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ANALYTIC ITERATIVE PROCESSES AND NUMERICAL
ALGORITHMS FOR STIFF PROBLEMS

B.V. FALEICHIK1

Abstract — The goal of the research is to construct practicable numerical algorithms
for stiff systems of ordinary differential equations which let you increase the accuracy
of the approximate solution without decreasing the length of the time interval. To
achieve this goal, we have constructed a family of new iterative analytic processes
generalising the Picard process. For a basic representative of this family, we demon-
strate its better convergence properties on a scalar linear problem in comparison with
the classical Picard process. For the general form of such iterative processes, we discuss
their connection with existing methods for operator equations and propose a method
for choosing their parameters. The efficiency of this parameter determination method
is justified with a numerical experiment. In conclusion we propose a general approach
to the construction of numerical algorithms which is based on the discretisation of the
constructed iterative analytic processes.
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Introduction

At the present time the most popular choice for a numerical solution of stiff nonlinear
systems of ordinary differential equations (ODEs) is implicit Runge — Kutta methods.
These methods combine high order and prominent stability properties, but as most implicit
methods, they suffer from computational complexity caused by the necessity to solve big
systems of nonlinear equations at every step. Furthermore, almost with all existing stepwise
numerical methods in order to increase the accuracy we have to decrease the timestep. It
does not cause much trouble when the whole interval of numerical investigation is relatively
small, but if this interval is very large or its length is not fixed beforehand, then small
stepsizes are unsuitable. When the required accuracy is high, the chosen stepsize can be
inconsistent with the length of the whole time interval.

The aim of our work is to construct numerical methods for stiff nonlinear ODEs which
allow to increase the accuracy of the approximate solution without decreasing the length of
the time interval2 and which are more easy to implement than implicit methods.

The construction of such numerical algorithms is based on the discretization of special
analytic iterative processes with improved convergence properties on stiff problems.

1Belarusian State Unversity, Nezavisimosti ave. 4, 220030 Minsk, Belarus. E-mail: faleichik@bsu.by
2It is necessary to understand that we are not going to refuse stepsize control. We want to use natural

stepsizes and to correct the obtained approximate solution without rejecting it.
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1. Analytic iterative processes

Consider an initial value problem for the system of ODEs

u′(x) = ϕ(x, u(x)), u(x0) = u0, x ∈ [x0, x0 + h], (1.1)

where u : [x0, x0 + h] → Rn, u0 ∈ Rn, ϕ : [x0, x0 + h] × Rn → Rn. It is assumed that the
function ϕ is continuous and satisfies the Lipschitz condition

‖ϕ(x, u1)− ϕ(x, u2)‖ 6 L0‖u1 − u2‖ ∀ x ∈ [x0, x0 + h], u1, u2 ∈ Rn.

Here ‖ · ‖ is a norm in Rn. To simplify the notation, represent (1.1) in the form of the
Volterra integral equation on the interval [0, 1]

v(x) =

x∫

0

f(z, v(z))dz, x ∈ [0, 1], (1.2)

v = SF (v) = T(v), v ∈ V n, (1.2′)

where f(z, v) = hϕ(x0 + zh, u0 + v), V n is Banach space C([0, 1],Rn) or L2([0, 1],Rn); S is
the integral operator, Sv(x) =

∫ x

0
v(z)dz; F : V n → V n, (F (v)) (z) = f(z, v(z)).

In C([0, 1],Rn), we use the norm

‖v‖∞ = max
x∈[0,1]

‖v(x)‖,

where ‖ · ‖ is an arbitrary norm in Rn. In L2(C[0, 1],Rn), consider

‖v‖2 =

( 1∫

0

‖v(x)‖2dx
)1/2

,

where ‖ · ‖ is the Euclidean norm. The exact solution of (1.2′) is denoted by v∗. Note that
the function f satisfies the Lipschitz condition with a constant L = L0h. This property
guarantees the existence and uniqueness of v∗ and is used without further mentioning.

