УДК 512.547+512.552

ГЕОМЕТРИЧЕСКАЯ ТЕОРИЯ ПРЕДСТАВЛЕНИЙ ДЛЯ ФУНДАМЕНТАЛЬНЫХ ГРУПП КОМПАКТНЫХ ОРИЕНТИРОВАННЫХ ПОВЕРХНОСТЕЙ

© 1993 г. А. С. Рапинчук, В. В. Беняш-Кривец

Представлено академиком В.П. Платоновым 08.07.92 г.

Поступило 10.09.92 г.

Пусть Γ – конечно-порожденная группа. Хорошо известно (см. [1 - 3]), что для произвольной линейной алгебраической группы G, определенной над полем K, множество всевозможных представлений ρ : $\Gamma \to G_K$ может быть отождествлено с множеством K-точек $R(\Gamma, G)_K$ некоторого K-определенного многообразия $R(\Gamma, G)$, называемого м н о г о о б р а з и е м п р е д с т а в л е н и й . Тем самым многообразие $R(\Gamma, G)$, являющееся одним из основных объектов геометрической теории представлений, дает естественную параметризацию совокупности всех представлений Γ в G, и поэтому, получив описание $R(\Gamma, G)$, мы получаем обобщенную информацию о представлениях Γ .

В настоящей работе разбирается случай, когда $\Gamma = \Gamma_g$ есть фундаментальная группа компактной ориентированной поверхности рода g, т.е. группа, заданная копредставлением вида

$$\Gamma_g = \langle x_1, y_1, ..., x_g, y_g \mid [x_1, y_1] ... [x_g, y_g] = 1 \rangle,$$

где $[x, y] = xyx^{-1}y^{-1}$. Здесь многообразие вещественных унимодулярных представлений $R(\Gamma, \operatorname{SL}_2(\mathbb{R}))$ возникает в теории римановых поверхностей, а именно, так называемое пространство Фрике, тесно связанное с многообразием модулей, является областью на $R(\Gamma, \operatorname{SL}_2(\mathbb{R}))$ (см. [4]). Мы даем описание многообразия n-мерных представлений $R_n(\Gamma) = R(\Gamma, \operatorname{GL}_n)$ и соответствующего многообразия n-мерных характеров $X_n(\Gamma)$ для случая, когда основное поле имеет характеристику 0.

Для матрицы $a \in M_n$ обозначим через $f_a(\lambda)$ ее характеристический полином, $f_a(\lambda) = \det(\lambda E_n - a)$, и пусть $\sigma_1(a), \ldots, \sigma_n(a)$ – коэффициенты $f_a(\lambda)$, т.е.

$$f_a(\lambda) = \lambda^n + \sigma_1(a) \lambda^{n-1} + \dots + \sigma_n(a).$$

Пусть $h \in SL_n$; обозначим: T_h – многообразие в M_n , определяемое системой

$$\sigma_1(a) = \sigma_1(ha), ..., \sigma_{n-1}(a) = \sigma_{n-1}(ha).$$
 (1)

Институт математики Академии наук Беларуси, Минск Сформулируем следующие два условия:

- 1) существует непустое \mathbb{Q} -открытое по Зарисскому подмножество $U \subset \mathrm{SL}_n$ такое, что для любого $h \in U$ многообразие T_h неприводимо;
- 2) для любых $x, y \in GL_n$ множество xZ(y), где Z(y) централизатор y в GL_n , содержит регулярный элемент (т.е. такой элемент z, что dim Z(z) = n).

Теорема 1. Предположим, что выполнены условия 1) и 2). Тогда многообразие $R_n(\Gamma)$ является (абсолютно) неприводимым \mathbb{Q} -рациональным многообразием, размерность которого равна $(2g-1)n^2+1$ при g>1 и равна n^2+n при g=1.

Теорема 2. В условиях теоремы 1 при g>1 многообразие $X_n(\Gamma)$ является неприводимым \mathbb{Q} -определенным многообразием размерности $(2g-2)n^2$. При этом поле рациональных функций $\mathbb{Q}(X_n(\Gamma))$ является чисто трансцендентным расширением поля $\mathbb{Q}(X_n(F_{2g-2}))$, где F_{2g-2} — свободная группа ранга 2g-2.

