m,m] ⊂ m2 ⊕ h. Now, by item 3 of Theorem 3, it
follows that the f-structure is a Kähler structure. The converse implication is obvious by virtue of item 3
of Theorem 3.

Remark 5. As a particular case of this theorem (for f = J), we again arrive at the statement of
Corollary 1.
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In conclusion, we formulate one more result demonstrating the “degree of difference” of Killing
f-structures from NKf-structures in the case of naturally reductive spaces.

Theorem 7 ([23]). Let (G/H, 〈·, ·〉, f) be a naturally reductive space with invariant metric
f-structure. The following conditions are equivalent:

1) f is a Killing f-structure;
2) f is an NKf-structure for which [m1,m2] ⊂ h.

4. CANONICAL f-STRUCTURES ON HOMOGENEOUS Φ-SPACES

The classes of invariant metric f-structures considered above can be efficiently realized on special
families of homogeneous manifolds as well as in the form of concrete examples. In particular, homo-
geneous Φ-spaces endowed with canonical f-structures compose a wide class of invariant structures
in generalized Hermitian geometry. We give a brief description of some results in the framework of
the indicated area. First we need to list some facts concerning homogeneous Φ-spaces and canonical
structures on such spaces. For more detailed information we refer to [7, 9, 15].

Let Φ be an automorphism of a connected Lie group G, GΦ the subgroup of fixed points of Φ, and GΦ
o

the connected component of the unity e of the subgroup GΦ. A homogeneous space G/H is called
a homogeneous Φ-space if the closed Lie subgroup H in G satisfies the condition GΦ

o ⊂ H ⊂ GΦ.
Let A = ϕ − id, where ϕ = dΦe is the corresponding automorphism of the Lie algebra g. In this case,
the Lie subalgebra h of the Lie algebra g consists of ϕ-fixed vectors from g. A homogeneous Φ-space
G/H is called a regular Φ-space if g = h⊕ Ag ([7, 9, 15]). A fundamental property of regular Φ-spaces
is that these spaces are reductive [7], and the above indicated decomposition of the Lie algebra g is a
reductive decomposition. This decomposition is called the canonical reductive decomposition [7] of a
reductive Φ-space G/H . Another fundamental result is as follows: all homogeneous Φ-spaces of order
k (Φk = id) are regular [7]. These spaces are also called homogeneous k-symmetric spaces [10].

Note that the canonical reductive complement m = Ag is a ϕ-invariant subspace in g. Denote by θ
the restriction of ϕ to m. An invariant affinor structure F on a regular Φ-space G/H is called canonical
if its value at o is a polynomial of θ: F = F (θ) [15]. The canonical structures form a commutative
subalgebra A(θ) in the algebra A of all invariant affinor structures on a homogeneous space G/H . A very
important feature of the algebra A(θ) is that it contains a significant number of structures of classical
type (almost product and almost complex structures, f-structures of classical and hyperbolic type),
which are completely described in [15, 16]. In particular, for homogeneous Φ-spaces of order k, explicit
computational formulas have been obtained. For example, all canonical f-structures can be given by
formulas

f =
2
k

u∑

m=1

( u∑

j=1

ζj sin
2πmj

k

)
(θm − θk−m), (16)

where u =

{
n, if k = 2n + 1,
n − 1, if k = 2n,

, ζj ∈ {−1, 0, 1}, and there are nonzero numbers among ζj [15]. In

particular, for ζj ∈ {−1, 1}, formula (16) gives an explicit expression for all canonical almost complex
structures J on G/H (on condition that the spectrum of θ does not contain −1).