1.1. The Picard process. Now consider the classic Picard process for (1.2′):

vk+1 = T(vk), k = 0, 1, 2, . . . (1.3)

As is known, this process converges to v∗ whenever L is finite. That’s why its discretization
seems to be suitable for our purposes (recall that we want to raise the accuracy of the
numerical approximation without decreasing the length of the time interval). Unfortunately
the Picard process has a significant drawback. It appears that on stiff problems the norm of
this process error

εk = v∗ − vk

does not decrease monotonously even if the initial approximation is close to the exact so-
lution. To illustrate this, consider the following analog of the test equation (1.1.1) from [1,
p. 16]:

v(x) =

x∫

0

(
λv(z) + g′(z)− λg(z))dx, v ∈ C[0, 1]. (1.4)
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Take λ = −50, g(z) = 0.5 sin 2πz and make 12 Picard iterations starting from v0(z) ≡ 0.
The plots of v∗(x) = g(x) (gray) and v12(x) (black) and the maximum norm of the error ε12

are shown in Fig. 1.1. We see that ‖ε12‖∞ ≈ 1011 while ‖ε0‖∞ = 0.5, which is unacceptable.
Such behavior of the error can be explained by the fact that the mapping T is a contraction
not in the norm ‖ · ‖∞ but in the equivalent norm ‖ · ‖L∞,

‖v‖L∞ = max
x∈[0,1]

‖e−Lxv(x)‖,

(see [2, p. 26], [3, p. 12]). So we have ‖εk+1‖L∞ < ‖εk‖L∞ for all k > 1, which obviously
does not mean that ‖εk+1‖∞ < ‖εk‖∞. Now we proceed with a construction of more robust
analytic iterative processes.

Fig. 1.1. 12th Picard approximation for
problem (1.4), error= 1.03× 1011

1.2. Stabilization iterative processes (SIPs). The idea is to introduce an auxiliary
variable — fictitious time t ∈ [0,+∞) — and describe a continuous process of approximation
for the solution of (1.2′). More precisely, we define a mapping

Y : [0,+∞)→ V n

such that Y (0) = v0 and
‖Y (t)− v∗‖V n −−−→

t→∞
0. (1.5)

Then by approximation of Y (tk), tk −−−→
k→∞

∞, we get an iterative process for the solution of

the original problem. This approach is well known in numerical analysis and its name can
be translated from Russian as ”stabilization principle” [4; 5, p. 258].

We define the mapping Y as a solution of the following equation (see (1.2)):

∂

∂t
y(x, t) = −y(x, t) +

x∫

0

f(z, y(z, t))dz, (1.6)

which can be represented in the operator form

Y ′(t) = −Y (t) + SF (Y (t)) = F(Y (t)). (1.6′)

We call here y : [0, 1]×[0,+∞)→ Rn, y(x, t) = (Y (t))(x). This equation the stabilization
equation. It is proved that

i) for any initial condition Y (0) = v0 ∈ C([0, 1],Rn) there exists a unique solution of
(1.6′) belonging to C([0, 1]× [0,+∞),Rn);
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ii) if Y is a solution of (1.6′), then (1.5) holds, where v∗ is the exact solution of (1.2′),
‖·‖V n is ‖·‖∞ or ‖·‖2 (to prove this for the norm ‖·‖∞ the differentiability of f is required).

Now consider an initial value problem for the stabilization equation (1.6′):

Y ′(t) = F(Y (t)), Y (0) = v0. (1.6′′)

The approximate solution of (1.6′′) by means of an explicit Runge — Kutta (RK) method
with a constant timestep τ can be represented in the form

vk+1 = M(vk), (1.7a)

where the operator M is defined as

M(v) = v + τ

s∑
i=1

bi Ki(v), (1.7b)

Ki(v) = F

(
v + τ

i−1∑
j=1

aij Kj(v)

)
, i = 1, s. (1.7c)

Here vk ≈ Y (tk), tk+1 = tk + τ , s is the number of stages of base Runge — Kutta method,
bi and aij are the coefficients of this method. Ae shall call an iterative process of the form
(1.7) the stabilization iterative process (SIP).