Далее, мы показываем, что условие 2) "почти всегда" выполняется автоматически, т.е. оно заведомо справедливо, если элемент у полупрост (предложение 4). Используя этот факт, удается проверить справедливость 1), 2) при $n \le 4$. С другой стороны, при $n \le 4$ многообразие $X_n(F_m)$ является рациональным для любого m (см. [7, 8]). Тем самым мы получаем

Следствие. При g > 1, $n \le 4$ многообразие $X_n(\Gamma)$ рационально над \mathbb{Q} .

Переходим к доказательству сформулированных теорем. Случай g=1 в теореме 1 разбирается легко, поэтому всюду ниже g>1 и n>1. Первым нетривиальным фактом здесь является неприводимость многообразия $R_n(\Gamma)$.

Обозначим: F — подгруппа в Γ , порожденная x_1 , $y_1, ..., x_{g-1}, y_{g-1}$, и $\varphi: R_n(\Gamma) \to R_n(F)$ — соответствующий морфизм многообразий представлений. Хорошо известно, что F — свободная группа ранга 2(g-1) (см. [5]), следовательно, многообразие

 $R_n(F)$ совпадает с произведением $\underbrace{GL_n \times ... \times GL_n}_{2 (g-1) \text{ раз}}$ в. Р. частности, неприводимо. С другой стороны,

из того, что любой элемент группы SL_n является коммутатором в GL_n (см. [6]), вытекает сюръективность ϕ .

Предложение 1. Для любой неприводимой компоненты $V \subset R_n(\Gamma)$ имеем $\varphi(V) = R_n(F)$.

Предложение 2. Пусть для $h \in SL_n$ многообразие T_h неприводимо. Тогда при выполнении условия 2) многообразие $W_h = \{(x, y) \in GL_n \times GL_n \mid [x, y] = h\}$ также неприводимо.

Пусть теперь $R_n(\Gamma) = \bigcup_{i=1}^d V_i$ — разложение на неприводимые компоненты и d>1. Положим $U_i=V_i\setminus (\bigcup_{j\neq i}V_j),\ i=1,\ ...,\ d,$ и пусть $U_0=\Psi^{-1}(U),$ где U — открытое множество из условия 1), а Ψ : $\mathrm{GL}_n\times ...\times \mathrm{GL}_n \to \mathrm{SL}_n$ — морфизм, задаваемый формулой

 $\Psi(x_1,y_1,...,x_{g-1},y_{g-1})=[x_1,y_1]...[x_{g-1},y_{g-1}].$ Из предложения 1 с учетом неприводимости $R_n(F)$ получаем, что пересечение $\varphi(U_1)\cap \varphi(U_2)\cap U_0$ непусто; пусть a — принадлежащая этому пересечению точка. Тогда слой $Z=\varphi^{-1}(a)$ изоморфен многоебразию $W_{\Psi(a)}$ и поэтому в силу наших построений и предложения 2 является неприводимым. Отсюда следует, что $Z\subset V_{i_0}$ для подходящего $i_0\in\{1,...,d\}$. Но $a=\varphi(u_1)=\varphi(u_2)$ для подходящих $u_i\in U_i,\ i=1,2,$ так что $u_1,\ u_2\in Z$. Однако каждая из точек $u_1,\ u_2$ лежит лишь на одной неприводимой компоненте, откуда $V_1=V_{i_0}=V_2$; противоречие.

Доказательство предложения 1. Достаточно показать, что любая неприводимая компонента $V \subset R_n(\Gamma)$ обладает таким непустым открытым подмножеством V_0 , что для любой точки $v \in V_0$ дифференциал d_v ф: $T_v(V) \to T_{\phi(v)}(R_n(F))$ сюръективен. Прежде всего устанавливается

Лемма 1. Пусть $v=(x_1,y_1,...,x_g,y_g)\in R_n(\Gamma)$ — такая точка, что элементы x_g и y_g являются регулярными и $\dim(Z(x_g)\cap Z(y_g))=1$. Тогда отображение $d_v\varphi$: $T_v(R_n(\Gamma))\to T_{\varphi(v)}(R_n(\Gamma))$ сюръективно.