It is interesting that, for a homogeneous symmetric Φ-space (Φ2 = id), the algebra A(θ) is trivial, i.e.,
it consists of scalar structures, only. In the case k = 3, 4, 5, the general formulas for classical canonical
structures are considered in detail in [15]. These structures include the classical canonical almost
complex structure J = 1√

3
(θ − θ2) on a homogeneous Φ-space of order 3, which was first discovered

in [11] (see also [8, 12]). On a homogeneous Φ-space of order 4, there are (up to a sign) one canonical
almost product structure P = θ2 and one canonical f-structure f = 1

2(θ− θ3) [15]. As for homogeneous
Φ-spaces of order 5, such a space admits (in the case of maximal spectrum of θ), up to a sign, one
canonical almost product structure P , two canonical almost complex structures J1 and J2, and two
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f-structures f1 and f2 [15]. We do not give here explicit expressions for these structures, but mention
that the fundamental distributions of the canonical f-structures are related as follows:

m1 = Im f1 = Ker f2, m2 = Im f2 = Ker f1, m = m1 ⊕ m2.

Let a homogeneous Φ-space G/H of order k be endowed with a (pseudo)Riemannian metric
generated by a symmetric bilinear form g = 〈·, ·〉 on m × m which is invariant with respect to the
subgroup AdG(H) and the operator θ. Such a metric is invariant not only with respect to the group G,
but with respect to generalized symmetries of the homogeneous Φ-space G/H as well. It is known [23]
that all canonical f-structures on (G/H, g) agree with this metric, i.e., are invariant metric f-structures.
In particular, canonical almost complex structures J are invariant almost Hermitian structures.

In the case of a semisimple Lie group G, the so-called standard metric induced by the Killing form of
the Lie algebra g is a classical example of a metric g with the above indicated properties. We also note
that this metric on an arbitrary regular Φ-space G/H is naturally reductive with respect to the canonical
reductive decomposition [7].

Now we formulate in the most complete form the results concerning the generalized Hermitian
geometry of canonical f-structures on homogeneous Φ-spaces of order 4 and 5 with naturally reductive
metrics.

Theorem 8. A canonical metric f-structure f = 1
2(θ − θ3) on a naturally reductive homoge-

neous Φ-space (G/H, g) of order 4 is simultaneously a Hermitian f-structure and a near Kähler
f-structure. In addition the following conditions are equivalent:

1) f is a quasi-Kähler structure; 2) f is a Killing structure; 3) f is integrable; 4) f is a Kähler
structure; 5) [m1,m1] ⊂ h; 6) [m1,m2] = 0; 7) G/H is a locally symmetric space.

Theorem 9. Let G/H be a naturally reductive Φ-space of order 5, and let f1, f2, J1, J2 be the
canonical structures on G/H . Then each of the structures f1 and f2 is a Hermitian f-structure as
well as a nearly Kähler f-structure. What is more, the following conditions are equivalent:

1) f1 is a quasi-Kähler structure; 2) f2 is a quasi-Kähler structure; 3) f1 is a Killing structure;
4) f2 is a Killing structure; 5) f1 is integrable; 6) f2 is integrable; 7) f1 is a Kähler structure;
8) f2 is a Kähler structure; 9) J1 and J2 are NK-structures; 10) [m1,m2] = 0; 11) G/H is a locally
symmetric space.

Remark 6. The proof of the statements of Theorems 8 and 9 are based on the general results
established above and special features of canonical f-structures on homogeneous Φ-spaces of order
4 and 5 [21, 37, 38]. These results were partially announced or proved in [17–21]. A detailed exposition
of these and some other related questions will be given in a special paper.

We also note that many concrete examples of homogeneous spaces satisfying the conditions of
Theorems 8 and 9 can be found in [39, 40], and some other papers.

In conclusion, note that by now a considerable amount of information has been obtained on canonical
f-structures on homogeneous Φ-spaces of order 6, and a series of general facts have been established
concerning homogeneous Φ-spaces of arbitrary order k, canonical structures on these spaces, and their
relations with generalized Hermitian geometry. In addition, a field of research closely connected with the
subject of this paper is now intensively developed aimed at the study of invariant f-structures on flag
manifolds (see, e.g., [41]).
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