Generalized Picard process. The simplest iterative process of the form (1.7a) is obtained
when we apply the implicit Euler method to the stabilization equation:

vk+1 = vk + τF(vk) = (1− τ)vk + τ SF (vk). (1.8)

It’s clear that for τ = 1 the process (1.8) turns into a classic Picard process.

Theorem 1.1. The sequence {vk}∞k=0 of the generalized Picard approximations (1.8) con-
verges to v∗ in the norms ‖ · ‖∞ and ‖ · ‖2 for all τ in (0, 1].

It can be noticed that the process (1.8) is a representative of the two-layer iterative
scheme from [5, p. 500, (2)] with B = I, A = I − SF and f = 0. In contrast to the known
result on the convergence of such schemes [5, p. 502, Th. 1] Theorem 1.1 does not require
that the additional conditions [5, p. 501, (4), (5)] hold. Moreover, the above-mentioned
theorem from [5] deals with Hilbert space and is not applicable in the case of the C-norm
‖ · ‖∞.

Now we are going to demonstrate the advantages that process (1.8) may have in compar-
ison with the classic Picard process. Consider the following generalization of model equation
(1.4):

v = λS(v + a), λ ∈ R, a ∈ V. (1.9)

The processes to compare are the Picard process

vk+1 = λS(vk + a) (1.10)

and the generalized Picard process

vk+1 = (1− τ)vk + τλS(vk + a). (1.11)
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The convergence properties of these processes are determined by the norms of the corre-
sponding linear operators

Rλ = λS for (1.10), (1.12)

Rλ,τ = (1− τ)I + λτS for (1.11). (1.13)

Here I : V n → V n is the identity mapping. In general, the computation of ‖ · ‖2 is easier
than of ‖ · ‖∞, so we shall use the linear operator norm induced by ‖ · ‖2. The following
result for the generalized Picard process is proved.

Theorem 1.2. For any λ < 0 there exists τλ > 0, such that for all τ from (0, τλ)

‖Rλ,τ‖ < 1,

holds, where Rλ,τ is defined in (1.13), ‖ · ‖ is a linear operator norm induced by ‖ · ‖2.
This result means that for all negative values of λ with a proper choice of τ for the process
(1.11) we have ‖εk+1‖2 < ‖εk‖2 ∀ k > 1. On the other hand, the reader will easily prove that
for λ > 2 we have

‖Rλ,τ‖ > 1 ∀τ > 0.

It is not a big problem though, since we are targeted to stiff problems that are characterized
by λ¿ 0.

As for the classic Picard process (1.10), it is trivial to prove that if |λ| > √3, then
‖Rλ‖ > 1. Therefore the generalized Picard process (1.8) is more preferable than the classic
one at least on the model equation (1.9).

1.3. How to choose the parameters? Now we proceed to the problem of choosing
the values of the parameters τ , bi and aij for the SIP (1.7). The behavior of the iterative
process strongly depends on problem (1.2′), so first consider the model equation (1.9).

1.3.1. Linear problem. Applying a SIP to (1.9) we see (similarly to (1.11)) that the
Lipshitz constant of the corresponding operator M is equal to the norm of the linear operator

R
[s]
λ,τ = Rs(τ(λS− I)), (1.14)

where

Rs(z) =
s∑

i=0

αiz
i = 1 + z

∑
j

bj + z2
∑

j,k

bjajk + z3
∑

j,k,l

bjajkakl + . . . (1.15)

is a classic stability function of the base RK method [1, p. 52, 86]. Our goal now is to select
the values of the free parameters depending on λ. More precisely, we first determine the
coefficients αi of the stability function and then construct a corresponding RK method.