Предположим теперь, что для неприводимой компоненты $V \subset R_n(\Gamma)$ имеем $\overline{\phi(V)} \neq R_n(F)$. Обозначим: V_1 — открытое подмногообразие в V, состоящее из таких точек $(x_1, y_1, ..., x_g, y_g)$, что x_g и y_g являются регулярными элементами; из условия 2) вытекает, что $V_1 \neq \emptyset$. Тогда в силу леммы 1 $V_1 \subset \operatorname{GL}_n^{2g-2} \times L$, где $L = \{(x, y) \in \operatorname{GL}_n \times \operatorname{GL}_n \mid x$ и y регулярны и $\dim(Z(x) \cap Z(y)) > 1\}$.

Лемма 2. 1) dim $L \le 2n^2 - 2(n-1)$;

- 2) для любого $h \in SL_n$ размерность любой неприводимой компоненты $T \subset W_g$ заключена в пределах $n^2 + 1 \le \dim T \le n^2 + n$;
 - 3) dim $V \ge (2g-1)n^2 + 1$.

Из утверждений 1) и 2) леммы 2 с помощью теоремы о размерности слоев морфизма получаем, что

$$\dim V \le 2(g-2)n^2 + n^2 + n + 2n^2 - 2(n-1) =$$

$$= (2g-1)n^2 - n + 2.$$

Сравнивая это неравенство с утверждением 3) леммы 2, получаем $n \le 1$; противоречие. Таким образом, неприводимость $R_n(\Gamma)$ доказана. Размерность $R_n(\Gamma)$ легко подсчитать, рассмотрев морфизм δ : $GL_n \times GL_n \to SL_n$, $\delta(x,y) = [x,y]$. Поскольку δ сюръективен [6], то по теореме о размерности слоев существует такое открытое $W \subset SL_n$, что $\dim \delta^{-1}(w) = 2n^2 - (n^2 - 1) = n^2 + 1$ для любого $w \in W$. Положим $W_0 = \Psi^{-1}(W)$, где $\Psi : GL_n^{2g-2} \to SL_n$ определяется формулой $\Psi(x_1, y_1, ..., x_{g-1}, y_{g-1}) = [x_1, y_1] \dots [x_{g-1}, y_{g-1}]$. Тогда для любого $v \in W_0$ имеем $\dim \phi^{-1}(v) = n^2 + 1$, так что $\dim R_n(\Gamma) = \dim R_n(\Gamma) + n^2 + 1 = (2g-1)n^2 + 1$.

Доказательство рациональности $R_n(\Gamma)$ основано на следующем утверждении.

Предложение 3. Существует такое непустое \mathbb{Q} -открытое подмножество $B\subset \mathrm{SL}_n$, что для любого расширения K/\mathbb{Q} и любой точки $h\in B_K$ многообразие W_h является неприводимым K-рациональным многообразием размерности n^2+1 .

Д о к а з а т е л ь с т в о. Обозначим: $B_1 - \mathbb{Q}$ -открытое подмножество в SL_n со следующими свойствами:

- 1) B_1 состоит из регулярных полупростых элементов,
- 2) для $h \in B_1$ многообразие T_h неприводимо, а многообразие W_h имеет размерность $n^2 + 1$.

Пусть $h \in B_1$. Рассмотрим проекцию π : $W_h \to \operatorname{GL}_n$, $\pi(x, y) = y$, и положим $T = \overline{\operatorname{Im}} \pi$. Пусть T^0 (соответственно T_h^0) — открытое подмножество в T (соответственно $T_h \cap \operatorname{GL}_n$), образованное регулярными полупростыми элементами. Легко видеть, что $T \subset T_h$ и $T^0 \subset T_h^0 \subset \operatorname{Im} \pi$, так что в действительности $T^0 = T_h^0$. Поскольку, очевидно, $T^0 \neq \emptyset$, то из неприводимости T_h вытекает, что $T = T_h \cap \operatorname{GL}_n$, в частности T открыто в T_h .