The convergence rate of the process depends on the norm of operator (1.14). Since it
is difficult to calculate this norm for s > 2, we have to use an heuristic and consider the
following function instead:

K
[s]
0 (λ, τ) = ‖R[s]

λ,τv0‖2, (1.16)

where v0 ∈ L2[0, 1] is a function with unity norm. It’s clear that the condition K
[s]
0 (λ, τ) < 1

is necessary for ‖R[s]
λ,τ‖ < 1. Therefore we shall minimize the values of K

[s]
0 (λ, τ). Two kinds

of such optimization were considered. The first one is simple:

(
K

[s]
0 (λ, τ)

)2

→ min
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and the second is

− 1

µ

0∫

µ

(
K

[s]
0 (λ, τ)

)2

dλ→ min (1.17)

for some µ < 0. Further we will consider the latter one since it appeared more effective.
Besides (1.17) we require the condition of first order for base RK method to hold

α1 =
s∑

i=1

bi = 1. (1.18)

Combining (1.16), (1.15) and (1.14) we obtain

− 1

µ

0∫

µ

(
K

[s]
0 (λ, τ)

)2

dλ =
s∑

i,j=0

αiαjτ
i+jpij(µ, τ), (1.19)

where

pij(µ) = −
0∫

µ

〈Aiv0,A
jv0〉dλ, (1.20a)

A = λS− I, 〈u, v〉 =

1∫

0

u(x)v(x)dx. (1.20b)

Minimizing the quadratic functional (1.19) with respect to αi, τ and taking into account con-
dition (1.18) after some transformations we get the following expressions for the parameters:

τ(µ) =
q1(µ)

r(µ)
, (1.21a)

αi(µ) =
qi(µ)r(µ)i−1

q1(µ)i
, i = 2, s. (1.21b)

Here

r(µ) = detP (µ), qi(µ) = detPi(µ), (1.22)

where P (µ) = {pij(µ)}si,j=1, Pi(λ) is the matrix P (λ) with the i-th column replaced by the
vector −(p10(µ), . . . , ps0(µ))>.

Having found αi via (1.21b), we express the coefficients of the base RK method using
(1.15). This procedure is ambiguous since the number of unknowns bi and aij for s > 1 is
greater than s, therefore we have to fix some parameters. For example, by putting bs = 1
and bi = 0 ∀ i < s we can save several calculation operations.

It is necessary to emphasize that the described approach is an heuristic one and generally
does not guarantee the fastest convergence. To prove its efficiency, we are going to perform
a computational experiment. Recall the test equation (1.4). We apply one- two- and three-
stage SIPs to this problem taking µ = λ = −50 in expressions (1.21) to determine the free
parameters.
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Before we proceed to the results of the experiment it is reasonable to describe the scheme
of parameters determination more thoroughly. Let us do it for the case of s = 3. We have
seven unknowns:

τ, a21, a31, a32, b1, b2, b3.

We first compute the matrix P (µ) from (1.22) using (1.20), then find the expressions for r(µ)
and qi(µ) (we used Mathematica for this purpose). These expressions are rather cumbersome,
so we do not give them here. Taking µ = −50 in (1.21), we get τ = 0.221261838364,
α2 = 0.438692861462, α3 = 0.075717822473 (recall that α1 = 1 due to (1.18)). Then from
(1.15) we get

1 = b1 + b2 + b3, α2 = b2a21 + b3(a31 + a32), α3 = b3a32a21.

Taking b1 = b2 = 0, b3 = 1, we obtain

a31 = α2 − α3/a21, a32 = α3/a21. (1.23)

Finally we choose a21 = 1/3 and from (1.23) get a31 = 0.21153939404, a32 = 0.2271534674.
All unknown parameters for the three-stage SIP are determined now.

The results of the calculations are shown in Fig. 1.2. Note that the computational com-
plexity in all cases is equal to 12 evaluations of F, same as for the Picard process in Fig. 1.1.
We see that our processes give much more adequate approximations and their accuracy
increases with increasing number of stages.

Fig. 1.2. One-, two- and three-stage SIPs for (1.4) with parameters determined by (1.21)

1.3.2. General nonlinear case. In the case of a nonlinear system of ODEs, we suggest to
use the above approach by establishing a correspondence between the nonlinear problem
and the scalar model problem (1.9). This can be done by using the eigenvalues of Jacobi
matrix for the right-hand side of the initial equation1. The following example should make
this idea clear.

Consider an initial value problem for the Van-der-Pol equation

{
u′1(x) = u2(x),

u′2(x) = 20
(
(1− u2

1(x))u2(x)− u1(x)
)
,

u1(0) = 2, u2(0) = 0, x ∈ [0, 0.2]. (1.24)

1We realize that for a large system of ODEs the exact computation of the leading eigenvalue of the
Jacobi matrix is very expensive. In this case, one should use more cheap estimates. One of the possible
approaches is described in [7, p. 34] where the problem of stiffness detection is discussed. We can also
try to use the Rayleigh quotient for the Jacobi matrix to estimate the leading eigenvalue, or fractions like
‖F (vk)− F (vk−1)‖/‖vk − vk−1‖ to estimate the Lipschitz constant. Anyway, the question of robust practical
determination of SIP’s parameters requires further theoretical investigation and numerical testing.
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For this problem we have the Jacobi matrix

∂ϕ

∂u
(x, u) =

(
0 1

−20(1 + 2u1(x)u2(x)) 20(1− u2
1(x))

)
.

To get the value of µ, we compute ∂ϕ
∂u

(x0, u0) and find the eigenvalue with a negative real
part of the largest magnitude: λ0 = −59.664794. Finally, we should take into account the
scaling:

µ = λ0h ≈ −11.933.

Using this value in (1.21), we find the values of the free parameters just like in the scalar
linear case. Both components of the approximations obtained with corresponding SIPs for
problem (1.24) in comparison to the Picard process are shown in Fig. 1.3. We see that the
result is similar to the previously discussed experiment in the linear case.

Fig. 1.3. The Picard process, one-, two- and three-stage SIPs for (1.24) with parameters determined by
(1.21a), (1.21b)
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2. Numerical iterative processes

In order to construct numerical iterative processes, we simply apply the previously con-
structed analytic processes to the finite-dimensional version of problem (1.2′). To introduce
such a discrete problem, consider the subspace

Un
m =

{
m∑

l=1

αlϕ
m
l

∣∣∣∣∣ αl ∈ Rn, ϕm
l : [0, 1]→ R

}
⊂ V n. (2.1)

The basis functions ϕm
l are assumed to be linearly independent. Let

Πm : V n → Un
m (2.2)

be the projection onto Un
m. We assume Πm to be uniquely determined by the set of linear

functionals

Qm
l : V n → Rn, (2.3)

Πmv =
m∑

l=1

Qm
l (v)ϕm

l ∀v ∈ V n. (2.4)

Substituting ΠmF for F in (1.2′), we obtain the required finite-dimensional problem

v = SΠmF (v), v ∈ SUn
m = V n

m, (1.2′m)

where V n
m is a subspace analogous to (2.1) with the basis

{
ψm

l

}
=

{
Sϕm

l

}m

l=1
.

Applying the SIP (1.7a) to the discrete problem (1.2′m), we get an iterative process suit-
able for numerical implementation. Note that the only difference between the analytic and
discrete versions of the SIP is in the mapping F. For discrete processes we have

F = Fm = SΠmF − I.

We denote the exact solution of (1.2′m)

vm =
m∑

l=1

ηm
l ψ

m
l . (2.5)

To define the numerical algorithm, we should describe the procedure of transition from the
k-th approximation

vm
k =

m∑

l=1

ηk, lψ
m
l (2.6)

to the (k + 1)-th one with the new coefficients ηk+1, l. This algorithm is given below.