Обратимся теперь к анализу системы (1), задающей T_h . Из определения характеристического полинома $f_a(\lambda)$ матрицы $a=(a_{ij})$ вытекает, что его коэффициент $\sigma_r(a)$ при λ^{n-r} с точностью до знака есть сумма всех главных миноров порядка r. Разложив по элементам первого столбца те главные миноры, которые содержат a_{11} , мы получим для $\sigma_r(a)$ представление вида

$$\sigma_r(a) = \sum_{l=1}^n P_{lr} a_{l1} + Q_r,$$

где
$$P_{lr}, Q_r \in \mathbb{O} = K[a_{ij}]_{i=1,\ldots,n}$$
. Пусть a_{ij} – эле-

мент, стоящий на позиции (i, j) в матрице ha. Тогда

$$\sigma_r(ha) = \sum_{l=1}^n P'_{lr} a'_{l1} + Q'_r,$$

где P'_{lr} , Q'_r — полиномы, получающиеся подстановкой a'_{ij} вместо a_{ij} . Используя выражение a'_{ij} , через a_{ij} , теперь легко установить существование таких \overline{P}_{lr} , $\overline{Q}_r \in \mathbb{O}$, что

$$\sigma_r(ha) = \sum_{l=1}^n \overline{P}_{lr} a_{l1} + \overline{Q}_r.$$

Таким образом, мы видим, что система (1) сводится к системе n-1 линейного уравнения относительно элементов первого столбца матрицы a:

$$\sum_{l=1}^{n} p_{lr} a_{l1} = q_r, \ r = 1, ..., n-1,$$
 (2)

где $p_{lr}, q_r \in \mathbb{O}$

Обозначим: B_2 — подмножество в SL_n , состоящее из таких h, что соответствующая система (2) имеет ранг n-1. Легко убедиться, что B_2 Q-открыто и непусто. Покажем, что Q-открытое подмножество $B=B_1\cap B_2\neq \emptyset$ в SL_n является искомым. Пусть $h\in B$. Тогда в матрице системы (2), задающей многообразие T_h , найдется минор порядка n-1, тождественно не равный нулю. Из правила Крамера вытекает, что этот минор отличен от нуля на T_h и что связанные с ним координаты $a_{i_11}, \ldots, a_{i_{n-1}1}$ могут быть рациональным обра-

зом выражены через остальные. Тем самым мы установили рациональность T_h , а следовательно, и T, ибо T открыто в T_h . Отсюда уже автоматически вытекает рациональность W_h , ибо нахождение первой координаты точки $(x, y) \in W_h$ при фиксированной второй сводится к решению матричного уравнения xy = hyx, которое эквивалентно линейной системе относительно элементов матрицы x. Предложение 3 доказано.

Теперь уже несложно завершить доказательство теоремы 1. Рассмотрим "общие" $(n \times n)$ -матрицы $x_1, y_1, \ldots, x_{g-1}, y_{g-1}$, обозначим: K — поле, порожденное над $\mathbb Q$ элементами этих матриц, и построим матрицу $h = [x_1, y_1] \ldots [x_{g-1}, y_{g-1}] \in \operatorname{SL}_n(K)$. Тогда поле $\mathbb Q$ -рациональных функций $\mathbb Q(R_n(\Gamma))$ изоморфно полю K-рациональных функций $K(W_{h^{-1}})$. Так как h является "общей" точкой групны SL_n над $\mathbb Q$, то h лежит в $\mathbb Q$ -открытом подмножестве B, построенном в предложении 3, и поэ-

тому согласно этому предложению $W_{h^{-1}}$ является K-рациональным, т.е. расширение $K(W_{h^{-1}})/K$ чисто трансцендентно. Но K есть чисто трансцендентное расширение \mathbb{Q} , поэтому $\mathbb{Q}(\mathbb{R}_n(\Gamma)) \simeq K(W_{h^{-1}})$ также есть чисто трансцендентное расширение \mathbb{Q} .