Input: ηk = {ηk, l}ml=1 ∈ Rmn.
Output: ηk+1 = {ηk+1, l}ml=1 ∈ Rmn.
Intermediate variables: γ = {γl}ml=1 ∈ Rmn,

κi = {κi,l}ml=1 ∈ Rmn, i = 1, s.
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γ ← ηk + τ

i−1∑
j=1

aijκj,

κi,l ← Qm
l

(
F

(∑m
p=1 γpSϕ

m
p

))
−γl, l = 1,m,


 i = 1, s; (2.7a)

ηk+1 ← ηk + τ

s∑
i=1

biκi. (2.7b)

To define the numerical algorithm of type (2.7), we formally need to choose the basis func-
tions ϕm

l and the rule for evaluating functionals (2.3). Before to discuss concrete numerical
algorithms we present the basic theoretical result for the convergence of the discreet iterative
process for (1.2′m).

Theorem 2.1. Let V n = C([0, 1],Rn) and the following conditions are satisfied:
— the initial differential equation (1.1) is autonomous,
— the sequence of operators {Πm} is uniformly bounded,
— the sequence of operators {SΠm} converges pointwise to S,
— for all m > m0

‖SΠm‖L < 1. (2.8)

holds. Then
i) for all m > m0 the discreet generalized Picard process

vm
k+1 = (1− τ)vm

k + τSΠmF (vm
k )

converges to the function vm = SΠmF (vm) if τ ∈ (0, 1];
ii) the sequence {vm} converges uniformly to v∗ = SF (v∗):

‖vm − v∗‖∞ −−−→
m→∞

0.

This result should be considered as a preliminary one because of the condition (2.8) which
becomes very restrictive for stiff problems with very large values of the Lipschitz constant.
Our numerical experiments have shown that this condition is too strong and in practice
discrete iterative processes do converge when it is violated (see Table 1 below). Note that
as in the ”continuous” case of the SIP the convergence of general multistage discrete SIPs
have not been proved so far.

2.1. Discretization by means of interpolation. The most straightforward approxi-
mation technique of the form (2.4) is the polynomial interpolation in the nodes ξm

l ∈ [0, 1],
l = 1,m:

ϕm
l (ξ) =

∏

p6=l

ξ − ξm
p

ξm
l − ξm

p

, Qm
l (v) = v(ξm

l ). (2.9)

In this case, the space Un
m (2.1) is a space of algebraic polynomials of a degree not greater

than m− 1, and V n
m = SUn

m is a space of polynomials P of a degree not greater than m such
that P (0) = 0. Using (2.9) in the second line of (2.7a), we obtain

κi, l ← f

(
ξm
l ,

m∑
p=1

γpψ
m
p (ξm

l )

)
− γl.
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2.1.1. The connection with implicit RK methods. Since the approximate solution vm

satisfies (1.2′m), with (2.9) we have

d

dx
vm(ξm

l ) = (ΠmF (vm))(ξm
l ) =

m∑
p=1

f(ξm
p , v

m(ξm
p ))ϕm

p (ξm
l ) = f(ξm

l , v
m(ξm

l )). (2.10)

This yields that the unknown coefficients ηm
l from (2.5) satisfy the following system of

equations:

ηm
l = f

(
ξm
l ,

m∑
p=1

ηm
p ψ

m
p (ξm

l )
)
, l = 1,m. (2.11)

In general, (2.11) is a nonlinear system of equations of dimensionmn and the iterative process
(2.7) can be considered as a means for solving this system. Moreover, the reader can see
that the structure of (2.11) resembles the system which is solved in implicit Runge — Kutta
methods. To see this connection from a different point of view, notice that the approximate
solution of the initial ODE (1.1)

um(x) = u0 + vm

(
x− x0

h

)
(2.12)

which corresponds to vm, is a polynomial of degree m satisfying

um(x0) = u0, um(x0 + ξm
l h) = ϕ(x0 + ξm

l h, u
m(x0 + ξm

l h)).

This means that um is a collocation polynomial for (1.1) [6, p. 220]. As is known, collocation
methods are implicit RK methods, hence, in fact, our algorithm (2.7) in the case of (2.9)
presents an alternative realization of some implicit RK method. Nonlinear systems in implicit
RK methods are usually solved using the Newton method with a constant Jacobi matrix.
Every iteration of this method requires solving a linear system of equations. On the other
hand, our algorithm (2.7) is similar to the fixed-point iteration (we have this in the trivial case
of the discrete Picard method) and do not require solving intermediate equations. Moreover,
we can provide our algorithm with additional useful features which will be discussed in the
following paragraph.

2.1.2. Features of numerical implementation. The essence of the modifications we are
going to suggest now consists in making the iterative process of solving the discrete problem
(1.2′m) more closely related to the underlying differential equation. The first and most
important modification exploits the idea used in multigrid methods for integral and partial
differential equations.

Multigrid-like modification. As was claimed at the very beginning, the numerical methods
we develop should be capable of increasing accuracy without decreasing the stepsize. That’s
why it is necessary to be able to raise the level of the approximation during the discrete
iterative process. Consider an approximate solution of the form (2.6), vm

k ∈ V n
m. To continue

the iterative process on a ”more precise” subspace V n
bm, m̂ > m, we need to find a set of

coefficients {η̂k, l}bml=1 such that

v bmk (x) =
bm∑

l=1

η̂k,lψ
bm
l (x) = vm

k (x) ∀x ∈ [0, 1]. (2.13)
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Differentiating the left-hand side of (2.13), we have

d

dx
v bmk (x)

∣∣∣∣
x=ξ bmp

=
d

dx

( bm∑

l=1

η̂k, lψ
bm
l (x)

)∣∣∣∣
x=ξ bmp

=
bm∑

l=1

η̂k, lϕ
bm
l (ξ bmp ) = η̂k,p.

So finally we get

η̂k,p =
m∑

l=1

ηk, lϕ
m
l (ξ bmp ), p = 1, m̂. (2.14)

After this transformation we put m = m̂ and continue the iterative process until the required
accuracy is reached. If a more accurate approximation is needed, then we can repeat the
above procedure of transition to a ”more accurate” subspace.

Now let’s consider the results of the computational experiment (see Table 1). We have
tested two versions of the discrete analog of the analytic three-stage SIP which we used ear-
lier for problem (1.24) (see Fig. 1.3). The first version is multigrid-like and the second uses
one fixed grid on every iteration. For each iteration of these processes, we display the current
number of collocation nodesmk, the norm of the error ‖εk‖∞ and the computational complex-
ity measured in the number of evaluations of the right-hand side of the ODE. The collocation
nodes ξm

l for both processes are the nodes of Radau polynomial P (ξ) = dm−1

dxm−1

(
ξm−1(ξ−1)m

)
.

This makes our algorithms equivalent to implicit the Radau methods.

Computational experiment: comparison of mul-
tigrid and fixed-grid discrete iterative processes

Multigrid Fixed grid
k mk ‖εk‖ Nf mk ‖εk‖ Nf

1 3 0.4068620 9 10 0.4068384 30
2 4 0.0754135 21 10 0.0723049 60
3 5 0.0321644 36 10 0.0216543 90
4 6 0.0137002 54 10 0.0067173 120
5 7 0.0064819 75 10 0.0018221 150
6 8 0.0024815 99 10 0.0005156 180
7 9 0.0008777 126 10 0.0002904 210
8 10 0.0002960 156 10 0.0001182 240
9 10 0.0001404 186 10 0.0000650 270
10 10 0.0000752 216 10 0.0000565 300
11 10 0.0000589 246 10 0.0000549 330
12 10 0.0000549 276 10 0.0000552 360
13 10 0.0000551 306 10 0.0000553 390
14 11 0.0000218 339 10 0.0000553 420
15 11 0.0000133 372 10 0.0000553 450
16 11 0.0000106 405 10 0.0000553 480
17 11 9.59× 10−6 438 10 0.0000553 510

As we see, a multigrid-like modification gives a more accurate and less expensive result
than simple fixed-grid iterations. In this example we manually selected the number of it-
erations on each level of discretization. The general strategy of choosing this number is a
subject of further research.