Доказательство теоремы 2. Имеет место коммутативная диаграмма

$$R_{n}(\Gamma) \xrightarrow{\sigma} X_{n}(\Gamma)$$

$$\downarrow^{\delta}$$

$$R_{n}(F) \xrightarrow{\tau} X_{n}(F),$$

в которой σ , τ – естественные проекции многообразии представлений на соотвествующие многообразия характеров (см. [2]), а ϕ , δ индуцированы ограничениями. Легко видеть, что подмножество $W_0 \subset R_n(F)$ неприводимых представлений является непустым открытым \mathbb{Q} -определенным подмногообразием. Пусть $W \subset X_n(F)$ – открытое подмножество, содержащееся в $\tau(W_0)$ (ясно, что $\tau^{-1}(W) \subset W_0$), $w \in W$, $\tilde{w} \in \delta^{-1}(w)$. Несложно устанавливается, что σ индуцирует биективный \mathbb{Q} -определенный морфизм

$$\tilde{\sigma}$$
: $F = \varphi^{-1}(\tilde{w}) \rightarrow \delta^{-1}(w) = D$.

Тем самым слои F и D являются бирационально изоморфными над тем полем, над которым они оба определены.

Пусть теперь ρ — общая точка над $\mathbb Q$ многообразия $R_n(\Gamma)$, $\omega = \sigma(\rho)$ и $\mu = \delta(\omega)$ — общие точки $X_n(\Gamma)$ и $X_n(F)$ соответственно, $G = \delta^{-1}(\mu)$ — общий слой δ . Так как из условия 1) и предложения 2 вытекает неприводимость G, то поле $L = \mathbb Q(X_n(\Gamma))$ изоморфно полю рациональных функций K(G), где $K = \mathbb Q(\mu) = \mathbb Q(X_n(F))$. Ясно, что существует такой прообраз $\tilde{\omega} \in \tau^{-1}(\omega)$, $\tilde{\omega} = (x_1, y_1, \dots x_{g-1}, y_{g-1})$, что $h = [x_1, y_1] \dots [x_{g-1}, y_{g-1}] \in \mathrm{SL}_n(K)$. Тогда из сказанного выше вытекает, что G изоморфно над K многообразию $W_{h^{-1}}$, которое K-рационально, что и дает требуемое.

Предложение 4. Пусть $x, y \in GL_n$, причем элемент "у" полупрост. Тогда множество xZ(y) содержит регулярный полупростой элемент.

Явные вычисления в каждом из оставшихся случаев позволяют полностью проверить 2) для $n \le 4$.

З а м е ч а н и е. Все результаты настоящей статьи остаются справедливыми для групп Γ с $n \ge 4$ образующими x_1, \ldots, x_n и одним определяющим соотношением вида $r = r_1[x_{n-3}, x_{n-2}] [x_{n-1}, x_n]$, где r_1 лежит в коммутанте свободной группы $F(x_1, \ldots, x_{n-4})$.

Исследования профинансированы Фондом фундаментальных исследований Республики Беларусь.

СПИСОК ЛИТЕРАТУРЫ

- 1. Платонов В.П., Рапинчук А.С. Алгебраические группы и теория чисел. М.: Наука, 1991. 656 с.
- Платонов В.П. Вопросы алгебры. Минск, 1988.
 В. 4. С. 36 40.
- 3. Платонов В.П., Беняш-Кривец В.В. // Тр. МИАН. 1990. Т. 183. С. 169 178.
- 4. Абикоф У. Вещественно аналитическая теория пространства Тейхмюллера. М.: Мир, 1985. 119 с.
- 5. Линдон Р., Шупп П. Комбинаторная теория групп. М.: Мир, 1980. 447 с.
- Thompson R.G. // Trans. AMS. 1961. V. 101. N. 1. P. 16 - 33.
- 7. Formanek E. // Lin. Mult. Alg. 1979. V. 7. P. 203 212.
- 8. Formanek E. // J. Algebra. 1980. V. 62. P. 304 319.