We should mention that we have described only the most simple multigrid-like modifica-
tion of our algorithm. The analytic form of approximate solutions that we use allows us to
compute the residuals

d

dx
vm

k (ξ)− f(ξ, vm
k (ξ))



128 B.V. Faleichik

at any point ξ ∈ [0, 1]. This property with some additional details makes it possible to
construct more sophisticated algorithms analogous to multigrid methods for the integral
equations [2].

The next two features are based on considering the approximate solution (2.12) not just
as a function defined locally on X = [x0, x0 + h], but as a globally-defined function which
can be close enough to the exact solution outside the interval X.

Floating stepsize. This may be an alternative to a very important component of all ODE
solvers — the stepsize control technique. The idea is to change the stepsize h within the
iterative process without loss of the currently achieved approximation (2.6). To perform this
operation, we need to recalculate the coefficients ηk,l and substitute the new value of stepsize

ĥ for h in the expression for the function f (see (1.2), (1.2′)). To be definite, assume

ĥ = δh,

then the ”scaled” approximation v̂m
k should satisfy

v̂m
k (x) =

m∑

l=1

η̂k, lψ
m
l (x) =

m∑

l=1

ηk, lψ
m
l (δx) = vm

k (δx) ∀x ∈ [0, 1].

Now differentiate the last expression just like we did before for (2.13) and obtain

η̂k,p = δ

m∑

l=1

ηk, lϕ
m
l (δξm

p ), p = 1,m. (2.15)

This procedure can be used in two different cases. When the convergence rate is too small
(this fact can easily be monitored), we take some δ < 1, perform transformation (2.15), put
h = ĥ and continue the process. In the converse case, if the process converges very fast, it
makes sence to increase the timestep by taking δ > 1.

Choice of the initial approximation. The approach to the choice of the initial approxi-
mation we are going to use is analogous to that described in [7, p. 141] for collocation RK
methods. Since (2.6) can be evaluated outside [0, 1], we can use the ”extrapolated” approx-
imate solution from the previous step as the initial approximation at the new step. More
precisely, let

um
0 (x) = u0 + ṽm

(
x− x0

h0

)
, (2.16)

where ṽm =
∑m

l=1 η̃lψ
m
l , be the approximate solution on the interval [x0, x1], x1−x0 = h0. To

start the iterative process on the next interval [x1, x1 + h1] with the new stepsize h1 = δh0,
we choose such coefficients η0, l that the corresponding intial approximation

ũm
1 (x) = um

0 (x1) +
m∑

l=1

η0,lψ
m
l

(
x− x1

h1

)
(2.17)

coincides with (2.16) everywhere on [x1, x1 + h1]. Differentiating (2.16), (2.17) and substi-
tuting xp = x1 + ξm

p h1 for x we obtain

η0,p = δ

m∑

l=1

η̃lϕ
m
l (1 + δξm

p ), p = 1,m. (2.18)
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Conclusions

Of course this paper does not thoroughly cover the subject of research. There are two main
directions of the further investigation: the theoretical and the practical one. Among the
theoretical problems we can mention the following.

1. Proof of the convergence of the stabilization iterative processes (1.7) in the general
multistage case (recall that we have only proved the convergence of the generalized Picard
process, see Theorem 1.1). The scheme of this proof seems to be clear: one should com-
bine the property (1.5) of the stabilization equation (1.6′) with the known results on the
convergence of Runge–Kutta methods.

2. Derivation of less restrictive convergence conditions for the discrete Picard process
and proof of the convergence of the general multistage discrete SIPs (see Theorem 2.1 and
comments below).

The practical part of the further research is the creation of a robust program based on
the features we have briefly described above: the multigrid approach, the stepsize control
and the initial approximation selection techniques. Without such a program we think it
incorrect to compare the proposed numerical algorithms to the existing stiff ODE solvers.
That is why in this article we have compared only analytic stabilization iterative processes
with a Picard process in order to show that the proposed approach is worthy of attention.
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